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Kinematic Considerations in the Classical
Analysis of Shells of Revolution by
Reference to the Geckeler Approximation*
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In this article, a two-stage procedure for computing the total-displacement components through-
out an axisymmetric spherical shell is outlined on the basis of the Geckeler approximation. While
the approach—which regards the membrane solution as a 8ood approximation to the particular
solution of the general shell equations, and hence simply superimposes this solution and the
(homogeneous) edge effect—is adequately described in the literature with regard to stress
computations, there appear to be obscurities in its application to displacement computations. In
particular, it is not clear how the integration constants associated with membrane or bending-
disturbance displacements may be determined: [furthermore, one often finds that students tacitly
assume that, while the two-stage classical bending-theory process (such as Geckeler’s approach)
gives an accurate—yet simple—way of obtaining stresses in a spherical shell, it is somehow
unsuitable for estimating displacements. In this paper, the notion of separate integration constants
is clarified and the apparent unsuitability of the classical scheme for deflection computations
removed by fully addressing the whole question of kinematic boundary conditions (and the role
they play in the overall scheme of stress and displacement computations). Various support
conditions for open and closed shells are covered, and examples presented.

NOTATION 6  horizontal component of displacements (i.e.in
direction perpendicular to axis of revolution)

a shell radius €  direct strain
b finite displacement at a boundary A shell slenderness parameter (= [3(1 — v¥)(a/
C  one of two constants of integration for trans- 1%
verse shear force QF v Poisson’s ratio
E Young’s modulus of elasticity o  direct stress
H horizontal force per unit circumferential ¢ meridional angle measured from normal to
length shell at apex to normal at point in question
k  constant of integration for displacements ¥ meridional angle measured from normal to
M  moment per unit length (= ‘bending moment’ shell at support to normal at point in question
in shell) (=¢,—¢).
N in-plane force per unit length (= ‘stress
resultant’ in shell) Superscripts
P pressure normal to shell surface b denotes bending-disturbance variables
Q transverse shear force per unit length (= m  denotes membrane-hypothesis variables
‘shear’ in shell) T denotes ‘total’
§  normal force per unit circumferential length
t  thickness of shell Subscripts
v displacement along shell meridian b refers to ‘bottom’ (i.e.lower) portion of shell or
V' meridional rotation (= ‘change in slope’) of its edge
shell upon deformation s refers to support location
w  displacement normal to shell surface t  refers to ‘top’ (i.e. upper) portion of shell or its
W movement of shell normal to its surface edge
y  vertical component of displacements (ie. in 6  denotes variables along hoop direction
direction of axis of revolution) ¢  denotes variables along meridional direction.
B one of two constants of integration for trans-
verse shear force O, Additional notation (for
Tables 1-3)
* Paper accepted 6 November 1990, (i) refers to inner surface of shell
T Author to whom correspondence should be addressed. ( 0) refers to outer surface of shell.
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INTRODUCTION

As is well known, the stresses in an axisymmetric-
ally-loaded non-shallow spherical shell of constant
thickness can be estimated reasonably accurately
by means of a two-stage computational procedure
involving, initially, the calculation of membrane
stresses on the basis of the membrane hypothesis,
followed by a determination from compatibility
considerations of the bending actions required
along the edge of the shell to correct the kinematic
inconsistencies in the membrane hypothesis at that
edge; the quantification of the bending-disturbance
stresses associated with this second stage is almost
invariably carried out by means of the Geckeler
approximation [1]. Superposition of the membrane
and bending-disturbance stresses would then
complete the stress calculations. Clearly, it should
be possible to adopt a procedure analogous to the
two-stage stress analysis to obtain displacements at
any point on the shell; yet, surprisingly, it appears
that such an equally straightforward procedure for
estimating displacements arising from the com-
bined effect of membrane action and the corrective
edge actions has not been presented anywhere in
the literature. By ‘literature’ we are not only think-
ing here in terms of research publications, but also
of basic student texts, and it is primarily in this area
of teaching of classical shell theory that a gap seems
to exist when students are faced with the problem
of computing deflexions—as opposed to mere
stresses—in accordance with the formal bending
theory of shells. Such a shortcoming also manifests
itself when one wishes to illustrate to students the
relative effect—sometimes quite marked—various
different boundary conditions have on the magni-
tude of displacements.

With regard to the computation of displace-
ments on the basis of the two-stage analysis out-
lined above, a number of obstacles currently exist.
First, there is the need to derive expressions for
bending-related displacements explicitly in terms
of the transverse-shear variable Q, and subse-
quently in terms of the corrective actions required
along the edge. In order to retain consistency with
respect to the accuracy of the Geckeler approxima-
tion, such expressions would neglect lower-order
differential terms in Q4 and V (meridional-rotation
variable) in relation to higher-order ones. These
expressions do not appear to be available in the
literature, unlike those for stress resultants (N5, Nj 02
bending moments (M, M) and deformatlons (V'
¢”), which can be found in any of the widely- -used
texts covering the bending of shells of revolution—
see, for example, Timoshenko and Woinowsky-
Krieger [2], pp.549-551, or Fligge [3],
pp. 341-344. Then there is also the necessity of
evaluating the constants of integration associated
with the expressions for displacements. While it is
implied or even stated in a number of sources—
these will be discussed later—that only a limited
choice of boundary conditions exists for the
evaluation of the membrane-displacement con-

stant of integration, it is not clear from the existing
literature whether this constant may be invariant
for different types of physical boundary conditions
(e.g. encastré, hinged, or roller supports), and if so,
how the bending-displacement constant of integra-
tion ought to be evaluated in order to reflect these
obvious differences in the kinematic constraints
imposed at the edges of the shell.

To enable a better appreciation of some of these
obscurities in classical-shell calculations of
deformed shapes, the well-known form of the
expressions for displacements in terms of stress
resultants is briefly derived here before concluding
the current discussion on the background to the
present work. For an axisymmetrically-loaded non-
shallow thin spherical shell of constant thickness ¢
and radius a, the strains €, (in the meridional direc-
tion)and € (m the hoop dlrecnon) are related to the
dlsplacements v (in the direction of the tangent to
the meridian) and w (in the direction of the normal
to the middle surface)—see Fig. 1 for the positive
directions of these displacements and their hori-
zontal and vertical components 0, y respectively—
in the following manner:

e’-%c—;—w) (1a)

€y = % (vcotg — w). (1b)

Fig. 1. Positive sign convention for displacements and
meridional-angle alternative coordinates for an open spherical
shell.

Using the Hookean relations between these strains
and the stress resultants, namely

% o (N VN) (2a)

€= — (N,, vN,) (2b)

and eliminating w, one obtains a first-order linear
differential equation in v, the general solution of
which is
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a N,—N
et b sk ShY BT
v =sin ¢ I:E’ (1+v)f< sng >d¢ F k:l. (3a)
The normal displacement follows from equations
(Ib)and (2b):

a
w=vcotg — Er (Ng— vN,). (3b)

At this stage, most textbooks simply state that
the constant of integration k may be obtained from
a kinematic boundary condition (see, for instance,
reference [2], p. 447, or reference [3], p.93). In
reference [2], the example of an ideally-supported
dome (i.e. with rollers directed so as to give rise to
reactions tangential to the surface), for which a
membrane solution is known to suffice throughout
the entire shell, is considered and k obtained on the
basis that v = 0 at the support. In this, as in
reference [3], it is not clear how one would proceed
in the case of non-ideal (i.e. non-tangential) sup-
ports. In considering axisymmetric problems for
shells of revolution, Kraus [4], pp. 104-105, points
out that the constant of integration for the mem-
brane part may not be obtained from a condition
such as w = 0, but only from a specification for v.
Similarly, Novozhilov [S], p. 111, states that only v
may be specified for such shells, to avoid violating
the assumptions inherent in the membrane hypo-
thesis. However, all these authors omit the question
of the calculation of k in the context of bending-
disturbance displacements, which must be present
in all instances other than the usually impractical
case of ideal tangential supports.

Itis the aim of this article to reconsider the whole
question of kinematic boundary conditions at the
support, particularly with regard to how these
conditions affect the computation of membrane-
solution and bending-solution displacements by
the well-established and universally-used two-
stage approach. Having derived the relevant
expressions on the basis of open (single-domain)
shells, the proposed approach for displacement
computations is applied to various support con-
ditions, and extended to cover closed (two-
domain) shells with variable support conditions.
The suggested procedure is illustrated through
examples which include a comparison of the
various analytical results with those obtained from
a finite-element program. It might be argued that
the latter, numerical scheme yields both stresses
and displacements automatically and that, there-
fore, the present formal extension of the classical
approach to also cater for shell displacements is
not essential in view of current computational
trends. However, two counter-arguments may be
put forward against such criticism. First, the
analytical technique still provides the best means
for conducting quick parametric studies at sensible
costs. Secondly, and more fundamentally, the two-
stage process of classical shell calculations retains
its didactic advantages in readily linking shell

theory to more basic calculations on simpler
indeterminate structures, in illustrating the nature
of certain approximations and, for the case of
displacement computations, in clarifying the kine-
matics of both ‘membrane’ and ‘bending’ effects.
The present paper, therefore, should be of particu-
lar interest to teachers of shell theory at both
undergraduate and postgraduate levels. Although
the examples considered were aimed specifically at
civil- and mechanical-engineering students (domes,
tanks), the notions are equally applicable to the
more general structural field, thus encompassing,
for example, aeronautical-engineering and naval-
architecture studies. The material can be covered
in about three lecture periods, which may con-
veniently be given at the end of the standard
exposition of Geckeler’s method for stress analysis.

MEMBRANE DISPLACEMENTS

Equations (3) can be written as
a NJ—N7
m = g1 — _u m
V™ =sin ¢ I:E’ (l+v)_[< sing )d¢ ok jl (4a)
m m ___a m m
w™ = y™ cot g — B (Ng—vNy")

=cos ¢ ,:Eit (l+v)f<]—vﬁ> d¢ + ka

gk (4b)
- EI (N() e ‘VN:')

where the superscript m denotes membrane-
solution variables. Clearly, the stress resultants Ny
and Ny, and hence also the integral in the above
expressions, depend on the particular loading over
the surface of the shell.

In order to maintain consistency with the
membrane-hypothesis assumptions at a boundary
of an axisymmetrically-loaded shell of revolution
[4,5], the constant of integration k™ must be
evaluated using the condition

ve=b (5)

where the subscript s denotes quantities at the sup-
port, and b is a finite displacement which will be
taken as zero in the present study since the sup-
ports are assumed to be non-deformable (non-zero
values, which may apply when the shell rests on an
elastic foundation, or if it is attached to another
deformable structure, would not alter the general-
ity of the approach presently adopted). It must be
noted here that the membrane hypothesis permits
the specification of only those boundary displace-
ments which occur in directions tangential to the
shell midsurface (thus, in the present context, only
v™ may be specified at a boundary, although in the
more general circumstances of non-axisymmetric
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loading, the displacment tangential to a circle of
latitude may also be specified). Just as the ‘mem-
brane’ shell cannot resist out-of-plane (boundary)
forces, it cannot admit out-of-plane kinematic
boundary constraints, as these would imply non-
tangential reactions.

BENDING-DISTURBANCE
DISPLACEMENTS

Displacements v°® and w® in terms of transverse
shear Q,

Stress resultants N} and Nj are related to the
transverse shear force Q; as follows (reference [2],
p. 550):

N} =—Q,cot¢ (62)
dQ
i ot 73 (6b)

(The superscript b denotes bending-disturbance
variables.) To obtain an expression for v in terms
of Q,, we substitute Ng and Nj as given by equa-
tions (6) into equation (3a). This gives

cos ¢

, a
v =sin ¢ [E (1+V)j<—Q' sin’ ¢

(72)
do,

1
e b
+ d¢ sin¢> d¢+k].
Now, we note that

d (0O cos¢p dQ, 1
Slesle=0. s+ o

and, integrating both sides of this expression with
respect to ¢, yields

Q4 cos¢g dQ; 1
sing G %W¢+Ef§ﬁaw o

the right-hand side of which is precisely the integral
in equation (7a). Thus equation (7a) becomes
simply

vb = sin ¢ I:g—t- (1+v) m%s + k{l - % (1+v)Q,
; (7d)
+ k®sin ¢

and w’ follows from relation (3b):

a
wh = vhcotg — B (N4 —vNj).  (7e)

It is easy to show that N} < Nj (see, for example,
reference [6], but the proof is evident by inspection
of relations (6) and the exponential form of O,
given by (8) below, noting, at the same time, that 4,
the slenderness ratio, is usually not less than about
10). Since v is also considerably smaller than unity,
vN% will be very small in comparison to Ng. Thus,
consistent with the accuracy of the Geckeler
approximation, the term ¥N} is dropped out from
equation (7e), which becomes

a

SN, (7

wb = v cot g —

(Note: the Ng term in relation (3a), that leads to
(7a), is retained in the latter expression since it
allows a neat expression to be formed, which is
amenable to direct integration.)

Displacements v° and W" in terms of edge
corrections M, and H,

For a shell with one edge, it is convenient to
express O, in the form

Q,= Ce ™ sin (Ay + B) (8)

(see, for example, reference [2], p. 550), where C
and f are constants of integration, and ¥ (= ¢, —¢)
is an alternative coordinate system, as shown in
Fig. 1. Then, simple consideration of static bound-
ary conditions for the shell loaded only along the
one edge by a uniformly-distributed moment M,
per unit length gives the following solutions for the
constants B and C:

B=0 (%)
= 2M,
. (9b)

If instead of M,, a uniformly-distributed horizontal
force H, per unit length is applied along the edge of
the otherwise unloaded shell, the constants become

p=—7 (%)

yC=—2 H,sing, (9d)

where ¢, is the value of ¢ at the support. Details of
the evaluation of 8 and C for either M, or H, are
readily available (see, for example, reference [2],
pp. 550-551). The positive sign convention for M,
and H, may be seen in Fig. 2(a).

Substituting the results for the relevant g and C
(equations (9)) into equation (8) gives O, in terms
of the superimposed effects of M, and H,, enabling
Q, to be eliminated from equation (7d), thus yield-
ing an expression for v’ in terms of M, and H,:

1 33 .
vh = £ (1+v)e ¥ [2AM (siniy) (10a)

— aH sing,(sinAy—cosAy)] + k® sin(g,—y).
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Fig. 2. Positive sign convention for an open spherical shell: (a) shell-edge corrective actions; (b) shell-edge deformations.

The displacement w* follows from equation (7f), in
which Nj may also be expressed in terms of M, and
H, through successive substitutions in equations
(6b), (8) and (9). The result is

= vb cot(g, — y) + 2E—lj e [AM,(sinAy
(10b)
—cosAy) + (aH,sing,)cosAy].

At the support location (where ¢ = ¢, y = 0), v*
and w’ reduce to

1
v = |:E (1+v)aH, + k"} sing,  (10c)

y 1 1 21
Ll (1+v)aH, + k®| cosg, — E [AM,

(10d)
— aHsing,].

Before discussing the procedure for calculating
the constant of integration k°, the computation of
the deformations 0 and V (required for the pur-
poses of evaluating M, and H,) is reviewed.

DEFORMATIONS: RELATION TO
DISPLACEMENTS AND STRESS
RESULTANTS

The deformations J (the horizontal component
of the displacements v and w) and V (the rotation
of the meridian) may be defined as follows:

0=vcos¢ —wsing (11a)

V__l dw
e v+65- .

The positive sign convention for these variables is
defined in Fig. 2(b). Let us substitute the expres-
sions for v and w (equations (3)) into the above two
equations. The first equation becomes

0 = sing cosg [E (1+ )f( )d¢ +k:|

(11b)

—cos¢sin¢[ (14 )J(N'_;V>d¢+kJ

a .
& Er sing(Ny — vN,)

that is,
a .
0= B sing (Ny — vN) (11¢c)

while the second assumes the form

V—l<sm¢[E (1+v )j( g )d¢+k}
—sm¢[5 (1+v )f(

+ cos¢ [E_at (L sm¢ :l

a

™ d¢ (Nyg VN¢)>

?) dg +kJ

that is,

V= Fl:(l+v)(N — N,y) cotg — d¢ (Ng— vN‘)]
(11d)

Expressions (11c) and (11d) are clearly inde-
pendent of k. This means that the deformations ¢
and V' need not be determined via the displace-
ments v and w (expressions (11a) and (11b)), as
they may be calculated directly (from (11c) and
(11d)) once the stress resultants N, and N, are
known. This is true for both membrane and
bending-disturbance variables (note that variables
in (11) are unsuperscripted, as they are equally
valid for both calculation stages). While v and w
are individually dependent upon k” or k’ as
appropriate, the definitions of 0 and V in terms of
v and w are such that terms in k™ or k” vanish, as
has just been shown, to leave only terms in the
stress resultants N, and Nj,.
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From equations (11c) and (11d), the membrane-
solution deformations are thus

m a 3 m m
o= E sing (N3 —vNg") (11e)

1
ym = E l:(1+v)(N;" — N7 cotg

(11f)
p— _d m m
ag (N5 = vNp)|

The expressions for the bending-disturbance
deformations have the same form (with the super-
script b now replacing m), but since N?! and Ng are
known in terms of M, and H,, 6* and 1/” are more
usefully expressed in the form

50 =— 22 sin (9, — p) e [AM,sinky — (AM,

1
11g
— aH,sing,) cosAy] e

2

22
Vo =— T e~¥[aH,sing,(sindy — cosiy)

(11h)
+ 2AM,cosAy].

In deriving the above two equations, it should be
remembered that ¥N must be neglected in com-
parison to Nj, as sﬁlould any other low-order
differential terms in V? or Q, in relation to higher-
order ones. Neglecting such low-order terms is not
only a good approximation, but also necessary for
consistency (inconsistencies in the accuracy of
various stages of the present procedure may lead to
difficulties later on when it comes to enforcing
boundary conditions, where it may prove impos-
sible to satisfy all the required kinematic boundary
conditions simultaneously). Throughout this study,
an accuracy consistent with that of the Geckeler
approximation is maintained.

Of interest to us will be the values of ® and V* at
the support. Their expressions are:

2
ob = 75?1; sing, (AM, — aHsing,)  (11i)

i 242 \ .
¥ Tt R (2AM, — aHsing,).  (11j)

ROLE OF BOUNDARY CONDITIONS IN
THE DETERMINATION OF
BENDING-DISTURBANCE STRESSES AND
DISPLACEMENTS

Up to this stage the corrective actions M, and H,
have been given in an arbitrary manner. They can,

however, be evaluated by considering the compat-
ibility of the shell at the support in terms of its net
horizontal displacement o/ and meridional rota-
tion V7. (The superscript 7' denotes the combined
effects of membrane-hypothesis and bending-
disturbance parameters.) These net deformations
are simply the sum effect of membrane deforma-
tions (67, V), and bending-correction deforma-
tions (62, V?). Thus

O =0m+ 0o (12a)
VIi=Vm+ V2, (12b)

It has already been shown that 67" and V" are
independent of k', while 6> and V; are independ-
ent of k”. In fact, an examination of relations (3)
reveals that the constants k™ and k° merely
represent rigid-body (hence strain-free) displace-
ments vertically downwards (i.e. in the direction of
the axis of revolution). Since k™ and k’ are
associated with stress-free terms, there is no need
to enforce compatibility of the shell at the support
in the vertical direction if the purpose of the
analysis is merely to obtain stresses. In other words,
expressions (12) are generally sufficient for the
purposes of obtaining stresses. However, as will be
seen later, additional conditions effectively enforc-
ing compatibility in the vertical direction will be
required to evaluate k® (k™ is evaluated on the basis
of the invariant condition v = 0, as has already
been explained) if the analysis also requires a full
definition of displacements. This is not clear in
existing textbooks, in which analysis is not carried
out beyond stress computations.

Let us consider the various limiting-support
cases shown in Fig. 3, where (a) represents a shell
with encastré supports, (b) a shell with fully-pinned
(i.e. hinged) supports, (c) one with pinned supports
resting on vertically-reacting rollers, and (d) the
same as (c) but with the reactions now tangential to
the shell rather than vertical. For case (a), the
following conditions apply at the support:

ol=0 (13a)
VT =0. (13b)

Solution of equations (13a) and (13b) enables the
corrective actions M, and H, to be evaluated for the
encastré support. In the case of the hinged support
(Fig. 3(b)), we specify only condition (13a) (since
M, = 0) and solve for H,. With regard to Fig. 3(c),
M, is again zero (because of the moment-release
afforded by the pin in the support), while H, can
also be determined purely from statics (H;, being
directed towards the axis of revolution of the shell,
is equal in magnitude but opposite in direction to
the horizontal component of the positive (ie.
tensile) membrane meridional stress resultant at
the support). When the pinned edge is provided
with tangentially-reacting (instead of vertically-
reacting) rollers (Fig. 3(d)), not only M, but also H;
is zero from statics. This last case represents the
ideal membrane boundary conditions that permit a
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(c)

\

Fig. 3. Boundary conditions for an open spherical shell: (a) encastré support; (b) fully-pinned support; (c) pinned support on rollers—
vertical reactions; (d) pinned support on rollers—tangential reactions.

purely membrane state of stress to exist throughout
the entire shell.

Once M, and H, have been evaluated, the
bending-disturbance stresses throughout the
support zone readily follow (see, for example,
reference [2], p. 550, for the relevant expressions),
and when these are combined with the membrane
stresses, the state of stress in the whole shell
becomes fully defined. The shell problem may then
be regarded as completely solved unless, in addi-
tion to the stresses, displacements are also
required.

We are now in a position to evaluate k”, the
constant of integration associated with the
bending-disturbance displacements v* and w’. For
this purpose, we will refocus attention on the
various support cases depicted in Fig. 3.

With reference to the encastré support
(Fig. 3(a)) and the hinged one (Fig. 3(b)), it is quite
clear that the net meridional displacement at the
support ought to be zero. Thus

vi=ym4 b=, (14a)

Since v]" = 0 (an invariant membrane boundary
condition), it follows that v* = 0. Equating the
right-hand side of equation (10c) to zero, we obtain

1
kb= = = (1+v)aH,. (14b)

Expression (14b), when substituted into ( 10a),
enables the displacement v?, and hence also wb. to
be fully determined at any point on the shell. It is
interesting to note that k* for the encastré support
and the fully-pinned one is independent of M, (the
flexural corrective action), and not directly depen-
dent on ¢, although it may be indirectly related to
the support angle through H,. Although expression
(14b) for k” applies to both the encastré and the

fully-pinned support, its value differs between the
two cases because, in general, their H, values differ.
Thus, and as one would expect, the displacements
v”and w® will be different for the encastré and fully-
pinned cases for two reasons—first, the deforma-
tion components differ because of M, and H, which
will not be the same for the two types of support
(see expressions (10a) and (10b)); then, the trans-
lational (i.e. rigid-body displacement) components
also differ since these are in terms of k*, which, as
we have seen, differs for the two types of supportin
question (since H, in expression ( 14b) is not
common to both problems). We will now consider
other consequences of condition (1 4a).

Substituting expression (14b) for k* into (10b)
for w”, we obtain, for y = 0,

22 _
wh=— & (AM, — aH,sing,). (14c)

It may be recalled that the condition &7 (= 6™ + 0?)
= 0 has already been used in the evaluation of the
edge corrective actions applicable to support cases
in Fig. 3(a) and Fig. 3(b) (see equation (13a)).If we
now expand the terms 0" (using (11e) for ¢ = ?,)
and 67 (using (11i)), this condition (ie. (13a))
becomes

G’ = " v b i
& sing (N vNy'), + E sing (AM,

—aHsing ) =0

that is,

24 . a
Fosigeap (AM, — aH sing,) = Er (Ng — vNg'),.
(144d)
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Recognizing the left-hand side of (14d) as the right-
hand side of (14c), we can write

a

wh = Er (Ng — ¥YNg');- (14e)
The right-hand side of (14e) is equal in magnitude
but opposite in sign to the same side of (4b) with ¢
set to @, (and hence v = v = 0). It follows, there-
fore, that

wb =— wym

s 5

that is,
wl + w' (= wi)=0. (14f)

Thus the condition of zero net normal displace-
ment at the support is automatically satisfied by
simultaneously specifying that the net meridional
and the net horizontal displacements at the support
are both zero (i.e. {v/ = 0 and 6 = 0} implies auto-
matically that w/ = 0). As one would expect, it is
also quite clear that the condition of zero net
vertical displacement at the support (i.e. y! = { sin
¢, + w! cos ¢, = 0) is also automatically satisfied
since v/ = 0,and w! has just been shown to be zero
(ie.{v/ = 0 and 8! = 0} implies automatically that y|
= (). (In existing textbooks, where only stress
computations are performed, only v/ and & are
discussed, and no formal proof of full total-
displacement compatibility at the support seems to
have been outlined.) Earlier on, reference has been
made to the necessity of maintaining a consistent
level of accuracy at all stages. It may be pointed out
that even slight deviations from consistency can
make it at least difficult (if not impossible) to
achieve automatic compatibility of displacements
in any direction in the meridional plane at the
support just by specifiying displacements in two
other non-colinear directions.

Considering now Fig. 3(c), where the support is
pinned on rollers permitting horizontal movement,
it is clear that we can only enforce the condition of
zero net vertical displacement as a way of obtaining
k?:

yl=yr+yb=(vi"sing, + wl" cos g,) + (¢ sin ,
+ wl cos ¢.)=0. (15a)

Now v"=0(sothat w"=—(a/Et)(Ng —vNg'),—see
expression (3b)). Using, in condition (15a), these
values for v and w”, and the expressions for v’
(10c)and w? (10d), leads to the result

1
ko= 2 la(Ng = vNy).+2h (\M, = aHsing,)|

1 (15b)
X cos¢, — E (1+v)aH.,.

Finally, for the case depicted in Fig. 3(d), there
are no bending disturbances in the shell, so that vl
= y" w! = w™" and, clearly, these displacements
become fully defined once k™ has been determined
from the condition v]" = 0.

Once k" is known, the total displacements
throughout the shell follow through simple super-
position of membrane and bending-disturbance
displacements:

pT = ym 4 yb (16a)
wl=wm+ wh, (16b)

It is often convenient to express displacements in
terms of their components perpendicular, and
parallel, to the axis of revolution. These com-
ponents are effectively 6’ (a horizontal outward
displacement) and y’ (a vertical downward dis-
placement), given by

O’ =v"cos¢g — w'sing (16¢)
y'=v'sing +w' cosg. (16d)

The above representation of displacements facilit-
ates a direct comparison of results between the
proposed analytical procedure and any finite-
element program that outputs displacements in
global Cartesian directions.

CLOSED SHELLS WITH VERTICAL AND
INCLINED SUPPORTS

For a closed spherical shell propped on vertic-
ally-reacting supports, such as the liquid-retaining
vessel shown in Fig. 4(a), the two-stage procedure
that has just been described for single-domain
shells may be used to determine the stresses and
displacements in the upper and lower domains of
the closed shell. For each domain, membrane
displacements are computed on the basis that v{" =
0. This condition allows k" and k' (the subscripts ¢
and b refer to the ‘top’ (i.e. upper) and ‘bottom’ (i.e.
lower) domains of the shell respectively, the circle
of support being the demarcation between the two
regions) to be determined. In general, two pairs of
corrective actions (M,, H,g, (M,, H,} and deforma-
tion variables (0, V), {0,, V,} now apply. The
positive sign convention for these variables is
shown in Fig. 5(a) (corrective actions) and Fig. 5(b)
(deformations). As before, the deformation vari-
ables are independent of k™, k?, k} or k},as appro-
priate, and may be calculated as soon as the stress
resultants in each domain are known. The four
corrective actions depend on the stiffness of the
circular ring beam at the junction of the two
domains. For example, in the case of a fully-rigid
ring beam, the four actions are obtained by solving
the system of simultaneous equations stemming
from the conditions

O (=o0r+0)=0 (17a)
O (=or+06p)=0 (17b)
VIi(=Vr+ V=0 (17¢)
Vi=Vr+ V=0 (17d)

while, for a ring beam that is completely flexible
both circumferentially and torsionally, the de-
formations of the two portions of the shell must be
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(a)

(b)]

Fig. 4. Closed spherical vessel: (a) vertical supports; (b) tangentially-inclined supports.

b

Fig. 5. Positive sign convention for a closed spherical vessel supported on vertical columns: (a) shell-edge corrective actions and ring-
beam equilibrium actions; (b) shell-edge deformations.

matched at the support, and, at the same time,
equilibrium of the ring beam must be maintained:

0/ (=07 0N =06[ (=07 +0p) (17¢)
ViEVI+ W) =Vi=Vy+Vh) a7
M,= M, (17g)

{4

H,= H, + H". (17h)

In (17h), HY' is the horizontal component of the
membrane meridional stress resultants at the
support, H?" being positive when directed towards
the axis of revolution (see Fig. 5(a)).

Once M,, H,, M, and H, are known, the condition
of zero net vertical displacements at the support
(ie. y! = 0, assuming that the supporting columns
are incompressible) should be applied to the upper
and lower domains separately to obtain k? and k%
respectively. The rest of the procedure to obtain
displacements (and stresses, if required) follows
that already described for single-domain open
shells, taking due account of sign convention for
each domain, and using the variables appropriate
to the domain in question.

When the closed spherical shell is supported on

tangentially-inclined columns, as in Fig. 4(b), a
different system of corrective actions and deforma-
tions is proposed. Figure 6 depicts the suggested
system, with (a) showing corrective actions and (b)
the relevant deformations. The difference between
the well-known system depicted in Fig. 5 and our
adaptation for tangential supports shown in Fig. 6
is that the horizontal corrective actions (H,, H,}
have now been replaced by actions normal to the
shell surface {S,, S,}, while displacement deforma-
tions normal to the shell surface { W,, W, } are now of
interest instead of the previous horizontally-
orientated variables {J,, d,]. The membrane vari-
able H", which featured in the previous system, has
no counterpart in the new system because mem-
brane actions cannot have a component in the
direction normal to the shell midsurface. It may be
noted that the corrective forces (5, S,} are actually
the values of the transverse shear force O, at the
edges, a feature which makes the two-stage bending
analysis of the tangentially-supported vessel con-
siderably simpler than that of the vertically-
supported one. As will be seen shortly, the
bending-disturbance deformations at the support
(W7, V7)and (W}, V})are all independent of ¢, (the
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(b)

Fig. 6. Positive sign convention for a closed spherical vessel supported on tangentially-inclined columns: (a) shell-edge corrective
actions and ring-beam equilibrium actions; (b) shell-edge deformations.

location of the support), a consequence of the
radial symmetry possessed by Fig. 6 (and lacked by
Fig. 5).

It has already been proved that V" and V? are
independent of k™ and k° respectively for all values
of ¢, including ¢ = ¢,. We now show that W™ (=
—w™)and W” (= —w?") are independent of k" and
k" respectively at least at the support, which is the
location of interest to us as far as the evaluation of
various constants of integration is concerned. We
note that, at the support, v/ =0 (i.e. v/ = 0 since the
supporting tangential columns are axially in-
compressible). Since v{" = 0 (an invariant mem-
brane boundary condition), it follows that v® (= v!
= v{") = 0. Proceeding with the proof without the
use of superscripts m and b (the remainder applies
equally for membrane as for bending-disturbance
variables), we note that 0 (= v cos ¢ — w sin ¢)
reduces to O, = — w, sin ¢, at the support since v, =
0. Rearranging this relation, w, = —4,/sin ¢.. Since
o, is independent of k (it was proved in earlier
sections that ¢ is independent of k for all values of
¢),itfollows that w,, and hence W, (=—w,),is inde-
pendent of k. This enables us to write down the
expressions for W, (and for V,, which are as in
previous sections) independently of k. Thus the
membrane deformations at the support are simply

a
Wi = = (N = vNp), (18a)

5

1
ym = Er ((1+v)(N;" — Ng), cotg,

d
[ os-m)])

where the subscript s may refer to the edge of either
the upper domain or the lower one. The bending-
disturbance deformations are also given by a pair
of expressions of the same form as (18a) and (18b),
but with superscript b in place of m. However, as
explained earlier, vN, ;’ must be neglected in relation

(18b)

to Ng, as must any Q,-related variable in com-
parison to its derivatives. When this is done, and
expressing the remaining in-plane stress resultant
in terms of {M,, S} or (M,, S, as appropriate for the
domain in question, one obtains [7]

w&-%zw,—%s, (18¢)
V{*=—%M,+%zs, (18d)
W} = %2 M, + %5,, (18e)
v;;=;%;M,,+%—zs,, (18f)

for the bending-disturbance deformations at the
support. These expressions are clearly independ-
ent of g, (as already stated), exceptinso faras M,, S,,
M, and §, may be functions of ¢,.

The corrective actions M,, S,, M, and S, are
evaluated in a manner similar to that for vertically-
supported vessels. Considering the case of the
completely flexible ring beam as an example, the
boundary conditions

Wi (= W+ W)= W[ (= W' + W})(19a)

V(= Ve + V)= Vi(= Vi + V) (19)

M =M, _ (19c¢)

S, =S, (19d)

enable all the corrective actions to be determined

[7].

The derivation of displacement expressions

follows a sequence closely resembling that for

single-domain shells. For the upper domain, for

example, we simply use expressions S’l Oa) and

(10b), with v’ replaced by v, w® by w?, k® by k?, M,
by M,; also (H, sin ¢,) is replaced by S, [7]. Thus

b= % (1 + v)e [2AM,(sinAy) — aS,(sindy

(20a)
—cosAy)| + k? sin(g,—y)
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Wl = v} OB =) + 2o-e~i¥ [AMsinty

(20b)
—cosAy) + aS,cosAy].
Applying the condition
(Vi)e ™= (VP)s F (V) =0 (20¢)

and recalling that (v*), = 0, implies that (v?), must
also be zero. Equating the right-hand side of (20a)
to zero, for y = 0, gives

1 [1+v
kb =— Er (W) as, (20d)

Adding the bending-disturbance displacements
to the corresponding membrane displacements
(which, as in the case of vertical columns, are com-
puted on the basis that (v/"), = 0, and would there-
fore be the same for the inclined-column case as for
the vertical one) then gives the net displacements
v/(y) and w](y), which, as before, may be
resolved into horizontal and vertical components if
comparison with standard finite-element output is
to be facilitated. The lower domain is treated in a
similar way, taking due account of sign convention.

ILLUSTRATIVE EXAMPLES

We now obtain total displacements {vT(tp),
w'(y)), and their global-Cartesian components
{0"(¥), y"(w)), using the analytical procedures that
have been presented, for a spherical dome with (a)
an encastré support, (b) a fully-pinned support, and
(¢) a pinned support on rollers permitting hori-
zontal movement (see Fig. 3 for these different
support conditions). The characteristics relevant to
all the three examples are:

4, = 60"

a =10 000 mm

t =100 mm

a/t = 100

v =0,20

A = (3(1—v?)(ak)})"/*=13.027

E = 28 000 N/mm?*

loading = 0.1 N/mm? (external uniform pres-
sure p).

Thus we have a 10-metre radius dome of a material
resembling concrete, and subject to a pressure
equivalent to a 10-metre head of water.

Membrane quantities (for all three examples)

m m
Ny =Nj== 5 =—500N/mm

v" = k"sing
v{" =0 implies that k™ = 0
p

2
Thus v"() =0 and w™ () = % (1—v)=143
mm. 4

Bending-disturbance quantities
(a) Encastré support

2

M, =— IVE (I=v)=-—11 785 Nmm/mm
Rl sot s omion IR
H, 57 (sin¢s> 35.456 N/mm

1
D ek P -~
k Er (1+v)aH; = 0.152 mm.
(b) Fully-pinned support
M, =0

iy o R4 RN
s~ 4 \sing,) "~ " fpmt

1
kb =— E (1+v)aH, = 0.076 mm.

(¢) Pinned support on vertically-reacting rollers
M, =0

pa

H ==

cosg, =— 250 N/mm
1 .
b s [(a(Ng'—vN;"): — 2AaH,sing,) cosg,

— (1+v)aH,| = 10.430 mm.

The results for the above three examples are
shown in Tables 1 (encastré support), 2 (fully-
pinned support) and 3 (pinned support on rollers
permitting horizontal movement). Displacements
are in millimetres. The last four columns of each
table give total fibre stresses (in N/mm?) for the
inner (denoted by (i)) and outer (denoted by (0))
surfaces of the shell respectively, with negative
values denoting compression, and positive values
tension. In the columns for displacements 67(y),
y'(), and stresses o/ (), o} (), first values refer
to the analytical results as found from the pro-
cedures presented in this article, while second
values (in brackets) are those obtained using a
finite-element program employing a relatively fine
mesh (with elements subtending angles of 1° at the
centre).

CONCLUSION

In this article, a step-by-step procedure for
computing the displacements in non-shallow
spherical shells has been presented. The approach,
which is based on the Geckeler approximation, is
suitable for shells of constant thickness subjected
to axisymmetric loading conditions.

The use of kinematic boundary conditions in the
scheme of computations has been elucidated. On
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Table 1. Displacements and stresses for the illustrative example—encastré support (Fig. 3(a))

Y'(¥) o (¥)(N/mm?) 03 (y)(N/mm?)

(mm)

o'(y)
(mm)

w!(y)

(mm)

) V()
(deg) (mm)

() (0) (9) (0)

0 000 000 000 (0.00) 000 (0.00) —12.07 (—12.07) +2.07 (+242) —241 (=241) +041 (+0.48)
1 003 008 —006 (—0.04) 007 (0.06) =922 (—9.19) —0.78 (=0.50) —2.02 (~1.92) —0.33 (—0.30)
2 005 025 —0.18 (—0.16) 0.18 (0.17) =7.06 (=7.01) —294 (-2.75) —2.02 (-1.85) —1.19 (-1.19)
3 008 046 =035 (—0.32) 032 (0.30) —5.52 (—546) —448 (—4.38) —2.26 (—2.05) —2.05 (=2.06)
4 009 069 —052 (—049) 046 (0.44) —4.50 (—4.42) —5.50 (—547) —264 (-2.42) —2.84 (-2.86)
5 011 090 —067 (—0.65 060 (0.59) =390 (—381) —6.10 (=6.14) —3.08 (-2.86) —3.52 (-3.55)
6 012 108 —081 (—0.78) 0.73 (0.72) —3.60 (=3.51) —6.40 (—6.48) —3.51 (=3.32) —4.07 (-4.11)
7 012 124 —091 (—0.90) 084 (0.83) —3.53 (=344) —647 (—6.57) —391 (=3.75) —4.50 (=4.54)
8 012 136 —099 (—0.98) 094 (093) —361 (-3.52) —6.39 (—6.51) —4.25 (—4.12) —4.81 (—4.86)
9 013 145 —105 (-1.04) 101 (1.01) =377 (=3.69) —6.23 (—=6.35) —4.53 (—4.43) —5.02 (-5.07)
10 013 152 —108 (-1.08) 1.07 (1.07) =397 (-391) —6.03 (—6.14) —4.75 (—4.68) —5.16 (—-5.20)
12 012 159 —1.10 (-1.10) 1.15 (1.16) —4.39 (—4.35) —561 (—=5.69) —5.01 (=4.99) —5.26 (-5.29)
14 011 160 —107 (-1.08) 120 (120) —4.72 (—4.70) —528 (—5.33) —5.12 (—5.13) —5.23 (-5.25)
16 011 159 —103 (-1.03) 122 (123) —493 (—4.92) =507 (-5.09) —513 (=5.15) —5.16 (=5.17)
18 010 158 —098 (—0.98) 124 (125) =503 (—5.04) —497 (—4.97) =510 (=5.12) =509 (=5.09)
20 010 156 —093 (—093) 126 (127) =506 (=5.07) —4.94 (—4.93) —5.06 (=5.08) —5.04 (=5.04)
40 005 157 —049 (—0.49) 1.50 (1.50) =500 (=5.00) —5.00 (=5.00) —5.00 (=5.00) —5.00 (—5.00)
60 000 158 0.00 (0.00) 1.58 (1.60) =500 (—5.00) —5.00 (=5.00) —5.00 (—5.00) —5.00 (—5.00)

Table 2. Displacements and stresses for the illustrative example—fully-pinned support (Fig. 3(b))

y V() w(®) o' () Y (¥) 0} (y)(N/mm?) 04 ()(N/mm?)
(deg.) (mm) (mm) (mm) (mm)
(i) (0) (i) (0)
0 0.00 0.00 0.00 (0.00) 0.00 (0.00) =500 (—4.84) —5.00 (—4.83) —1.00 (—0.81) —1.00 (—1:17)
1 0.03 0.34 —0.28 (—0.27) 0.20 (0.19) —3.73 (—3.66) —6.27 (—6.24) —1.64 (—1.45) —2.15 (—2.26)
2005 0.64 —0.52 (—0.51) 0.38 (0.37) —3.03 (—297) —6.97 (—6.99) —2.33 (—2.13) —3.11 (=3.21)
3 006 0.91 —0.73 (—0.71) 0.54 (0.53) —2.75 (—2.69) —7.25 (=7.30) —2.98 (—2.80) —3.88 (—3.97)
4 007 1.12 —0.89 (—0.88) 0.68 (0.68) —2.75 (—2.70) —7.25 (=7.33) —3.56 (—3.40) —4.46 (—4.53)
3007 1.29 —1.01 (—1.00) 0.80 (0.79) —2.94 (—2.89) —7.06 (—=7.16) —4.05 (—3.92) —4.87 (—4.93)
6 007 1.41 -1.10 (—1.09) 0.89 (0.88) —3.23 (—3.19) —6.77 (—6.87) —4.44 (—4.34) -—5.14 (—5.20)
7 007 1.49 —1.15 (—1.14) 096 (0.96) —3.56 (—3.52) —6.44 (—6.54) —4.73 (—4.66) —530 (—5.35)
8 0.07 1.54 -1.17 (-1.17) 101 (1.01) -—-389 (—3.85) —6.11 (—6.20) —4.94 (—4.90) —5.38 (—542)
9 007 1.57 —1.18 (—1.18) 1.04 (1.05) —4.19 (—4.16) —581 (—=5.89) —5.07 (—5.06) —540 (—5.43)
10 0.07 1.58 -1.17 (-1.17) 107 (1.07) —4.44 (—443) —5.56 (—-5.62) —5.15 (—5.16) —5.38 (—5.40)
12 0.06 1.57 —1.13 (-1.13) 1.10 (1.10) —4.81 (—4.81) —5.19 (—522) —5.20 (—5.22) —5.28 (—5.29)
14 0.06 1.54 -1.07 (-1.07) 111 (1.12) -—501 (=5.02) —4.99 (—=4.99) —5.17 (—520) =5.16 (—5.17)
16 0.05 1.52 -1.02 (-1.02) 113 (1.13) -5.09 (—5.10) —4.91 (—4.90) —5.11 (—5.13) —5.07 (—5.06)
18 0.05 1.50 —0.97 (—0.97) 1.15 (1.15) =510 (-=5.11) —4.90 (—4.89) —5.06 (—5.07) —5.02 (—5.01)
20 0.05 1.49 -092 (—0.92) 1.17 (1.17) =507 (—5.08) —4.93 (—4.91) —5.02 (—5.03) —4.99 (—4.99)
40 0.03 1.50 —0.49 (—0.49) 142 (142) -500 (=5.00) =5.00 (=5.00) —5.00 (—=5.00) —5.00 (—5.00)
60 0.00 1.51 0.00 (0.00) 1.51 (1.52) =5.00 (—5.00) —5.00 (=5.00) —5.00 (—5.00) —5.00 (—5.00)

the basis of a wide range of support types repre-
sentative of both open and closed shells, a syste-
matic sequence of implementation of these
conditions has been shown. In this way, certain
hitherto somewhat obscure points relating to the
choice of appropriate kinematic boundary condi-
tions for membrane and bending-disturbance dis-
placements have been clarified.

Tables 1-3 clearly show that the agreement
between the results of the analytical procedure
presented in this work and those of a proven finite-
element program is very close, the discrepancy
being generally of the order of 1% (for the main
values), and often much less. Thus the method may
be used to obtain a reliable assessment of displace-
ments in thin non-shallow spherical shells under
axisymmetric loadings (e.g. domes, vessels and
boiler-ends), especially when expensive numerical

methods are to be avoided (in this respect, note the
fineness of the mesh used to match the (main)
analytical values). As expected, the computed
displacements are generally small, though this may
not always be the case for very thin shells with
supports providing little or no lateral restraint. In
these circumstances, the computation of displace-
ments may constitute a necessary serviceability-
limit check. This is clear by reference to the shell
on horizontally-moving rollers, where both
actions/stresses and displacements are much
larger than for their encastré and fully-pinned
counterparts, showing quite conclusively that the
allowance of support ‘breathing’ in a shell is bad
design practice unless, of course, such a ‘breathing’
is exactly perpendicular to the shell midsurface
(Fig. 3(d)).

Summarizing, the two-stage method of analysis,
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so widely used in the context of stress calculations, approach has clear pedagogical advantages in the
is also applicable for the determination of displace- context of teaching of classical shell methods in
ments, as has been demonstrated in the present general and of the Geckeler method in particular.

article. Besides its practical relevance, such an
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