Int. J. Appl. Engng Ed. Vol. 7, No. 4, pp. 264-274, 1991
Printed in Great Britain.

0742-0269/91 $3.00+0.00
© 1991 TEMPUS Publications.

A Nonlinear Programming Computer Tool*

A.EL-HAJ]
W.HARMOUSH
K.Y.KABALAN
H.MUDALLAL

Electrical Engineering Department, American University of Beirut, Beirut, Lebanont

This paper presents a nonlinear programming interactive computer package useful as a practical
tool in teaching several related courses. The input to this program is the function to be minimized
and the constraints. Once the nonlinear programming method is selected, the user must supply
the program with the initial values of its parameters, and the starting point. After parsing the input
correctly, the program provides the user with complete information about the solution found.
Graphical illustrations are also available for the evaluation of the efficiency of the selected method
and the influence of the parameters values on the desired solution.

1. INTRODUCTION

THE nonlinear programming (NLP) problem,
which deals with the optimization of a nonlinear
objective function subject to linear and/or non-
linear constraints, usually occurs in many engineer-
ing problems as well as in several other
applications. Analytical techniques for solving
such problems are available but when the problem
becomes large and highly nonlinear these methods
become unsatisfactory and numerical techniques
must be used. Several numerical techniques are
available to treat these problems.

This paper presents a nonlinear programming
interactive computer package that is useful to educ-
ate users while solving such problems. The input to
this program is the function F(X) to minimize or
maximize subject to the equality constraints
H (X) = 0 and the inequality constraints G(X) > 0.
This problem is discussed in detail in [1] and [2]. A
parser reads these functions and detects any error
following the rules of a grammar. The program
contains an option that computes, whenever neces-
sary, the analytical expression of the derivative of a
function. This derivative routine may be character-
ized by its efficiency in finding the derivative of any
function regardless of its form, order, and shape.
The user can select among many NLP methods
(three are now available in the menu), a method to
solve his/her problem. For a selected method, the
user is asked to provide the necessary parameters
as well as the starting point. When the optimization
is in process, the program displays different steps.
The user can suspend the execution for: For exam-
ple to watch carefully the situation in the last few
steps or to change some parameters in a more con-

* Paper accepted 22 October 1990.

+ Mail address: American University of Beirut, Electrical
Engineering Dept., New York Office, 850 Third Avenue, 18th
Floor, New York, N.Y. 10022 US.A.

264

venient way for the following steps. The user can
graphically display some information about the
optimization process: For example, the function
and/or the constraints versus iteration, which
enables him/her to compare different methods and
to study the efficiency of a given method for a speci-
fic problem.

2. THE PARSER

The mathematical model of the problem is
entered through the editor in the following form:

Min: F(xy.x,...);

CON: H(X.Y.Z, . . Y JEYZoeo);
CONE: Gxye, i)~ P KWz, 2.);
CON: E(xivf.) b < ‘M yzi..);

The equality and inequality constraints can be
entered in any order and the program transforms
all inequality constraints to the greater than zero
type. The editor that contains menus and windows
allows efficient correction and variation of the
input. Options are also available to save a function
and its constraints on a disk file or to load a saved
file into memory. The problem is analyzed and
recognized by the computer by means of a parser.
This parser converts the model from a sequence of
characters to a sequence of tokens (tokens include
operators, operands, variables, constants.. . .). Each
token is represented by a fixed length integer code.
A token specifier is associated with the tokens of
variables and reals types. A context free grammar is
defined to specify the form or the syntax of the legal
statements of the problem (Appendix A). The
parser is used to recognize each statement of the
mathematical model as some language construct
described by the grammar. In case of a syntax error,
one of 12 built error messages is displayed (Appen-
dix A). Figure 1 shows the syntax error that is dis-
played after compiling the function given in the edit
window.

A Nonlinear Programming Computer Tool

File Edit

E

Run
dit

265

Ervor 7! nected + Press Esc
nin: (x1—2)"4f(x1—2!x2“2_,'_
F2-Save F3-1ndent F 10-Henu
Fig. 1. Compilation of the function

F(X)= (X, — 2)*+ (X, — 2X3).

In addition, the parser generates an infix nota-
tion of the expression to be used later in fetching the
symbolic dérivative. The function to be evaluated is
pushed into a stack in postfix notation then succes-
sive elements are popped from this stack and the
appropriate operators are then applied. More
details about parsing and function evaluation can
be found in [3] and [4].

3. THE DERIVATIVE PROCEDURE

The program computes, when necessary, analyt-
ical expressions of the derivatives of a function.
The derivative procedure reads a function in its
infix form and returns its partial derivatives with
respect to every variable. This procedure could be
applied n times to obtain the n’th partial deriva-
tives of a function. The derivative is calculated
recursively following the rules of a grammar as
defined in Appendix B. A derivative rule exists for
every rule of the context free grammar described in
the previous section where a derivative is required.
Finally, a special procedure is used to eliminate
from the derivative function calculated the useless
parentheses, the zero terms, and the zero factors.
This derivative option in the package can be used
with an introductory mathematics course teaching
derivatives. Figure 2 shows the derivative obtained
for the function defined in the previous section.

4. THE NLP METHODS

In this package, the constrained problem is trans-
formed into an unconstrained one by adding to the

objective function F(X) a penalty term for any vio-
lation of the constraints. The problem as defined in
Section 1 is then reduced to the following form:

minimize [(X) = F(X) + Penalty (X)
A possible value of the penalty function is:
Penalty (X) = 2 g; min (0,G; (X))

-+ Z g, H’ (X)
/

Where the g, are penalty constants that may be
updated in each iteration.

Many unconstrained NLP methods are available
to solve this problem where three of them have
been implemented in this package. These methods
are:

I — The Steepest descent method
2 — The Hookes and Jeeves methods
3 — The Rosenbrock method

The program requires for each method a starting
point X, the initial values of g, as well as the initial
values of the parameters that characterize each of
these methods. The search starts and at each itera-
tion the values of X, the augmented function, and
the parameters are displayed. The speed of the dis-
play can be changed by the user at his/her con-
venience. This allows watching carefully the search
process and the convergence of the method. This
search can be suspended at any time by the user for
many reasons: For example to look carefully at the
last values displayed or to change some values or
parameters that may have influence on the speed of
the method or on the local solution found. The user
can also display graphically some information. For

266 A. El-Haji, W. Harmoush, K. Y. Kabalan and H. Mudallal

File Edit Run
Conpile
Conpile

Line 1 Colunn 24 Insert Indent
nin: (x1 INFORMATION
Current File : C:\TPS\NLPEXE\TEST .NLP

Variables 2
X1]
X2 0

F(X) = Not Conputed

Neuw Non Linear Program Form:
MIN: FOE= (H1-2)~4+(X1-2%K2)"2

Derivatives
dF7dX1 = (AR(X1-2)73)+(2n(X1-2%X2))

dF7dR2 = 2% (-2)%(R1-2%K2)
Press Any Key
F2-Save F3-1ndent F iD-Henu
Fig. 2. Information concerning the function
FX)=(X,—2)'+ (X, — 2X3).
File Edit Run| Compile
Line 1 Colunn 24 1| Choose Hethod ‘ C:TEST.NLP

nin: (x1-2)~4+(x1-2%x2)~2; Choose Output |
l Run \

Choose Methods

Rosenbrock Method

Hooke and Jeeves Hethod

Staepest Descent /Ascent

Choose item using the arrow keus &] ESC to abort | press 4 | when done

Fm3.&wmmnMaNmMMmpmymmmmmmmu

A Nonlinear Programming Computer Tool 267

File Edit Compile

Line 1 Colunn 24 Insert Indent C:TEST.NLP
nin: (x1-2)~4+(x1-2xx2)~2; - Starting Point
X1 = 0.00

Choose iten using the arrow keys 1 & | | ESC to abort | press &4 when done

File Edit Compile

Line | Colunn 24 Insert Indent C:TEST.NLP
nin: (x1-2)~4+(x1-2»x2)~2;

Steepest Descent
Ternination Scalar:Epsilon(30) = 0.1

F2-Save F3-Indent F 10-Henu

Fig. 4. (a) Starting point in minimizing F(X)
(b) Termination scalar of the solution.

268 A. El-Haji, W. Harmoush, K. Y. Kabalan and H. Mudallal

example the variation of the function and the con-
straints versus iterations. Suspending and resuming
the search can be done many times. This allows a
better understanding of the mechanism of a
method by the user. Moreover, it will enable the
user to study the effect of the parameters on the
speed of the method, or to find the method of vary-
ing parameters during the search in order to
improve the efficiency.

Figure 3 shows an example where the Steepest
Descent method is selected to minimize the given
function. The ‘choose output menu’ contains a
selection between numerical outputs as in Fig. 5 or
graphical output as in Fig. 6. Figures 4(a) and 4(b)
show the initializations required to start the com-
putation. Figure 5 shows the phases in the com-
putation process. Figure 6 shows the evolution of
the function versus iteration. Figure 7 shows a new
defined problem to solve. Figure 8 shows the
initializations corresponding to the Rosenbrock
method. Figure 9 shows the computation process
corresponding to the Rosenbrock method. Figures
10(a) and 10(b) show the initializations cor-
responding to the Hookes and Jeeves method.
Figures 11(a) and 11(b) show the first and last
iterations corresponding to the Hookes and Jeeves
method. This package allows the study of dif-
ficulties associated with nonlinear programming
such as nonconvergence, zigzagging, slow conver-

File Edit

gence, . . ., etc. Some difficulties can be found for a
previous example using the Steepest Descent
method with an inappropriate initial choice of the
step size and starting point [See Fig. 12]. Figure
12(a) shows the zigzagging of X2 between itera-
tions 24 and 27. On the other hand, the conver-
gence is slow as shown in Fig. 12(b) where the
solution has not been reached after 300 iterations.
It is concluded that from the values displayed dur-
ing successive iterations, one can decide about the
convergence and the efficiency of the nonlinear
programming method used.

5. CONCLUSION

This program has shown to be useful as a practi-
cal tool for teaching nonlinear programming. It can
be used by students in projects or lab assignments
as well as for other applications. It is modular
which allows addition of more NLP methods. The
efficiency of the program arises from its flexibility,
the use of an editor, a parser and a derivative pro-
cedure as well as the communication with the user
during the search process. Some of the most com-
monly used NLP methods are implemented. Work
in progress aims to implement more NLP methods
in this package.

Compile

Line 1 Colunn 24 Insert Indent C:TEST.NLP

min: (x1-2)~4+(x1-2xx2)"2;

o Flunning S

lteration Variables F(X)
1 X1 = 0.0000000E+0000 1.6000000E+0001
K2 = 0.0000000E+0000
2 X1 = 2.0000000E+0000 4.0000000E+0000
X2 = (.0000000E+0000
3 K1 = 2.0000000E+0000 0.0000000E +0000
X2 = 1.0000000E+0000

nd 0Of Computations. Press Any Key

F8-Delay F3-Break

Fig. 5. Minimization process of the function F(X).

A Nonlinear Programming Computer Tool 269

16 BObjective Function

Ny &= ro e o\ oo

o k=

gl
12
l lteraztion 3
Fig. 6. Variation of F(X) versus iteration.
File Edit Run
Connile
Line 3 Colunn 11 Insert Indent Conpile
nin: (xi INFORMAT10N
con: x1)) Current File : C:\TPS\NLPEXE\TEST.NLP
x2?
Variables 2
X1 o
X2 0
F(X) = 16.00
New Non Linear Program Form:
HIN: F(X)= (X1-2)~4+(X1-2%K2)~2
CONSTRAINTS:
Gi1(X): X1-3 >0
G2(X): X2-2 >0
Derivatives
dF/7dX1 = (4%(X1-2)73)+(2%(X1-2%X2))
dF /dX2 = 2x(-2)=(X1-2x%2)
Press Any Key
F2-Save F3-Indent F 1D-Henu

Fig. 7. Minimization of F(X) under constraints.

270

A. El-Haji, W. Harmoush, K. Y. Kabalan and H. Mudallal

File Edit Compile
Line 3 Column 11 Insert Indent C:TEST.NLP
nin: (x1-2)~4+(x1-2»=x2)~2;
con: x1)3;
x222;
Rosenhrock
Ternination Scalar:Epsilon(20? = 0.01
Expension Factor:Alpha()1) =2
Contraction Factor:Beta(-1<Beta<0) = -0.35
Penalty Paraneter:Mu(20) = 100
F2-Save F3-1ndent F 10-Henu
Fig. 8. Values affected to the parameters used in the Rosenbrock method.
File Edit Compile
Line 3 Colunn 11 Insert Indent C:TEST.NLP o
min: (x1-2)~4+(x1-2x=x2)~2;
con: x1)3;
X222}

R Running SR

1

X1
K2

X1
H2

H1
K2

Iter Variables

"

Direction
0.000E+0000 X1 = 3. 100E+0000
3.000E+0000 SK2 =-7.500E-0001
F(X)= 9.520E+0002

3.100E+0000 &K1 =-1,191E-0001
2,250E+0000 SR2 =-2.798E-0001
F(X)= 3.424E+0000

2.981E40000 &K1 8.717E-0003
1.370E+0000 &R2 = 6.554E-0003
F(X)= 1.972E+0000

nd Of Conputations. Press Any Key

n

Constraints
G 1(X)=-3.000E+0000
G2(X)= 1.000E+0000

G1(X)>= 1.000E-0001
G2(X)= 2.500E-0001

G1(X>=-1.914E-0002
G2(XY=-2.983E-0002

F8-Delay F3-Break

Fig. 9. Minimization of F(X) defined in Fig. 7.

A Nonlinear Programming Computer Tool 271

File Edit Compile

Line 3 Colunn 11 Insert Indent C:TEST.NLP
nin: (x1-2)~4+(x1-2»x2)~2;
con: x1)3;

x®2)2;

)

Choose iten using the arrow keys 1t & | | ESC to abort | press & when done

File Edit Compile
Line 3 Column 11 Insert Indent C:TEST.NLP
nin: (x1-2)~4+(x1-2xx2)~2;
con: %1>3;
x2)2;
Hooke And Jeeves
Ternination Scalar:Epsilon(}0) =0.1
Acceleration Factor:Alpha()0) =1
Initial Step Size:DeltaOEpsilon) = 0.2
Penalty Paraneter:Mu()0) = 100
F2-Save F3-1ndent F iD-Henu
Fig. 10. (a) Starting point for the Hookes and Jeeves method.

(b) Parameters required for the Hookes and Jeeves method.

272 A. El-Haji, W. Harmoush, K. Y. Kabalan and H. Mudallal

File Edit Compile
Line 3 Colunn 11 Insert Indent C:TEST.NLP
nin: (x1-2)~4+(x1-2xx2)~2;
con: x1)3;
x222;
lter Variables Direction Constraints
1 X1 = 2.000E+0000 X1 = 2.000E-0001 G1(X)=-1.000E+0000
K2 = 3.000E+0000 &K2 =-2.000E-0001 G2(X)= 1.000E+0D000
F(X)= 1.160E+0002
2 X1 = 2,200E+0000 &X1 = 4,000E-0001 G1(X>=-9.000E-0001
K2 = 2,.800E+0000 &X2 =-4,000E-0001 G2(X)= 8.000E-0001
F(X)= 7.395396E+0001
3 K1 = 2,.600E+0000 &K1 = 4,000E-0001 G1(X)>=-4,000E-0001
K2 = 2.400E+0000 6X2 =-4.000E-0001 G2(X)= 4.000E-0D001
F(X)= 2.097e+0001
F8-Delay F3-Break
File Edit Compile
[Line 3 cColumn 11 Insert Indent C:TEST.NLP
min: (x1-2)~4+(x1-2%x2)~2;
con: x1)3;
x222;
Iter Variables Direction Constraints
X2 = 2,800E+0000 SK2 =-4.000E-0001 G2(X)= 8.000E-0001
F(R)= 7.556E+0001
3 X1 = 2.600E+0000 X1 = 4.000E-0001 G1(X)>=-4.000E~0001
K2 = 2,400E+0000 &2 =-4,000E-0001 G2¢(X>= 4,000E-0001
F(R)= 2.087E+0001
4 X1 = 3.000E+0000 X1 = 0.000E+0000 G1(X)= 1.332E-0015
K2 = 2,000E+0000 &K2 = 0.000E+0000 G2(R>= 1.776E-0015
F(X)= 2.000E+D000D
nd Of Computations. Press Any Key

Fa-Delau F3-Break

Fig. 11. (a) First iterations in the Hookes and Jeeves method.
(b) Last iterations in the Hookes and Jeeves method

A Nonlinear Programming Computer Tool 273

File Edit Compile
Line 1 Colunn 1 Insert Indent C:TEST.NLP
nin: (x1-2)~4+(x1-2xx2)~2;
Iteration UVariables F OO

N2 = 7.3832299E-0001

24 Xi = 1.4671659E+0000 8.0653860E-0002
Xz = 7.3703655E-0001

25 5 = 1.4733551E+0000 7.6925847E-0002
¥4 = 7.3648397E-0001

26 X1 = 1.4791901E+0000 7.3610696E-0002
K2 = 7.3651494E-0001

27 X1 = 1.484717SE+0000 7.0613297E-0002
K2 = 7.3700776E-0001

FB-Delay F9-Break
File Edit Compile
Line 1 Colunn 1 Insert Indent C:TEST.HLP
nin: (x1-2)~4+(x1-2%x2)~2;
Iteration Variables F D

X2 = 8.9444233E-0001

297 X1 = 1.7912926E+0000 1.9016694E-0003
X2 = 8.89480808E~-0001

298 H1 = 1,791614BE+D000D 1.8899413E-0003
Xz = B.94977504E-0001

299 3 § = 1.7919355E+0000 1.8783214E-0003
K2 = B.9494021E-0001

300 N1 = 1,7922546E+D000 1.8668082E-0003
K2 = 8.9510462E-0001

FB-Delay F9-Break

Fig. 12. (a) Zigzagging of X2 between iterations 24 and 27.

(b) Slow convergence of the method used.

274 A. El-Haji, W. Harmoush, K. Y. Kabalan and H. Mudallal

REFERENCES

1. R.L.Fox, Optimization Methods for Engineering Design, Addison-Wesley, (1971).
2. M. S. Bazarraa and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley,

(1979).

w

&

APPENDIX A

In this Appendix, the context free grammar rule
used to implement the parser using the Backus-
Naur Form [3] is presented. These rules are:

<prog>::=<objective> {CON:<const-list>}
<objective>:=MAX:<exp>;| MIN: <exp>;
<const-list>::=<exp><const> [;<exp><const>}
<const>:=> <exp> | < <exp>|= <exp>
<exp>:=<term> | -<term>{+ <term>|-<term>}
<term>:= <factor>{*<factor>|/<factor>}
<factor>:=<operand>{ "<operand>}
<operand>:= id | real | PI | <func> | (<exp>)
<func>:=EXP(<exp>)|LOG(<exp>)|
SIN(<exp>) | COS(<exp>) |

TAN(<exp>) | ATN(<exp>) [LN(<exp>).

List of errors that the compiler may generate:

Error 1: Symbol too long

Error 2 : Invalid variable name
Error 3: “’ expected

Error 4: ¢ expected

Error 5: ‘CON’ expected

Error 6 : ‘MAX: or ‘MIN:’ expected
Error 7: ‘) expected

Error 8: ‘(expected

Error 9: ‘=", >’ or ‘< expected
Error 10: syntax error

Error 11 : end of program expected
Error 12 : not enough memory.

A. M. Tenenbaum and M. J. Augenstein, Data Structures Using Pascal, Prentice-Hall, (1986).
L. L. Beck, System Software: An Introduction to Systems Programming, Addison-Wesley, (1985).

APPENDIX B

In this Appendix, the context free grammar used
to implement the derivative procedure using the
Backus-Naur Form 3] is described. In these rules,
aand b are assumed to be legal expressions accord-
ing to the rules described in Appendix A, and Der
denotes derivative. These rules are:

Der(-a) = -Der(a)

Der(a+b) = Der(a) + Der(b)

Der(a*b) = Der(a)*b + a*Der(b)

Der(a/b) = (Der(a)/b) + a*(-Der(b))/b"2

Der(a"b) = (Der(b)*LN(a))*a"b +
b*Der(a)*a”(b-1)

Der(EXP(a)) = (Der(a))*Exp(a)

Der(LN(a)) = (Der(a))/(a)

Der(LOG(a)) = (Der(a))/LN(10)/(a)

Der(SIN(a)) = (Der(a))*COS(a)

Der(COS(a)) = (Der(a))*(-SIN(a))

Der(TAN(a)) = (Der(a))/COS(a) "2

Der(ATN(a)) = (Der(a))/(1+(a) "2)

Der(id) = 11ifid = derivation variable identifier

0 if id = other variable identifier
Der(real or PI) = 0

