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An integrated view of numerical techniques for determining the elastic buckling load of structural
members is presented. The commonly used techniques can be grouped under two main
approaches, namely the static-kinematic approach and the work-energy approach. Each
technique is described briefly and its advantages highlighted. More importantly, the connecting
paths between the various techniques are discussed. An understanding of the integrated view and
the techniques will provide a greater flexibility for solving buckling problems by employing the
most expedient techniques for solution. The various methods may also be used independently to
solve the same problem to confirm the accuracy, validity and convergence of the solutions.

Notation INTRODUCTION
< coefficients of approximated displacement
functions. BUCKLING is an important consideration in the
(d} element buckling nodal displacement vec- design of steel structures. Elastic buckling is the
tor most fundamental form, and the study of elastic
g(x) assumed functions buckling is an essential step towards understanding
h(x) constraints the structural stability behaviour of complex struc-
k] element stiffness matrix tures and the analysis of structures incorporating
assembled global stiffness matrix the more complicated inelastic buckling. The load
n number of chosen linear combination of at which elastic buckling occurs is also important,
functions because it provides the upper limit to the member
[T] transformation matrix buckling strength and is commonly used in design
U strain energy codes as the basis for which the ultimate design
i strain energy of an element capacity of the members is derived.
Vv potential energy of loads In open literature and standard texts, buckling
V., potential energy of loads of an element loads for different kinds of structures under various
w work done by loads loading and boundary conditions are often
W*  work done per unit load expressed using approximate simple formulae and
y displacement function design charts to aid designers in estimating the
Z approximated displacement function buckling strength of structural members. It is still
{A}  assembled nodal displacement vector necessary, however, for designers to perform the
€ error buckling analysis if more accurate results are
A buckling load required or if there is no standard solution available.
A Lagrangian multiplier Apart from a few problems (such as the elastic
Il complementary energy functional buckling of perfect and prismatic struts under an
IE potential energy of an element axial force or the lateral buckling of simply suppor-
I, potential energy functional ted beams under uniform momentand axial force), it
II;  Hellinger-Reissner functional is generally rather laborious and in some cases
I, Hu-Washizu functional impossible to obtain exact analytical solutions.

Thus, it becomes necessary to resort to numerical
techniques. There are a large number of techniques
available which can be grouped under two general
approaches as shown in the chart of Fig. 1. The two
approaches, viz. the static—kinematic approach and
the work—energy approach, correspond to the
* Paper accepted 29 October 1991. different strategies used in satisfying the state of
1 Dr. Kitipornchai is Associate Professor neutral equilibrium for the deformed member.
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Fig. 1 Relationships of methods in buckling analysis.

Even though there are many ways of determining
the buckling load, in practice designers tend to use
only a small number of familiar techniques. The
objective of this paper is to collate all the different
common techniques and present them in an overall
integrated view so that designers may (a) have a
global view and appreciate the connections
between the techniques, (b) possess greater flexi-
bility when solving various kinds of problems, (c)
exploit the various advantages associated with each
method and (d) use independent methods to check
the accuracy, validity and convergence of the
solutions.

STATIC-KINEMATIC APPROACH

In this approach, the field differential equations
are derived from (a) the assumed stress—strain law,
(b) equilibrium equations and (c) strain-

displacement relations. The last two conditions are
obtained from static and geometric considerations
on a free body of the deformed member (or the
slightly bent form). Together with the given
boundary conditions, the resulting two-point
boundary value problems are to be solved for the
buckling load. In some rare cases, closed form
analytical solutions are possible and if the differen-
tial equations are in the forms of either Bessel’s
equation or Legendre’s equation, the power series
method [1] may be used to derive semi-analytical
solutions. In general, however, it is more con-
venient and often necessary to employ numerical
techniques. There are several common techniques,
including the finite difference method, the finite
integral method, the least mean squared error
method, Galerkin’s method, the finite element
Galerkin method and the shooting method. These
are briefly reviewed below. Other less commonly
used methods can be found in the books by Keller
[2] and Na [3].
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Finite difference method (1, 4]

This method is perhaps the most widely used
numerical method for solving differential equa-
tions. The method converts the set of differential
equations into a finite system of algebraic equa-
tions by replacing the derivatives of the dependent
variables using appropriate finite differences at
chosen nodal points. The resulting linear homo-
geneous equations may collectively be written as

(K]{A} = {0} )

where {A} is the nodal displacement vector. For a
nontrivial solution, the determinant of the [K]
matrix must vanish, i.e.

K|=0 2

The buckling load can then be determined using
either Equation (1) with matrix manipulation
algorithms [5] that compute the eigenvalues or
Equation (2) with root finding algorithms [1].
Equation (2) may also be casted into a univariable
optimization problem with the objective function
taken as the absolute of the determinant (that is,
ABS(det|K])) and the decision variable is the
buckling load. The accuracy of the method can be
improved by decreasing the interval size but this is
at the expense of greater computational effort. A
quicker and simpler way of improving the accuracy
is by using Richardson’s extrapolation scheme [6].

A useful feature of the finite difference method is
that it can be used to solve partial differential
equations and thus the method is not restricted to
solving only one-dimensional structures.

Finite integral method |7]

This method, in effect, uses an opposite tech-
nique to the finite difference method. Instead of
using a finite difference representation of the
differential operators, the differential equation is
first transformed into an integral equation in the
highest derivative of the dependent variable. The
integral equation is then replaced by a finite set of
alggbraic equations using finite integral representa-
tions of the integral operators. The algebraic
equations are then solved using the same tech-
niques employed in the finite difference method.

The finite integral method gives a more accurate
solution than the finite difference method [7]. This
is because of the superiority of the numerical
integration process over the differentiation process
on which the finite difference is based. The superi-
ority increases when the interval size is decreased.

Least mean squared error method [8)

Unlike the finite difference and the finite integral
methods which select some discrete points, the
least mean squared error method considers all
points of the range x,, to x;. After selecting a linear
combination of functions, g(x), which satisfy all the
boundary conditions, to approximate the displace-
ment function (or dependent variable), y, i.e.

n
y=z =Zc,»g(x) 3)
-
the method seeks an approximate solution to the
differential equation by minimizing the error, &, in
the differential equation corresponding to the
approximation. If ¢ were zero for all values of x
within the range, the solution would be exact. In
buckling analyses, the following error functional is
minimized.
Xy
min F =f e’dx 4
A, Xy
where A is the buckling load and c; are the
coefficients of the approximate displacement func-
tion. The minimization process can be performed
using standard optimization techniques [9].

Galerkin method (8|

Galerkin’s method is similar to the least mean
squared error method except that it minimizes the
error, &, by choosing the n coefficients in the
function in such a manner that » distinct weighted
means of the error, taken throughout the range of
representation shall be zero, i.e.

1oz
e——dx=0,
fx,, aC,-

where z is the approximated dependent variable
given by Equation (3). Equation (5) yields a set of
algebraic equations which can be written in the
form of Equation (1) and the buckling load can
then be obtained by solving the standard eigen-
value problem or by solving for the zero of the
determinant when the problem is expressed as in
Equation (2). In stability applications, € can be
interpreted as a generalized force, and the multi-
pliers used to weight the errors are the virtual
displacements corresponding to the increments of
each of the generalized coordinates in turn. Thus
the vanishing of the weighted mean is interpreted as
the vanishing of the virtual work in the appropriate
displacement. The degree of accuracy attained can
be increased indefinitely by increasing the number
of independent functions employed, but this entails
a great increase in computational effort. When the
functions are well chosen, however, an excellent
approximation can be obtained with a very small
value of n.

If the trial functions are piecewise polynomials
instead of linear combinations of functions, then
the method is called the finite element Galerkin’s
method [10]. Obviously, this method becomes
more powerful and can handle complicated dis-
placement functions.

Bt P BOR 4)

Shooting method |2, 3]

This method of solving the two-point boundary
value problem first converts the Nth order dif-
ferential equation into a set of first order differen-
tial equations. The first order differential equations
are then integrated forward using the Runge-Kutta
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algorithm [1] with some assumed values for the
unknown initial values and the load parameter. The
step size for the integration must be sufficiently
small for accurate solution. The terminal boundary
conditions are then to be satisfied by systematically
adjusting these unknown parameters. The problem
reduces to solving a few algebraic equations which
express the terminal boundary conditions [11].
Alternatively, the terminal boundary conditions
may be satisfied by minimizing the objective
function consisting of the sum of the L, norm of the
error & with respect to the unknown parameters
using any standard optimization technique [12].

Unlike other methods such as the finite differ-
ence, finite integral, Galerkin’s method, Rayleigh—
Ritz, and finite element method, the shooting
method avoids determining the zero of the charac-
teristic determinant (Equation (2)). The method
therefore requires neither matrix manipulation nor
inversion to determine the buckling load and mode
shape (eigenfunction), making the method pro-
grammable in a small personal computer because
computational effort and storage space are reduced.
In addition, the method generates the eigenfunction
simultaneously with the eigenvalue through the
solution of the differential equation while the other
methods require a separate process. The eigen-
values may be generated one at a time and their
order determined from the eigenfunction, without
wasting computing time to evaluate all the eigen-
values of large matrices. Its usefulness is enhanced
when solving large deflection and postbuckling
problems, which are described by highly nonlinear
differential equations. Finally, because there is no
need for discretization, it can compute the eigen-
values and eigenfunctions with greater accuracy,
particularly when the cross-sectional area of the
structural member is varying. However, this method
is restricted to problems which are defined by
ordinary differential equations.

WORK-ENERGY APPROACH [13, 18]

Unlike the static-kinematic approach, where the
equilibrium of the member is established by requir-
ing the sum of the generalized forces to vanish, this
approach satisfies the equilibrium condition of the
deformed member via the virtual work concept.
Referring to Fig. 1, this approach can be based on
either the principle of virtual work or the principle
of complementary virtual work, which are related
to each other through the stress—strain law. In
elastic buckling problems, the two general princi-
ples may be reduced to the principle of stationary
potential energy and the principle of stationary
complementary potential energy, respectively. For
the former case, this can be done by establishing
the potential energy functional, IT,, and assuming
the external forces to be unchanged during dis-
placement variation. For the latter case, this can be
done by establishing the complementary energy
functional I, and assuming the kinematic boun-

dary conditions to be unchanged during stress
variation.

Using Lagrangian multipliers, the energy func-
tionals IT,, IT- may be generalized to other forms
of functional such as the Hu-Washizu Iy, func-
tional or the Hellinger-Reissner functional ITj.
The buckling load can be determined by minimiz-
ing the functionals. For the functional: (a) IT;, the
strain-displacement relations and the kinematic
boundary conditions are satisfied at the outset and
the equilibrium equations and static boundary
conditions are satisfied indirectly by the station-
arity conditions; (b) Il the equilibrium equations
and the static boundary conditions are satisfied at
the outset while the strain-displacement relations
and the kinematic boundary conditions are satis-
fied indirectly by the stationarity conditions; and
(c) Iy, I, the equilibrium equations, strain—
displacement relations and the boundary condi-
tions must be satisfied at the outset.

Since the usual preferred avenue of the energy
approach is to use the principle of virtual work for
inelastic problems or the principle of stationary
potential energy for elastic problems, the methods
associated with their complementary counterparts
will not be discussed. For details, the reader is
referred to references [16-18|.

Another important principle which applies for
elastic problems is the principle of energy conser-
vation. This principle may be also derived from the
principle of stationary potential energy since the
minimum value of Il is zero and the potential
energy of the loads is equal to the negative value of
the work done by the loads. On the basis of the
principle of energy conservation and the principle
of stationary potential energy, various energy
methods were proposed by early researchers for
determining the buckling load and these methods
are briefly reviewed below.

Rayleigh—Timoshenko method [14]

The Rayleigh-Timoshenko method is based on
the conservation of energy principle. When the
member buckles under the applied loads, the strain
energy stored is given by U. The external work, W,
is done at the same time as a result of the movement
of the loads. For energy conservation

U=W (6)

The load parameter, 4, may be factored out from
the work expression yielding the Rayleigh quotient.
The buckling load is then obtained by minimizing
the quotient with respect to the displacement
function, y, i.e.

X U
min A W (7

where W*is the work done per unit load. If the exact
expression for the displacement function, y, is
known, the critical load can be obtained directly
from the quotient. Otherwise, the unknown infinite
dimensional displacement function may be para-
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meterized by spline functions, or trigonometric
series, or polynomials that satisfy the boundary
conditions. The quotient can then be minimized
with respect to the displacement coefficients. It is
necessary to normalize the displacement function
so as to avoid a trivial solution. It can be shown from
the Rayleigh quotient and the orthogonality rela-
tionships that the energy result is always an upper
bound to the true one. A convergence study there-
fore must be carried out to establish the con-
vergence of the solution to the required accuracy.

Rayleigh—Ritz method [15]

This method uses the principle of stationary
potential energy. The principle follows from the
more general principle of virtual work which states
that a body is in equilibrium if the total virtual work
done by all the forces (both internal and external)
acting on the body for any arbitrary virtual (or
fictitious) displacement is zero. It implies that
neutral equilibrium corresponds to a minimum of
the total potential energy, I, i.e.

A =3U+ V)=0 (8)

where 0 represents the change in quantity caused
by a virtual displacement, U the strain energy and
V the potential energy of the loads which is the
negative value of the work done. To solve for the
buckling load, the displacement function is approx-
imated by some linear combinations of functions as
given in Equation (3). The functions need only
satisfy the kinematic boundary conditions; other-
wise erroneous solutions are obtained. Then the
Rayleigh—Ritz method requires

oIl :
a—q-O, g2 N )
Equation (9) generates a system of linear algebraic
homogeneous equations of the form given in
Equation (1). Being an energy method, the solution
obtained is an upper bound one when compared to
the exact solution. A convergence siudy is neces-
sary to determine the accuracy of the upper bound
solution.

In view of the stress—strain law, the strain energy,
U, may be expressed in an alternative form of
generalized stress resultants instead of generalized
strains. This functional is termed the complemen-
tary total potential energy functional [16]. Using
this formulation, the generalized stress resultants
are approximated by a series which must satisfy the
static boundary conditions. Taking the stationarity
conditions of the complementary energy functional
with respect to the coefficients of the approximated
generalized stress resultants yields a set of homo-
geneous linear equations which can be written as in
Equation (1). The buckling load is then obtained by
solving the generalized eigenvalue problem.

Finite element method |5
The finite element method is an extension of the
Rayleigh—Ritz method in that it involves the divi-

sion of the structural member into a number of
elements. The element stiffness matrix [k ] can then
be obtained from the total potential energy of the
element

I, = (U + V) = {d]"[k.]{d} (10)

in which {d} is the element buckling nodal displace-
ments vector. From the compatibility relation,

() = [T){4) (11)
in which {A} are the structure joint displacements
and [T] the transformation matrix. In view of
Equation (11), Equation (10) may be written as

I1. = }{A}"[K ] {A} (12)

in which [K,] = [T]"[k ][T]. Repeating this for all the
elements in the structure and summing up yields

I1=11, = }A)"[K](4) (13)

in which [K;] = Z[K].

During buckling from the straight position to an
adjacent out-of-plane equilibrium position, the
energy is conserved, thus the total energy change is
zero, implying

IT=}A)"[K.}{A} =0 (14)

which is similar to Equation (1) and the buckling
load thus can be determined using one of the
eigenvalue methods. Alternatively, since the dis-
placement vector {A} is nonzero for the adjacent
equilibrium position, Equation (14) implies Equa-
tion (2).

In view of the piecewise polynomial approxi-
mations to the dependent variable (or displace-
ment functions), the finite element method has
some important advantages over the Rayleigh-Ritz
method. The former method can easily handle the
rapidly changing shape of displacement functions
and need not be bothered with the selection of
appropriate Ritz functions. In some cases where
the few chosen Ritz functions closely approximate
the exact displacement functions, however, very
neat and compact formulae may be obtained which
would be quite difficult to develop using the finite
element method because many results are needed
to perform an adequate curve-fitting exercise. Even
then, the formulae may not be as accurate and
compact as the ones obtained using the Rayleigh—
Ritz method.

When dealing with two- or three-dimensional
elongated structural members, the number of
degrees of freedom may be reduced by having the
finite strip method [19] instead. The finite strip
method may be viewed as a special case of the finite
element method with elongated elements whose
displacement function for the longer side is
approximated by trigonometric series instead of
polynomials.

Lagrangian multiplier method [20-23]
This method is a variation of the Rayleigh-Ritz
method. Instead of finding the Ritz functions that




386 C. M. Wang and S. Kitipornchai

satisfy the kinematic boundary conditions, the
method requires the approximated function, z, to
be constrained so that the geometric boundary
conditions are satisfied. Let these constraining
relationships be denoted by

Z h,(c,,cz,..., c,)=0 (15)

=1

where m is the total number of kinematic boundary
conditions. Using the Lagrangian method, the
augmented total potential energy, IT* becomes

=T+ Ak (16)
j=1
where A; are undetermined constants called
Lagrangian multipliers. For stationarity,

%n*-o; D) D L

G

s (17)
EYN =(; j=12,...m

J

Equation (17) yields a set of (n + m) homogen-
eous linear equations which can be written as in
Equation (1) and the buckling load computed by
solving for the vanishing of the determinant [K|. The
buckling load can also be determined by solving the
standard constrained optimization problem where
the objective function is IT and the constraints
given by Equation (15) via any standard mathe-
matical programming methods such as the efficient
Schittkowski’s algorithm [24].

Remarks

To obtain the critical load, it can be seen that all
the methods ultimately lead to (a) solving a set of
algebraic equations using algorithms such as that of
Newton [1] or Broyden linear search [25]; (b)
minimizing an objective function/functional using
optimization techniques [9]; or (c) solving a gene-
ralized eigenvalue problem via algorithms such as
vector iteration method [5], transformation
method [5], polynomial iteration techniques [5],
Sturm sequence property methods [5] or Wittrick
and William method [26].

RELATIONSHIP BETWEEN THE TWO
APPROACHES

From Fig. 1, it can be seen that there are
relations between the two lines of approach. By
forming the total potential energy in the work—
energy approach and then minimizing with respect
to the displacement functions using calculus of
variations, the equilibrium differential equations
and the natural boundary conditions can be deri-
ved [18]. This strategy of deriving the equilibrium

differential equations is becoming more popular
because it is rather easier when compared to the
conventional approach of analysing a free body of
the deformed member and obtaining the equilib-
rium equations from statical and geometrical con-
siderations. On the basis of this approach,
Papangelis and Trahair [27] have recently dis-
covered errors in the governing differential equa-
tions derived previously from the static-kinematic
approach for the flexural-torsional buckling of
circular arches.

Unfortunately, the reverse process of developing
an energy functional from a set of differential
equations is not so straightforward. Either the
functional is obtained by guesswork or under
certain conditions, the principle of virtual work or
the Galerkin’s method may be used. In some cases,
this reverse process is not possible as an energy
functional may not exist for the differential equa-
tion. An example is the governing differential
equation for the equilibrium of shear forces for
multistorey shear-wall frame structures where the
wall and the frames are elastically supported at the
base [28].

The various work-energy principles are also
interrelated. The principle of virtual work/
stationary potential energy and the one based on
the complementary virtual work/stationary com-
plementary potential energy are related through
the stress—strain law. Moreover, it can be shown
that the minimum value of the total potential
energy is zero which implies the principle of
energy conservation.

CONCLUDING REMARKS

An integrated view of common numerical tech-
niques for stability analysis is presented. Although
the discussion concerns elastic buckling, all of the
methods under the static-kinematic approach can
be applied to inelastic buckling or any other
engineering problems involving the solving of
differential equations. When using the work—energy
approach for tackling inelastic buckling problems,
the more general virtual work theorems have to be
used instead of the principles of potential energy
and principle of energy conservation. The usual
technique used in conjunction with the principle of
virtual work is the finite element method. For large
displacement problems, the differential equations
are nonlinear. Thus, some of the listed methods
become inefficient. Such probems are best solved
using the shooting method or the finite element
method.
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