Int. J. Engng Ed. Vol. 10, No. 5, pp. 416-426, 1994

Printed in Great Britain.

0742-0269/91 $3.00+0.00
© 1994 TEMPUS Publications.

Experiences Gained in the Teaching of
Computing Technology to Engineering

Students*

Department of Manufacturing Engineering, Loughborough University of Technology, Loughborough,
Leicestershire, LE11 3TU, UK

This paper discusses the experience gained by staff and students through the recent replacement of
a traditional computer programming course for manufacturing engineering students by a more
broadly based ‘Computing Technology’ course. These courses differ in that the latter additionally
includes software engineering and an introduction to various manufacturing applications of
computing technology. By placing the course within the contexts of industrial need and of the
degree courses to which it contributes, the motivation and objectives of the course are compared
against the outcome of its introduction in the 1991092 academic year. It is concluded that the
course is a significant improvement on the more traditional and highly focused approach to
teaching computer programming. Not only does it facilitate the writing of more structured and
better quality software, but it has also created many opportunities for developing a deeper

understanding of computer-based technologies.

INTRODUCTION

THE DEPARTMENT of Manufacturing Engineer-
ing at Loughborough University of Technology
offers three undergraduate and one postgraduate
degree courses that integrate manufacturing
engineering, design and management topics. The
aim of these courses is to produce young manu-
facturing and design engineers who have significant
potential for future technical management posi-
tions. Education in the use of a computer pro-
gramming language has been an integral element of
these courses for many years. Recently, however,
this programming course has been replaced by one,
entitled ‘Computing Technology’, that additionally
covers software engineering techniques and other
material to provide a wider awareness of the
industrial development and use of computer-based
systems. . .

Three factors have motivated recent develop-
ments [1]:

1. Traditional ‘computing’ courses have essen-
tially remained static for many years. However,
within industry an increasingly sophisticated
approach has evolved to the development of
engineering software, based on various systems
analysis and design techniques such as Yourdon
[2], IDEF [3] and SSADM [4].

2. An understanding of the systems approach to

* Accepted 17 July 1994,

416

managing complexity is of much wider applica-
tion than in the creation of computer-based
systems. Thus, engineering students should
benefit by obtaining such understanding as soon
as possible.

3. Recognition that many computer-based sys-
tems introduced into manufacturing industry
fail to provide all of the benefits envisaged
during their conception. Typically, the reasons
for this are twofold. Firstly, those manufactur-
ing engineers involved with the initial specifica-
tion of such systems have little awareness of the
complex interactions that occur between large-
scale computing technology and manufacturing
systems. Secondly, there is a general lack of
common understanding between the vendors
and the intended users of such technology.

On the undergraduate programme, the Computing
Technology course is presented throughout the
first year of study and constitutes one out of 12
modules. In the introductory year, 1991/92, 70
students took part. On the postgraduate pro-
gramme,. the course represents one-half of a
module (of which there are 12), taken over the
Autumn term only. In the same introductory year
30 students took part in the M.Sc. variant.

This paper briefly reviews the objectives and
structure of the course. Initial results and an
evaluation of the course are presented, followed by
discussion of recent and possible future develop-
ments, and spin-off activities.

Teaching Computing Technology to Engineering Students

OBJECTIVES

The Computing Technology course was
designed to fulfil the following objectives:

® To educate students in structured techniques for
the analysis, design and specification of systems,
exemplified by the analysis and design of
computer-based systems.

® To introduce students to a high-level program-
ming language from an analytical standpoint,
changing the emphasis in programming from the
creation of a solution to the translation of an
engineering solution to some problem. The
primary focus in this is to teach language
facilities on a ‘need-to-know’ basis.

® To provide future manufacturing and design
engineers with a broad introduction to com-
puting technology and its enabling role within
industry.

® To develop an approach to achieving the above
objectives that is common to teaching at both
undergraduate and postgraduate levels.

COURSE DESCRIPTION

In order to meet the above objectives, a course
structure was developed that included software
engineering techniques, a computer programming
language and various computer applications that

417

Syllabus
In the introductory year the contents of the
lecture course were as follows:

® Software engineering

¢ Programming language
postgraduate: ANSI C; undergraduate: Pascal

® Applications lectures introducing;
computer hardware and software
computer-aided engineering
computer-aided manufacture
applications development software
office automation
simulation
real-time systems
vision systems

Figure 1 shows the undergraduate course time-
table in the introductory year.

The adopted software engineering methodology
was based on the Yourdon technique. It was
considered that the insight provided by this
technique in making a clear distinction between the
structure and dynamics of systems, along with
structured relationships between data items, would
maximize its utility across the widest possible range
of topics within the degree syllabuses.

The programming languages were selected on
the basis that they should provide a logical transi-
tion from engineering solution to implemented
program through block structure for code and
flexible structuring and abstraction facilities for

had a manufacturing focus. data.
LECTURES TUTORIALS - COURSEWORK #1 LECTURES
TERM Software Engineering Software Engineering
ONE Programming
Programming and Programming
LECTURES TUTORIALS - COURSEWORK #2
'-:'-SV?)M Software Engineering Software Engineering
Programming and Programming
H Hardware
S Software
APPLICATIONS LECTURES O (i e Avmason
TERM SiM Sunqamn
H OA ADS RTS ADS Appiications Development Software
THREE CAM CAE Compuer Aided Engineering
S SIM | CAE | VS RTS Real Time Systems

VS Vision Systems
CAM Computer Aided Manufacture

Fig. 1. Computing Technology timetable (undergraduate).

418 R. L. Wood et al.

The C language was selected for the M.Sc. course
for reasons in addition to those above. Firstly, there
are many opportunities for M.Sc. students to carry
out their dissertations in conjunction with ongoing
research within the department. A significant
feature of much of this research is system and
software development, mostly using C. Secondly, C
is becoming more widely adopted within industry.
Thirdly, it was perceived that teaching C would
provide a foundation for moving towards object-
oriented techniques if and when the need arises in
the future. Pascal was chosen for the undergradu-
ate variant of the course, firstly because it satisfies
the above requirements, and secondly, because it
provides a stepping stone towards C.

The applications lectures were intended to
provide a broad introduction to the industrial use
of computing technology which students were
unlikely to receive elsewhere in their studies. It was
considered that these lectures provided a prime
opportunity to demonstrate generic themes and
trends in software and hardware, and their influ-
ence on engineering activities.

Assessment

The course was assessed through coursework,
with typical examples given in Appendix 1, and
examination, with typical questions given in
Appendix 2, both being equally weighted. The
former was intended to assess students’ ability to
assimilate and apply the taught software engineer-
ing and programming techniques. The examination
was intended to test students’ understanding of this
material without the safety net of achieving over
several weeks on a trial-and-error basis. It was also
considered to be a convenient method of assessing
the taught computing technology applications
material. Within the coursework element, two
assignments were set, each designed to assess the
students’ ability to analyse a given problem using
software engineering techniques, and then to trans-
late the problem solution into a functional com-
puter program. Each piece of coursework was to be
performed by students on an individual basis. All
tutorial classes within the course were centred
around the fulfilment of coursework objectives
(Appendix 3).

INITIAL RESULTS

Feedback from students, received via objective
discussions, prompts for improvements, and a
questionnaire, indicating that the course was
generally well received (Appendix 4). For example,
it is considered that the problems that students
encountered stemmed, primarily, from not being
familiar with the programming language and lack of
experience in using software engineering. How-
ever, it was found that students spent dispro-
portionately large amounts of time debugging their
programs. Due to this, it is doubtful whether the
students fully appreciated the wider usefulness of

software engineering techniques, beyond program
structuring, at the time of delivery. In fact some
students found it to be an encumbrance to their
programming effort.

The coursework was carried out to a generally
high standard, probably more so than the students
appreciated. The measure of success that students
placed on their own work was the development of a
fully functioning program; anything less was
deemed to be a failure. This was somewhat
disappointing as, in the marking scheme, emphasis
was placed on a relatively small percentage of the
marks being awarded for this, the majority being
given for the analysis and design of the system and
consistent program structure. This view was par-
ticularly noticeable with regards to the first piece of
coursework, where staff and students concurred
that software engineering was indeed a sledge-
hammer to crack a rather small programming nut.

This problem was not so severe in the second
piece of coursework, where a larger problem
obviously needed structuring and software
engineering was agreed to be a useful tool to
achieve this. Also, more programming skills and
software engineering experience were acquired by
this time and students therefore performed some-
what better than on the first coursework assign-
ment. However, fewer working programs were
submitted!

One major problem facing the staff was the
volume of marking, particularly of the first course-
work assignment, when there was a great pressure
to return it to the students before they embarked on
the second. However, the C and Pascal marking
was made more straightforward and more readily
quantifiable by the well-structured nature of the
code produced by all students.

Two other, perhaps more severe, problems were
caused by the fact that only 20 personal computers
were available within the department at the time for
teaching. Particularly in the undergraduate variant
of the course, this made it necessary to have
otherwise unnecessarily small groups in tutorial
sessions. This slowed the delivery of the course,
causing frustration. amongst many students. This
delay also reduced the coverage of computing
technology applications to just a single lecture on
each, whereas it was originally envisaged that these
would be complimented by practical sessions.

Overall, however, the first year was viewed as a
success. Not only did the students carry out a
similar amount of programming work as in pre-
vious years, but additional material was also
covered in the time previously taken for pro-
gramming. From the viewpoint of the M.Sc.
students, their variant of the course was relatively
demanding, since they had to perform each item of
coursework within the Autumn term only. How-
ever, despite this, the quality of the work that they
produced was at least as good as that produced by
the undergraduates.

Teaching Computing Technology to Engineering Students 419

EVALUATING THE COURSE

Based on the data given in the appendices the
course is considered to be a good initial effort.
Replies to the questionnaire, Appendix 4, indicate
that the students appreciated the value of the
course for its relevance and its challenging nature.
From Fig. A1, it is clear that students made pro-
gress in their understanding and ability to apply the
taught software engineering and programming
techniques in their coursework.

In comparison to the previously discussed objec-
tives, it is considered that a high degree of achieve-
ment has been attained on each point. However,
further developments, several of them based on
feedback from the students, are possible and desir-
able:

® Students expressed a preference for a greater
number of small but complete examples that
take them through both software engineering
and programming,.

® The current coursework tasks highlighted the
initial difficulties that students had in under-
standing and applying systems analysis tech-
niques. This may have resulted from the topic of
coursework #1, Appendix 1, being sufficiently
small and familiar to students for them to make
good progress without the need for software
engineering. Ad hoc comments from under-
graduate students also indicated that they con-
sidered coursework #2 to span too great a part
of the second term.

¢ In teaching Pascal, the undergraduate variant of
the course does not serve students’ future
requirements for programming skills as well as it
might. This view is reinforced by the awareness
of several undergraduates with some previous
programming experience.

® A larger portfolio of coursework topics is
required to ensure that each new delivery of the
course does not result in the reworking of the
‘standard’ problem.

¢ Examination performance in the area of pro-
gramming is also of concern (Appendix 2).

® Many students indicated that they would like
more time on the course (Appendix 4). The
reasons for this are twofold—some finding the
work very taxing, whilst others demonstrated
considerable enthusiasm and competence.

DISCUSSION

From the experience gained to date, three major
themes can now be considered: short-term
improvements, the ways in which the course
enables spin-off activities and the longer-term
future for the course.

Course developments in the subsequent year
Changes in both the available computing
resource and in the structure of the M.Sc. course

have significantly influenced recent developments.
The introduction of 40 networked personal com-
puters within one room has overcome the need to
divide students into detrimentally small groups for
programming tutorials. This has also allowed time
to include hands-on sessions for various applica-
tions. Unfortunately this change has only been
beneficial on the undergraduate variant of the
course since, as a result of modularization, the
contact time for Computing Technology within the
M.Sc. syllabus has been reduced by 25%. This
restructuring has also forced the exclusion of
coursework #1 for the M.Sc. students.

For the undergraduate students, the first course-
work assignment has been modified to exclude the
programming task. Students are now given well-
structured code for the quadratic problem and
required to generate the associated software
engineering by reverse engineering the code. It is
anticipated that this approach will promote deeper
understanding of software structure and state-
ments, the taught software engineering technique
and the relationships between the two. Also, the
subject of the second coursework assignment has
been extended to allow small group work, with
each individual student being made responsible for
the software engineering and programming of part
of the overall system. The aim of this is to addi-
tionally demonstrate the benefits of software
engineering as a tool for communication and
understanding between system developers.

Spin-off activities

In parallel with the first implementation of the
Computing Technology course, a series of open-
ended ‘mini-projects’ were introduced for first- and
second-year undergraduate students as a more
challenging and interesting alternative to a con-
ventional laboratory programme. For the first-year
students, the first of these mini-projects provided
an introduction to the computing facilities within
the department. An important objective of this
exercise was to ensure that the subsequent teaching
of programming languages was not clouded or
slowed by initial system familiarity problems. The
Computing Technology course was seen as a focal
point in justifying the need for this mini-project,
with more general familiarity being an additional
bonus.

Stemming from the teaching of software
engineering, second-year students who partici-
pated in a mini-project concerning the design of a
plastics database were given brief tuition in the
creation of data flow diagrams and data dictiona-
ries, which they used for system design and as a
means of communicating their findings.

Considering the M.Sc. variant of the course, one
student made substantial use of the taught tech-
niques in his dissertation, which concerned the
engineering and programming of a finite element
program for thermal analysis [5]. Considering the
relatively short teaching time prior to commence-
ment, this was an ambitious project. However, the

420 R. L. Wood et al.

results were impressive and a clear indication of the
benefits of the teaching regime.

Since introducing the course, the level of aware-
ness on the part of those academic staff and
students within the department who are not
directly involved with the course has grown
rapidly. Key features of the current academic year
that have resulted from this are:

¢ The initial mini-project for first-year under-
graduates has been extended into an assessed
exercise that involves in-depth use of word-
processing, graphical and spreadsheet soft-
ware, integrating the results to produce a final
report on some selected topic. A significant
factor that has enabled this has been the
increased number of computers available
specifically for teaching.

¢ Several final-year undergraduate students have
either adopted the software engineering tech-
nique as an aid to documentation or are carrying
out projects where software engineering is a
central theme. This is considered to be a sig-
nificant development since such students have
not had the benefit of formal tuition in this topic.

Future developments

The suggestions from students for a number of
complete but small examples that take them
through both software engineering and pro-
gramming has merit, since such examples would
reinforce three important themes: the interaction
between different elements of the software
engineering technique, the transition from software
engineering to programming, and the nature of
good program structure and the way that it should
be dictated by the software engineering solution.

If the above examples could be presented prior
to or in parallel with the first piece of coursework,
students’ initial difficulties, exemplified in Appen-
dix 1, may be mitigated. Also, subdivision of
coursework #2 into discrete software engineering
and programming components, where the former
is assessed prior to students commencing the latter,
would help to reinforce the philosophy of these
elements of the course more strongly.

It is considered by members of staff that a move
from Pascal to C would be beneficial to the under-
graduate variant of the course. Firstly, this would
make the undergraduate and postgraduate variants
more consistent. Secondly, it would make the
undergraduate variant more relevant to industrial
need. Thirdly, it would better place students to
carry out subsequent projects related to various
research activities within the department, and
provide a more sympathetic basis for programming
activities in other courses within the degree syllabi.
Were C to be introduced in the next academic year,
it would be done with the benefit of two years’
delivery on the postgraduate variant, as discussed
at the end of this section.

Considerable scope exists to introduce alter-
native coursework topics and/or alternative

approaches to the existing topics. Numerous topics
can be generated, such as graphics systems, user
interfaces, databases, and small numerical analysis
and statistical tasks. Also, alternative approaches
to a given problem can be considered, e.g. given the
software engineering and source code for an
existing system, along with a revised set of
functional requirements, students could then carry
out the necessary re-engineering and programming
to implement an updated system.

Changes to the assessment procedure are also
being considered. Primarily, this concerns the need
for an examination. Appendix 2 indicates that only
a small proportion of students attempted questions
that tested their understanding of programming.
Regardless of this being a result either of their lack
of understanding, or examination being an inap-
propriate assessment mechanism, then it may be
appropriate to introduce an element of continual
assessment during the course and remove pro-
gramming as an examinable topic. If this were done,
continual assessment could also include software
engineering. Also, provided that students’ assimila-
tion of the material in the applications lectures
could be tested via a relatively small essay course-
work, then the entire course could be assessed on a
continuous basis. This is currently receiving
serious consideration.

Staff are investigating how students’ understand-
ing gained from this course can be integrated else-
where in the department’s degree course. The wide
ranging opportunities that are currently available
are indicated in Fig. 2, which shows those topics
taught at undergraduate level within the depart-
ment in which a system analysis approach can be
adopted, either as a focal point or as a supporting
view.

In addition to contributing to existing topics, the
existence of the Computing Technology course
creates opportunities for the development of new
courses. An example of this is the possibility of
introducing a second-year course that addresses
the analysis and design of concurrent processing
systems for manufacturing process control. In

addition to this being a significant end in itself, this

could also create a foundation for a future final-
year subject that integrates the required techniques
and technologies for concurrent or simultaneous
engineering.

In addition to allowing the development of a
more streamlined Computing Technology course,
the recent increase in computing facilities now
provides an opportunity for using computer-aided
software engineering. If this were to be adopted,
two major benefits would be expected. Firstly, it
would allow students to focus more strongly on the
problem to be solved, rather than ensuring adher-
ence to the many rules within the technique.
Secondly, it would allow staff to concentrate on
assessing students’ understanding of how to apply
the taught material, rather than their correct
implementation of the previously mentioned rules.

Considering the M.Sc. course in particular, it is

BRI e i P S B At L Th-p

T N I R AT e e VY 1| DR e 3

Teaching Computing Technology to Engineering Students 421

--

l Computing Technology]—» Mini product design manufacturing manufacturing
visualisation) desi
projects ics) gn logy
Year 1
electronics automation design of manufacturing industrial | [product design
design machine process design specification
automation elements | |sslection : :
advanced tional research mini manufacturing
manufacturing | (PO projects | | design technology
Year2 * methodologies
for| | individual | | product | [compuler aided | |assembiy manufacturing | | CAM- ;
i automali ing and manufacturing
assembly | | project design ion | | planning
organisation compuler aided advanced modelling and simulat CAM-cnc
management manulacture and test “"‘G‘I manufacturing :arwnumu‘ng technology
computer | | robotics and ini computer aided | [advanced | [intelligent materiais
control of automation llto‘:rmobqy lfmcess planning malerials ing and
Year 3 machines processing | | process simulation

--

Fig. 2. Current undergraduate topics where the techniques taught in the Computing Technology course may be adopted.

now recognized by the staff involved that teaching
C on a need-to-know basis, focused by the needs of
a software engineering solution, provides more
stimulus and rapid understanding of specific
language facilities than teaching C in isolation.
However, a problem with this approach is the risk
of not giving sufficient emphasis to the basic and/or
generic aspects of the language. Thus, there is a
need for a mixture of both approaches, with a bias
towards the former. This could be achieved via
occasional ‘let’s spot generic issues’ sessions during
language teaching.

A more significant problem, however, is the
recent modularization of the M.Sc. programme,
which has created the need to revise substantially
the structure of this variant of the course. The
outcome of teaching the course under this regime is
currently being examined and it is anticipated that
further revisions may take place prior to the 1993/
94 academic year.

In the longer term, it is considered that the
development of distance learning facilities and the
possible introduction of intensively taught modules
will provide further opportunities for a new and
more appropriate Computing Technology course
structure on the M.Sc. programme.

CONCLUSIONS

The Computing Technology course discussed
here adds considerably more value to the students’
education than the traditional programming course
which it replaces, specifically:

® In addition to learning how to program, students
also learn about systems analysis and the use of
industrial software products. The time taken to
achieve all of this is the same as that required
previously for programming only.

¢ Many new opportunities for project-based work
have been created, not only for those projects
having a central computing theme, but also in
allowing students to adopt a more structured
approach to projects in other areas.

® Opportunities have been generated for alterna-
tive approaches to the teaching of other existing
undergraduate subjects and for the introduction
of new subjects from a systems viewpoint.

Student feedback has been both informative and
encouraging in helping to ensure that the course
meets its original objectives to an even greater
extent in the future.

REFERENCES

1. R.L. Wood and L. E. Davis, Software engineering for manufacturing engineers. IEE colloquium on
‘The teaching of software engineering—progress reports’, IEE digest no. 1991/159, pp. 3/1-3/5

(1991).

2. E. Yourdon, Modern Structured Analysis, Prentice Hall, Englewood Cliffs, NJ (1989).

422 R. L. Wood et al.

3. D.T. Ross, Structured analysis (SA): a language for communicating ideas, IEEE Transactions on

Software Engineering, SE3(1), 1633 (1977).

4. SSADM Manual, version 4, ISBN 1-85554-004-5.
5. K.R. Holmes, Parallel finite element software development. M.Sc. dissertation, Department of
Manufacturing Engineering, Loughborough University of Technology (1991).

APPENDIX 1: TYPICAL COURSEWORK AND SUBMISSIONS

Two items of coursework were given to both
undergraduate and postgraduate students. To
substantiate subsequent comments in this appen-
dix, Fig. Al shows the distribution of marks
awarded for both coursework items on each
variant of the course. Various features of Fig. Al
will be commented upon in the following text.

For both pieces of coursework, marking was
very detailed and positively critical to exemplify
good practice. The marking scheme used for both
items of coursework was as follows:

Software engineering
' A working, well-structured solution, 35%.
Presentation of the solution, 15%.

Programming

Software that meets the objectives and whose
structure is consistent with the software engin-
eering solution, 35%.

Presentation to the user and the programmer (i.e.
the user interface and in-line source code docu-
mentation) with evidence to demonstrate suc-
cessful software operation, 15%.

Coursework # 1: develop an interactive program to
solve a quadratic equation
Key educational features:

e Historical precedent extended through the need
for a user interface that allowed repeated
execution.

Number of students (%)
8 8 8 8 8
] =¥ 4

e Friendly introduction, aiming to give students
the feeling of applying a new technique to a
familiar problem

e Relative simplicity, but exemplifying the key
features of ‘systems thinking’, a particular soft-
ware engineering technique, and routinely
needed programming language facilities.

The general outcome of coursework # 1 was very
instructive:

e Strong evidence was found in many submissions
that software engineering was carried out after
programming. Subsequently, students indicated
that they felt more comfortable programming by
trial and error, receiving feedback from com-
piler messages and program listings, than with
trying to reason about system structure and
dynamics via diagrams.

e A small group of students misused the software
engineering technique because they confused it
with their previous experience of drawing flow-
charts. This need to ‘un-learn’ a previous
approach is seen to be a significant problem
since, to promote such students’ confidence,
their previous approach must be dissected and
demonstrated to be less informative.

® Ascanbe seen from Fig. A1, the marks awarded
for coursework #1 were relatively low and

tightly grouped.

BRRRRRRRRRRRERRRRRRRRRRRRRRRRERRRYI

B

0-39 40- 49 50-59 60-69 70-79 80-89 90-99

B cw# (UG) B cw#2 (UG Bcw (P/G) [Jcw#2(P/G)

Fig. Al. Distribution of coursework marks awarded on each course variant.

Teaching Computing Technology to Engineering Students 423

Coursework # 2: Develop an interactive program
to calculate actual and rolling forecasted machin-
ing capacity requirements given the actual and
forecasted demand for a range of products

Key educational features:

® The focus and size of the problem was compar-
able to tasks encountered by students elsewhere
on the degree course. It was intended that the
problem would develop students’ perception of
systems analysis from being a ‘computing’
technique to a more generally applicable
problem-solving tool.

¢ The complexity of the intended system justified
the use of software engineering. Considerable
difficulty would be found in simply attempting to
program a solution,

® A significant test of students’ understanding of
both systems analysis and programming. The
solution typically consisted of eight diagrams,
ten structured English process descriptions and
a three-page data dictionary for the software
engineering, along with a program consisting of
around 400 lines.

General outcome:

® Despite the relative size and complexity of the
task, both undergraduate and postgraduate
students demonstrated a distinct improvement
in their understanding of both software
engineering and programming, as can be seen
from Fig. A1.

Constrasting students’ performance on each
coursework activity, from Fig. A1 it can be seen
that for coursework #1, 56% of the undergradu-
ates scored less than 60%. For coursework #2, the
proportion of students within this range decreased
to 21%. Also, 11% of the undergraduates scored
over 80% for coursework #2, whereas no under-
graduates attained marks in this range for course-
work #1.

Postgraduate students demonstrated a more
consistent performance across the two exercises.
However, one notable feature of the postgraduate
scores is that the number of students attaining

marks in excess of 80% doubled from coursework
#1 to coursework #2.

For both items of coursework, good submissions
typically demonstrated the following features:

® Understanding and adherence to the ‘rules’ of
the software engineering technique, demonstrat-
ing that the student was capable of viewing
different features of the system (structure,
dynamics and data relationships) clearly.

® The concise use of structured English to
describe the function of individual processes
within the system.

® A complete data dictionary, sorted alphabetic-
ally to indicate an awareness of possible users of
the resulting system model.

® A clear translation of engineered system struc-
ture and dynamics to software structure through
the use of identical process/procedure and data
flow/variable names.

® A clear translation of structured English process
descriptions into programming language state-
ments. Again, indicated by the equivalence of
data and variable names and sequence of activity
within processes and procedures.

® Orderly and concise presentation of diagrams
and text within the software engineering part,
along with a listing of the resulting program.

® Inclusion of exemplary software input and
output, demonstrating that the resultant soft-
ware functions correctly.

In contrast, poor submissions displayed features
such as:

® Inconsistencies between diagrams for the struc-
ture and dynamics of the system.

® Inconsistencies between diagrams depicting
different levels of detail in system structure.

® An incomplete and/or ambiguous data diction-
ary.

® Program structure that does not match the
associated software engineering.

® A written description of what the student
thought they should do, but did not, to carry out
the coursework task. :

APPENDIX 2: TYPICAL EXAMINATION QUESTIONS

In addition to assessing the students’ apprecia-
tion of the industrial impact of computing tech-
nology, the examination was intended to test their
resultant understanding of the taught techniques,
rather than their ability to apply it over a period of
several weeks.

Typical questions in each area of the course were
as follows.

Software engineering

Using the example of calculating the average of a
set of numbers, illustrate the use of event lists,
context diagrams, data dictionaries, state transition
diagrams, data flow diagrams, mini-specifications

and structure charts. Assume that input to the sys-
tem from the user is always correct and does not
need to be validated.

Programming

1. Explain the effect of using each of the following
storage classes (in ANSI C) automatic, static,
external and external static. Illustrate the con-
cept of scope with an example piece of code.

2. Given the following statement, what does the
function tell you about the intention of the
programmer?
static int forecast;
int value_ct(const int arrf], int value, int n)

424 R. L. Wood et al.

Will replacing int value and int n with const int
value and const int n enhance the protection of
values in the calling program?

What effect will this substitution have on the
function?

Computing technology applications

Discuss the enabling role of computing tech-
nology in product design, highlighting the different
technologies that have evolved to support the
creative and engineering science aspects of design.

Students’ examination performance was typical of,
if not a little better than, their examination
performance in other subjects. However, it was not
compulsory to answer a question of each of the
above types. As a result, 87% of the students
answered software engineering questions, but only
29% answered the programming questions. For

those answering the software engineering ques-
tions, the spread of marks was similar to that for
coursework #2 (Fig. Al). For the programming
question, 50% of the students who answered them
gained less than 50% of the available marks and
30% gained in excess of 70%. The different
numbers of students attempting each type of
question clearly indicates that they were less confi-
dent in their programming knowledge than their
knowledge of software engineering. For those who
attempted the programming questions, there was a
clear split between good and poor achievers. This
raises two questions: ‘Is programming so difficult
that few students actually understand, but achieve
in coursework through trial and error?’, and Is an
examination the most appropriate method of test-
ing students’ understanding of programming?’
Debate continues within the department on the
answers to these questions.

APPENDIX 3: TYPICAL CONTENT OF PROBLEM-SOLVING CLASSES

Whilst problem-solving classes were strongly
geared to supporting the coursework activities,
such classes for software engineering and pro-
gramming progressed along slightly different lines.
For tutorials, both undergraduate and postgradu-
ate classes were divided into groups of around 15
students.

For each coursework item, every group received
an initial software engineering tutorial which
encouraged the development of a solution through
interaction within the group. These tutorials were
open ended, directed by prompts, ideas and
suggestions offered by students. Progress towards
the solution was dictated by the pace and focus of
the group, typically achieving around 20-25% of

the required software engineering solution within a
2 hour tutorial. Subsequent software engineering
tutorials were run as ad hoc sessions where a
member of staff responded to problems on an
individual student basis.

Programming tutorials were staggered with
those for software engineering so that the former
may provide an initial focus for the latter. Students
were encouraged to appreciate the need for par-
ticular classes of program functionality, leading to
the need for particular types of statements and
supporting data definitions. Prime examples of this
are the need for input and output, and for error
checking to be included in the former when the
software interacts with human users.

APPENDIX 4: STUDENT FEEDBACK

Feedback was obtained via objective discus-
sions, including prompts for improvements and a
questionnaire.

Objective discussions and prompts for improve-
ments

Consistent comments were obtained from both
undergraduate and postgraduate students. The
general points were as follows:

® A desire for more time overall (some found the
course very demanding and wanted more staff
input, others found it especially interesting and
wanted to do more).

® A desire for more tutorials (complete examples
of software engineering and programming, more
opportunity for supervised programming, more
tasks that focus on specific features of software
engineering and the language)

® A suggestion that the major piece of coursework

be divided into two discrete sections—software
engineering followed by programming.

® A suggestion from several undergraduates with
previous programming experience that Pascal
should be replaced by a more industrially
relevant language, such as C.

e The need for better printing facilities (introduc-
tion of the computing technology course placed
an unexpected demand on printing).

® A specific comment from postgraduate students
was that there should be no examination ques-
tions on the C programming language (they did
not see the point of testing their understanding
rather than their use of C).

A range of less specific comments implied that
students were looking for stronger guidance and
more frequent assessment to make them work at a
more measured rate.

Teaching Computing Technology to Engineering Students 425

The questionnaire

Table Al summarizes the questions put to the
students, indicating the proportions of ‘yes’ and
‘don’t know’ replies. Where only one type of reply
is given to each question, the balance is implied to
be ‘no’.

Considering each of the questions in turn, from
Table Al it can be seen that there was a marked
difference between the previous programming and
software engineering experience of the undergrad-
uate and postgraduate students. This is also
thought to be an influence on replies to subsequent
questions.

There was a marked difference between under-
graduate and postgraduate replies as to the useful-
ness of the taught programming language. This
probably results from (i) greater programming
experience amongst the postgraduates, and (ii)
limited awareness amongst the undergraduates of
alternative languages to Pascal.

Surprisingly, a similar proportion of under-
graduates and postgraduates had some prior
software engineering experience.

When asked about the more general relevance of
software engineering, a surprisingly low proportion
of postgraduates indicated their belief of its
relevance. On both variants of the course, scope
exists for communicating the general applicability
of software engineering and systems analysis more
clearly.

Considering whether software engineering
assisted programming in the coursework, under-
graduates and postgraduates replied in similar
proportions. The relatively low proportion of stu-
dents that considered software engineering to be of
benefit could be based on one or both of the follow-
ing. Firstly, students may have perceived that the

software engineering forced them to think in what
they considered to be an overly complex way.
Secondly, their use of software engineering may
have forced students to use more sophisticated
programming language facilities that they would
otherwise not have used.

Considering the influence of software engineer-
ing on the overall quality of the resulting software, a
higher proportion of postgraduates appreciated
the benefits of software engineering. This is
probably based on their greater experience of both
software engineering and programming, allowing
them to appreciate better the importance of soft-
ware structure. A large proportion of undergradu-
ates may not be sufficiently experienced, even after
the course, to recognize the characteristics of
‘better’ programs.

The relatively small proportion of both under-
graduates and postgraduates who thought that a
reasonable balance between lectures and tutorial
had been achieved indicated that both groups
thought that more complete examples would be of
significant benefit.

Considering the appropriateness of the assess-
ment procedure, it was found that 19% of the
undergraduates and 26% of the postgraduates
wanted 100% coursework, whilst 21% of the post-
graduates wanted no coursework. No undergradu-
ates indicated that they would prefer the latter.
However, several suggestions were made as to
alternative weightings between coursework and
examination.

Regarding the two questions concerning course-
work relevance. The general view was that the
topics were relevant but, perhaps, more appropri-
ate ones could be identified.

Considering the overall worth of the course and

Table Al. Questions presented to the students and their replies

Question Undergraduate response ~ Postgraduate response
(%) (%)

Did you have prior programming experience? yes=48 yes =100

Will the taught programming language be of future yes = 52 yes =95

use to you? don’t know = 29

Did you have prior experience of software engineering? yes =24 yes =32

Is software engineering relevant to other engineering yes =72 yes = 68

activities? don’t know =14 don’t know = 32

Do you think that software engineering helped yes =52 yes = 68

programming in the coursework? don’t know = 14 don't know =16

Do you think that you obtained better programs by doing yes = 38 yes=T74

software engineering? don’t know =10 don’t know =5

Did you receive a good balance between lectures yes= 14 yes =37

and tutorials?

Do you think the balance between coursework and yes =62 yes =53

examination was appropriate? ‘ don’tknow=19

Were the coursework topics relevant to the degree course? yes=171 yes = 100
don’t know =5

Were the coursework topics relevant to the Computing yes =100 yes =100

Technology course?

Was the course worth doing? yes =90 yes =79

Do you think that Computing Technology has a place yes=95 yes =95

within the degree syllabuses? don’t know = 5 don’t know =5

426 R. L. Wood et al.

its place within the degree syllabuses, the general on the importance of computing technology in
consensus was that they received a worthwhile manufacture and, despite the difficulty of the
educational experience for their efforts. To sub- course, they derived satisfaction from it.

stantiate their replies, many students commented

Lesley E. Davis is a lecturer in the Department of Manufacturing Engineering at Lough-
borough University of Technology. She graduated from Royal Holloway College, London
with a B.Sc. (Hons) in mathematics and from the University of Birmingham with a M.Sc. (Eng.)
in operational research, she also holds a postgraduate certificate of education. She is a member
of the Operational Research Society and has current research interests in the fields of
simulation and decision aiding.

Stephen T. Newman graduated from the University of Aston in 1982 in production
technology and production management. In 1990 he gained his Ph.D. at Loughborough in the
simulation and flexible machining cells. He is currently involved in both Eureka and national
research programmes in flexible machining cell design with special interests in tool manage-
ment.

Kevin R. Holmes graduated from the University of Newcastle upon Tyne in mechanical
engineering in 1987. He graduated with distinction, in 1992, from the M.Sc. Computer
Integrated Manufacturing course, run by the Department of Manufacturing Engineering at
Loughborough University of Technology.

Robert L. Wood graduated in mechanical engineering in 1980 and is a Chartered Engineer
and a member of the British Computer Society. He became a lecturer in the Manufacturing
Engineering Department in 1989, after almost 10 years in industry. His research interests
centre on the use of numerical methods and software engineering in the simulation of
manufacturing processes.

