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The notion of converting an nth order system to n first-order systems by means of ‘state variables’
has been introduced in many control textbooks. However, the process requires a workable
computer program which is not found in these textbooks. In this paper a simple and rather
compact computer program is developed which is applicable to systems of any order. The idea is
based on introducing arbitrary variables. These variables are combined in a suitable fashion and
are eliminated by differentiation and substitution. The method provides practical advice on the
analysis of control systems as well as many areas of engineering and applied mathematics. The
work is supplemented by a listing of the program in BASIC along with an example to illustrate its

application.

INTRODUCTION

AN nth order system can be represented by

anDny + anlen—ly 33 an—ZDn—Zy ws T alDly
tay=g(x) (1)

where Dy, k = 1,2,.,n represents the k-th deri-
vative of y with respect to x. The initial conditions
consist of known values of y,D,y,D,y, .., and
D,_,y at x=x,,.

For dynamic systems (including control sys-
tems), the response y is a function of time (x) and
8(x) respresents the forcing function which is also
known. The ease of obtaining analytical solutions
evaporates quickly as n and/or the complexity of
the model increases. Thus, in practice, computer-
oriented methods are used. The state variable
method [1,2] transfers an n-th order differential
equation in one unknown into n first order
equations in n unknowns. Before illustrating this
technique we need to identify the first order model.

FIRST ORDER MODEL

Numerous methods for solving a first-order
system have been unified [3]. Among these
methods the Euler method enjoys simplicity and is
therefore used for clarity purposes.

Consider the first-order system

a,dy/dx + a,y = g(x) XoS XS X

(2
y(x=x,)= B,
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where the coefficients a, and a, are not necessarily
constants.

The basis of Euler’s method is to rewrite equa-
tion (2) as
y'=dy/dx = f(x,y)

where

f(xy)=[8(x)—ayy)/a,.

By means of Taylor’s Series, the expression for y at
a point near x will be given approximately by

@)

y(x+h)=y(x)+hy'(x). 4)
From Equation (2) this becomes
y(x+h)=yx)+hf(xy) ®)

where 4 is the x-increment. In computer equation
(5) becomes

Yerr =Y t hf(Xes)i)s kK =1,2,...
Yo= B,

(6)

Evaluation of (3) at the initial (x,,B,) permits one
to compute y at an increment away from the initial
point using (6). This process can be continued for
as many steps as desired. Although this method has
rather limited accuracy, it does, however, provide
considerable insight into the understanding of the
method in this paper as well as many other
methods.

n-th ORDER MODEL—STATE VARIABLE
METHOD

To obtain the nth-order version of equation (2),
rewrite (1) as:

D,y =f(xy,D,y,D,y,D;y,....D,_,,y, D,_,y) (7)
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where
[Go)rig(x) — Dy — wimmay Dy — a,yl/
a., . *0: (8)
The initial conditions are expressed as
y(x()) o B(D
D,y(x,) =B,
D:)’(xo) =B,
D;y(x,) =B,
- ©)
Dlt—ly(x())= Bn—?_
D,_.y(x¢)=B,_,.

To convert equation (1) into a system of first-order
equations define the so-called ‘state variables’ y,,

yl""’yn

Y1 =D,y
Y2 ” Dn—Zy
y] = Dn—,?y
. (10)

y n—1 . D ly
! It
Now, differentiate (10) with respect to x

D,y=D,y
Dly2= Dn—ly
D\y=D,_,y a1

Dlyrr—=l DZy
D lyn= D 1y
Finally, substituting (10) and (7) into (11) gives

D,y = f(XsYnsYn—15Yn-20 - + » Y2:Y1)
D,ym=y,
D,yr=y,
: (12)

Dlyn-l=YIr-2
Dlyn= yn—l

which is a system of n first-order equations. The
initial conditions (see equations 9 and 10) are:

Valxg) =B

yl (x()) e Bn»l

V3(xo) =B,

) (13)
Yu-1(X0) = B,

yn (x{)) e B(l'

We can solve this system by means of the method
used for the first order model. Once the system is
solved for state variables y,,y.,.. . .,y,, we can find y
and its derivatives according to (10).

THE COMPUTER PROGRAM

Table 1 shows a compact computer program for
solving system (12) subjected to initial conditions
(13). The INPUT values are initial position, x;
order of the system, n; increment, 2 and the
number of increments, k., (see LINE 140). The
user is required to type his/her function f (see
Equation 7) in terms of state variables in line 120.
All other state variables are automatically gener-
ated in the program (see function f, in LINES 130
and 200). Number of equations (assumed 10 in the
program) is arbitrary and can be increased by the
user. Arrays Y(10) and G(10) have been used to
manipulate the state variables. (See the Loop in
LINE 180.) The extension of the first order to
handle a system of 7 first order equations is clearly
shown in the Loop.

EXAMPLE

Consider the following 4-th order nonlinear
system.

y(4)+ y(3)+y(2)+ye‘(y(l)+y)=
14+ 2e*(x-2)
0<x<l1

Table 1. The BASIC computer program for state variables method

100 ‘PROGRAM STATE-VARIABLES; E. M. 1/1/1990

110 DIM G(10),Y(10)

120 DEF FNF(X,Y1,Y2,Y3,Y4)=14+2*EXP(—X)*(X—2)—Y 1=Y2~Y4*EXP(X)*(Y3+Y4)

130 DEF FNF1(Z)=Z

140 INPUT Input X0,n,h,Kmax”;X,N,H, KM

150 input’Input initials BO,B1,B2,B3";Y(4),Y(3),Y(2),Y(1)

160 FOR K=1TO KM

170 PRINT X,Y(4),X*EXP(—X)

180 FORJ=1TON

190 G(1)=FNF(X,Y(1),Y(2),Y(3),Y(4))
200 if J>1 then GU)=FNF1(Y(J—1))
210 Y()y=Y(J)+H*G(J))

220 NEXTJ

230 X=X+H

240 NEXTK

250 END




70 E. Mahajerin

subject to the initial conditions

¥(0)=0, yH(0) =1, y®(0) = =2, y(0) = 3.

The exact solution can be shown to be xe™. Using
the notation in the paper this becomes
D,y+Di;y+D,y+ye'(Dy+y)=1+
Ze*(x—2):

Consequently,
Dy*™=1+2e¢*(x—2)—D,y—D,y —ye(Dy+
Y)-

In terms of state variables this becomes
Dy=1+2e*(x-2)-y,-y,- ¥, e (Y3t yy).

The right-hand side of this equation constructs the
function f (see equation 7 and also line 120 of the
program). Table 2 shows the computer results for
two different increments. These results are directly
compared to the exact values.

CONCLUSIONS

Direct solution of higher-order differential equa-
tions can be very difficult and time consuming.
Converting these equations to a system of first-
order equations may be accomplished by introduc-
ing the state variables. However, this technique

Table 2. Results for the example problem

X y (h=.05) y (h=.025) y (Exact)
0 0 0 0

.05 04535 04643 04756
A 08638 08838 09048
15 12339 12619 12911
. .15666 16014 .16375
25 .18648 19025 .19470
3 21308 21760 22225
33 23670 24162 24664
4 25575 .26283 26813
45 27590 28144 28693
S 29187 29765 30327
K. 30568 31167 31732
6 31750 .32368 32929
65 32750 .33386 .33933
7 .33583 34236 34761
T .34266 34936 35427
8 34811 35499 35946
.85 35233 35941 36330
9 35545 36275 36591
93 35760 36513 36740
1 35889 36669 36788

requires a workable computer program. These
topics have been addressed in this paper. The
proposed program is extremely compact and is
easy to use. It offers the educator a powerful tool
and can be integrated into a wide variety of areas
such as dynamics and control.
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