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Inviscid Flow at the Trailing Edge of an

Airfoil*

P.J.PRITCHARD

Department of Mechanical Engineering, Manhattan College, Riverdale, NY 10471, U.S.A.

A simple mathematical proof is given that the transit times are the same for two particles, one
traveling along the upper surface, the other along the lower surface, of an arbitrary shape airfoil, in
an inviscid flow. This result is important in using a common ‘intuitive’ explanation of the lift
phenomenon on such an airfoil.

INTRODUCTION

IN DISCUSSING the two-dimensional (2D),
incompressible, inviscid flow around an airfoil,
most textbooks in fluid mechanics analyze the
structure of the streamlines and velocity field, often
using the techniques of complex analysis and
conformal mapping (see, for example, [1-3]). What
are not often discussed are the fluid particle paths.
A good example is that of the paths of two particles
that start at the same instant at the front stagnation
point of an airfoil, one traveling over the upper
surface, the other traveling along the lower surface.

For a symmetric airfoil at zero angle of attack,
the two particles will meet at the trailing edge of the
airfoil. For an airfoil with camber, or at a non-zero
angle of attack, or both, the flow will no longer be
symmetric. The question arises as to whether or not
the two particles will still meet at the trailing edge.
The answer to this question is not obvious, and is
important, for the following reason.

It is common in both engineering or science
classes in colleges and high schools to explain that a
wing with camber and/or an angle of attack gene-
rates lift because of the asymmetry in the upper and
lower paths, from the front stagnation point to the
trailing edge. The concept is that the upper path is
longer than the lower path (for positive camber/
angle of attack), because the front stagnation point
for this asymmetric wing will be somewhere on the
lower wing surface. Therefore the particle traveling
on the upper path must travel at a higher average
speed than the particle traveling on the lower path.
Using the Bernoulli principle, this must mean that
the average pressure on the upper wing surface must
be less than that on the lower surface, generating a
net lift. To increase lift, then, one must increase this
upper/lower asymmetry—in other words, one must
either increase the angle of attack, or increase the
camber (or both).
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This explanation becomes invalid if the under-
lying assumption is invalid, namely that the two
particles which start at the front stagnation point
meet at the trailing edge. In other words, the
assumption is that the particle traveling on the
upper path travels in the same period of time as the
particle on the lower path travels.

However, this assumption is not discussed in
most texts, including those cited above. Intuitively,
it seems a reasonable assumption. One of the few
authors to discuss the topic, Panton [4], indicates
that the particles do nor meet at the trailing edge,
and that the particle traveling on the upper path,
though traveling further, arrives there first!

As Panton discusses, one of the reasons that this
assumption has not been clearly justified is that it is
not trivial, theoretically, to compare ‘the transit
times of the two particles. In theory, both transit
times are infinite because they both leave from a
stagnation point. Panton avoids this difficulty by
considering two particles starting at an infinitesi-
mal distance & above and below the front stagna-
tion point, and then computes their transit times,
then letting £ — 0. With this method, it seems, as
mentioned above; that the assumption is
unfounded.

In the following analysis, a comparison of the
transit times for an ‘upper’ and ‘lower’ particle will
be made, using a different technique than Panton’s.
To simplify the analysis, instead of an arbitrary
airfoil with camber and/or an angle of attack, flow
over a circular cylinder with circulation will be
studied. As is well known [3], by a suitable con-
formal transformation, such a flow can be trans-
formed into any desired airfoil shape. Hence,
results obtained from the simpler geometry will be
applicable to the arbitrary shape airfoil.

For a circular cylinder with radius @ and circula-
tion I in a flow with free stream velocity U, the
velocity field is given by [4]:
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where (r, 0) are the polar coordinates, with (v,, v,)
being the corresponding velocity components (see

Fig. 1).
On the surface of the cylinder » = a, so
v,=0 3)
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From Eq. (4), the two stagnation points, 6, and
6,, are given by

6 = sin™! (— 4;(]) (5)

For a particle at stagnation point 8, and traveling
along the upper surface, the time to travel to 6, will
be
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where ¢, denotes the upper path. In Eq. (6)d 6 and
v, are both negative, yielding a positive transit time.

For a particle starting at 6,, following the lower
path ¢, to 6,, the transit time is

§= 2288 7)
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where ¢, is again a positive time.
Equations (6) and (7) will be used to test the
assumption under question. Note that both 7, and ¢,

go to infinity, but it is assumed that they are equal: if

this assumption turns out to be invalid, a contra-

diction will appear in the following deduction.
Hence, assume ¢, = ¢, or
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Using Eq. (4) in Eq. (10) yields
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where
3
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A el 1 (13)

Equation (13) ensures that there are two stagna-
tion points [3]. For A =1 there would be one
stagnation point; for 4 >1 there are no stagnation
points on the cylinder, and a circulatory flow exists

Fig. 1 Uniform flow over a cylinder with circulation.
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around the cylinder. These conditions are illustra-
ted in Fig. 2.

To integrate Eq. (12), without loss of generality
one can change variables:

z=e® (14)
Hence
dz=1izd6 (15)
and
sin@ =— l(zz—_l) (16)
2z

Substituting Eqs (15) and (16) in Eq. (12) yields
dz
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where
2, =—id—J1-27 (19)
=—id+ [1=17 (20)
correspondmg to the stagnatlon points at 6, and 6,
respectively. The integral in Eq. (18) has two

51mple poles, one at z, and one at z,, both on the
perimenter, and hence [5] the contour integral is:
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Fig. 2. Flow fields for various values of 4.
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= 2mi(0) + mi(Res(z,) which is consistent with Eq. (17). Thus, the validity

of Eq. (8) is demonstrated, and it has been proved

+R that the two particles, starting at the front stagna-

es(22)) tion point, do in fact meet again at the rear

1 stagnation point. This result, as mentioned above,

= i ) is valid for cambered airfoils at an angle of attack,
<(Zl — )+ (22— 2zy) as well as the cylinder with circulation.

=0 (21)
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