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Maximum-power Efficiency of a Carnot
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The Curzon-Ahlborn efficiency of a Carnot engine at maximum power output, n* = 1 — [T ,/T,,
is graphically derived by maximizing the area of a rectangle in a diagram. By use of proper
symmetry the problem can be recast in terms of finding an associated rectangle of given area T, T,
and minimal circumference. This provides a geometric illustration of the optimal equivalent
temperature T%= [T T, as the geometric mean of the reservoir temperatures and the consequent
appearance of the square root in the Curzon-Ahlborn formula.

1. The paper discusses material which can be
used in the following courses:
Heat engines, finite-time thermodynamics.

2. Students of the following departments may

benefit from the course/discussion in the
paper:
Mechanical engineering, physics.

3. Level of the course:

Senior or introductory graduate level.

4. Modes of presentation:

Traditional lecture, or assigned reading, or
student presentation.

5. Is the material presented in a regular or

elective course?
The material should be presented in a
required course on thermodynamics.

6. Class hours required to cover the material.

1 hour.
7. Student homework and
required for the material:
2 hours.

8. Brief description of novel aspects of the paper:
Despite growing importance of finite-time
thermodynamics in the literature, irrevers-
ible heat engines, i.e. heat engines with
actual power output, are hardly covered in
current thermodynamics courses. The irre-
versible Carnot engine, in comparison with
the reversible one, provides an excellent
example for illustrating typical aspects that
arise from irreversibility. The few texts that
derive the maximum-power efficiency use
standard procedures of calculus. The
ensuing algebra is cumbersome and the
square-root term in the final formula comes
as somewhat of a surprise. The present
graphical derivation is transparent and gives
a physical interpretation of the square-root
term in the efficiency formula.
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9. The standard text recommended in addition to

the author’s notes:
El-Wakil [4], Callen [5].

Is the material covered in the text? In what way

is the text discussion different from the paper?
The calculus-based derivation in the texts by
El-Wakil and Callen is simple in principle
but tedious in execution. This paper derives
the results directly from graphical represen-
tations of energy and entropy.

10.

CURZON-AHLBORN ENGINE

A REVERSIBLE Carnot engine, operating
between reservoirs at high temperature T, and low
temperature T, has an efficiency

where Q, is the heat inflow at T, and W the work
output of a cycle. However, because of the infinite
period 7 of a reversible cycle, proceeding quasi-
statically through a sequence of equilibrium states,
the engine’s power

p=W/t (2)

is zero.

In order to address the efficiency of finite-period
cycles an irreversible Carnot engine has been
analyzed and the efficiency for maximum-power
output has been derived. There have actually been
two independent derivations—one by Novikov in
1958 for the engineering community [1] and one by
Curzon and Ahlborn in 1975 for the physics
community [2]—both leading to the same result.
Apparently there seems to be so little communica-
tion between the engineering and physics com-
munities that the duplication was not noticed until
1994 [3]. One reason why theories of irreversible
heat engines are not more widely known is their
lack of coverage in thermodynamics texts. Notable
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exceptions are the texts by EI-Wakil [4] and Callen
[5].

An analysis of an irreversible (or endoreversible)
Carnot engine invokes four temperatures. These
are the previous high and low reservoir tempera-
tures, 7, and T, and additional high and low
operating temperatures, 7, < T, and 7, > T,, for
isothermal expansion and compression of the
endoreversible engine, respectively. The tempera-
ture differences between the engine and the reser-
voirs give rise to heat fluxes

O/t=k(T—T) j=2,1 (3)

in finite times # and with heat-transfer coefficients
k; depending on the thermal conductivity and
dlmenslons of the wall between engine and reser-
VOIr.,

The cycle period is the sum of the isothermal and
adiabatic process times:

t=hL+e =g 1+ ) (4)

Curzon and Ahlborn assume that the ratio r
between the durations of the total adiabatic and
isothermal processes is constant for given reservoir
temperatures. Taking into account thermodynamic
sign convention, the (average) power of a finite
cycle is given by:

p=Wr=(0+ Q)/1) (5)

Inserting Eqs (3)and (4)into Eq. (5) gives the power
as function of the reservoir and operating tempera-
tures, p = p(T,, T,, T,, T,). Maximization_ with
respect to both operating temperatures, ap/a:r 0,
gwes after much algebra, the maximum power
p*(T,, T)) as a function of the fixed reservoir
temperatures. The efficiency at maximum-power
output, frequently called the Curzon-Ahlborn

efficiency, comes out as:
= W*Q,=1-|T,/T, (6)

The formula of the Curzon-Ahlborn efficiency
differs from that of the Carnot efficiency, Eq. (1),
by the appearance of a square root. The square-
root term is rather surprising and its origin is
difficult to trace through the maximization proce-
dure.

EQUIVALENT CYCLE

The seminal work of Novikov [1] and Curzon
and Ahlborn [2] has been extended by several
authors [6-12]. Independently of Novikov, Rubin
|7] and later Chen and Yan [11] employed an
equivalent, endoreversible cycle for a finite-time
Carnot engine and defined an equivalent tem-
perature T," relating the heat inflow and cycle
period to the high reservoir temperature and
equivalent temperature as

Q)/t=KT,— T)) (7)

The coefficient k is a combination of the actual
heat-transfer coefficients from Eq. (3), ie. kK =

k(k,, k) = k,k,/(Jk, + Jk,)*. The equivalent
cycle has a heat outflow Q," at the low reservoir
temperature determined by endoreversibility:

0,/T,'+Q,/T, =0 )
and, by conservation of energy, a work output
W'=0,+0/ ©)

With Eqgs (8) and (9), the efficiency of the equi-

valent cycle is, for given temperatures 7,, T, and
]:

n'=W/0,=1-T/T, (10)

Using Eq. (7), the power of the equivalent cycle,
p' = W’'/t, becomes:

p'=W(T,— T, )k/Q, (11)

and, after eliminating W’ with Eq. (9) and Q,"/0Q,
with Eq. (8):

p=k(1-T/T,(T,— Ty (12)

The advantage of the equivalent cycle is that, for
fixed reservoir temperatures, the cycle power
depends only on one variable, p’ = p'(T5, T,',T)),
instead of depending on two variables as in the
original Curzon-Ahlborn expression, p = p(T,
L., 1, T)). This enormously simplifies the maximi-
zation, dp’/dT,” = 0, at an optimal equivalent
temperature 7,* A short calculation gives 7,* =
JT,T, as the geometric mean of the reservoir
temperatures and, upon inserting in Eq. (10), the
Curzon-Ahlborn efficiency, Eq. (6 The maxi-
mum power output is p* = k(JT, — j T

DIAGRAMS

A few years ago a diagram was introduced that
shows heat flows Q, and Q, and work W of a
reversible Carnot cycle in geometric proportions.
As was noticed recently [3], the diagram has also
been introduced twice: by Bejan in 1977 for the
engineering community [13-15], and by Bucher in
1986 and Wallingford in 1989 for the physics
community [16, 17]. The diagram is shown in
Fig. 1. A horizontal bar at T, represents (), and a
bar at T, represents both O, and W. The equal
length of the top and bottom bar illustrates con-
servation of energy. The slope, |Q./ T, =|Q,|/T,,
of the solid slanted line, dividing the bottom bar
into O, and W, illustrates constancy of entropy in
the cycle.

The diagram can be extended to account for Car-
not cycles with irreversibilities. If irreversible
processes increase the heat outflow from Q, to Q,’
at the expense of the work output, which decreases
by the same amount (from W to W’), then this is
illustrated in Fig. 1 by a dashed horizontal bar of
length (), at an equivalent temperature 7,  such
that a slanted (dashed) line from the right edge of
the dashed bar to T = 0 on the temperature axis
divides the bottom bar into ;" and W’ segments.
Because of the underlying concept of endorever-
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Fig. 1. Diagram for heat flows Q and work W for a reversible

(solid lines) and irreversible (dashed lines and primed

quantities) Carnot engine. The area A is a proportional measure

for the power output. The area A" of the associated rectangle,
spanned by origin O and point P, is indicated.

sibility, Eq. (8), the equivalent temperature 7, in
Fig. 1 for, so far unspecified, irreversible processes
also represents T, of Rubin’s and Chen and Yan’s
equivalent cycle of a Curzon-Ahlborn engine.

A line straight up in Fig. 1 from the intersection
of the slanted dashed line with the bottom bar
intersects the dashed bar at point P. The top right
corner C of the diagram and point P define a
rectangle of area A = W'(T, — T,"). Comparison
with Eq. (11) shows that, for given heat inflow Q,
and conductivity coefficient k, A is a proportional
measure for the power output p’. Thus the
objective of maximizing p’ amounts to maximizing
the area A in the diagram by varying T,". Quali-
tatively, the existence of an optimization problem
for the power (area of the rectangle) becomes
apparent from the counteracting influence of
decreasing work output W’ (width of the rectangle)
and increasing cycle frequency, ' « (T, — T3')
due to Eq. (7) (height of the rectangle), as T,
decreases.

If we regard the diagram in Fig. 1 as a coordinate
system with origin O at T = 0 on the temperature
axis, then the point P = (x, y) has coordinates x =
Q,’and y= T, . Using a diagram scaling factor g =
Q,/T,, we can express, with Eq. (8), x=
gT,T,/T,". We eliminate T,". and find that point P
lies on a hyperbola, y(x) = gT, T,/ x.

We now consider an associated rectangle,
spanned by the origin O and point P. As a basic
property of a hyperbola, the area of the associated
rectangle, ;A" = xy = gT, T,, is constant for any
position of P on the hyperbola. Our original task of
maximizing the area A can be related to a familiar

extreme-value property of the associated rectangle
oAP if we scale the diagram such that the length of
the top bar is equal to the length of T, on the
temperature axis, i.e. with a scaling factor g = 1 as
in Fig.2. In this symmetric situation, a maxi-
mization of A is equivalent to finding the
associated rectangle of area (A" = xy = T|T,
which has the minimal circumference. It is well
known that this is a square with edge length JT T,
= T,* This provides a geometric illustration for
T,* as the geometric mean of the reservoir tem-
peratures and, upon inserting into Eq. (10), for the
appearance of a square root in the Curzon-
Ahlborn formula, Eq. (6).

Two graphical methods related to the Curzon-
Ahlborn efficiency have been proposed in recent
years. Bejan's method [10, p. 1214] is a geometric
construction of the optimum temperature ratio on
the absolute temperature scale. The method of Yan
and Chen [18] is a graphical derivation of the
Curzon-Ahlborn efficiency. The main difference
between Yan and Chen’s derivation and the
present one is that these authors represent rates of
heat flow, g, = Q,/7, and the power, p = W/z, by
the lengths of horizontal diagram lines instead of by
areas. Expressed in terms of the present notation,

(K)

Fig. 2. Geometric construction of heat flows and work and of

the diagram hyperbola for varying equivalent temperatures T,

of a Carnot engine. The areas of rectangles between the hyper-

bola and the top right corner represent the corresponding

power output. The reversible case (solid lines), a general

irreversible case (dashed lines), and the case with maximum
power (dotted lines) are explictly shown.
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Yan and Chen observe that, since p = 0 for 7," —
T,aswellasfor T,” — T, there must be a maximum
power p*. The authors show that there are always
pairs of equivalent temperatures, say T,," and T,,’,
that lead to the same power output p’. Expressing
these temperatures in terms of system properties
and equating T,," = T,,’ gives the formulas for p*
and for *, Eq. (6).

The present diagram permits a purely graphical
derivation of #z* and related quantities for
maximum-power output of a Carnot engine. This is
illustrated in Fig.2. Ten values of T,’, ranging
equidistantly from T, to T,, are chosen. The
intersections of the slanted lines with the bottom
bar and the corresponding points P straight above
are marked with dots. Connecting the points P by a
smooth curve gives the hyperbola which deter-
mines the rectangles A to be maximized in area.
One such rectangle A—always spanned by a point
P on the hyperbola and the top right corner of the
diagram—is explicitly shown by dashed lines for
one general value of T,".

Because of the symmetric diagram construction
in Fig. 2 (g = 1), the rectangle A becomes a square
when the associated rectangle ,A" is a square and
as their diagonals become collinear. Thus, with g =
1, the rectangle of maximal area is a square,
denoted as A* and shown in Fig. 2 by dotted lines.
Also, the slanted line for the reversible Carnot
cycle (T," = T,) is then at 45°, serving as diagonals
of the ,AP and A* squares and intersecting the
hyperbola at point P for the A* square.

While the power output is proportionally rep-
resented in the present diagram by the area of a
rectangle, the corresponding efficiency is concur-
rently shown by the length ratio of lines. The three
bars below the diagram in Fig. 2 show the projected
division of heat outflow and work output for the
reversible case, a general irreversible case, and the
case with maximum power. The portion of a work
segment relative to the length of the total bar illus-
trates the respective efficiency: n of Eq. (1), n’ of
Eq. (10), and n* of Eq. (6).
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