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A New Approach for the Vibration
Analysis of Symmetric Mechanical
Systems—Part 1: Theoretical Preliminaries
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Group theory can be used to simplify the analysis of a physical system, whenever such a system
possesses symmetry properties. In this paper, the first of three parts, a teaching-oriented outline of
the general procedure for applying group theory to vibration problems in mechanical engineering
is presented for the first time. This is followed by descriptions of the symmetry group applicable to
one-dimensional mechanical systems, and three simple groups applicable to two-dimensional
systems. For each of these groups, the theoretical results relevant to the practical application of the
group to actual engineering problems are summarized. In the second and third articles, the theory
is applied to the determination of natural frequencies of vibration for specific examples of one-
dimensional and two-dimensional mechanical systems, respectively, with symmetric initial
configurations. In this way, the considerable reductions in computational effort achieved through
use of the inherently more systematic group-theoretic procedure, instead of the conventional
method, are illustrated. The material presented in each one of the three articles can be covered in
one double lecture (2 hr) and one tutorial session (2 hr) of a course in structural-mechanical
vibrations for senior undergraduates or postgraduates.

EDUCATIONAL SUMMARY INTRODUCTION
1. The paper discusses materials for a course in THE applicability of group theory to the simplifica-
structural-mechanical vibrations. tion of the analysis of physical problems involving
2. Civil engineering and mechanical engineering symmetry is well known [1]. Almost all the applica-
students are taught in this course. tions of the theory have been confined to the
3. The course is intended for final-year under- domains of physics and chemistry, such as quantum
graduate and M.Sc. postgraduate students. mechanics [2, 3] and molecular symmetry [4, 5].
4. The course is presented via formal lectures and Zlokovic [6] has pioneered its application to the
tutorial sessions. statics, vibration and stability of civil-engineering
5. The material is presented in a regular course. structures, by solving specific examples involving
6. The time required to cover the material is two beams, grids, simple space frames, a cable net and a
hours formal lectures and two hours tutorial plate. The applicability of group theory to
sessions, for each of parts 1, 2 and 3. structural-engineering computing has been further
7. Student homework or revision hours required demonstrated by Zingoni ef al. |7, 8], who have
for the materials amounts to 1 hr homework for considered the natural-frequency determination for
part 1, 1 hr homework for part 2, 2 hr home- symmetric configurations of elastic plates on the
work for part 3. basis of the finite-difference method [7], and the
8. The use of group theory to decompose eigen- static analysis of indeterminate space frames by the
value problems into simpler, independent flexibility method [8]. The author and his colleagues
subproblems is a novel aspect of this approach. have also recently developed the relevant group-
9. The standard text recommended in the course, theoretic schemes for the vibration analysis of plane

in addition to author’s notes, is Vibration of
Mechanical and Structural Systems, by M. L.
James, G. M. Smith, J. C. Wolford and P. W.
Whaley, Harper & Row, New York (1989).

* Paper accepted 15 May 1995,

grids [9], and the static analysis of plane frames by
the direct stiffness method [10]; a formulation for
the linearized static and dynamic analysis of cable
nets has also been developed along similarlines [11].
The author’s present research efforts are focussed
on the development of a general group-theoretic
finite-element formulation, utilizing some results
which are already available [12].

The simplicity of the procedure for applying
group theory to general eigenvalue problems of the
vibration and/or stability of symmetrial configura-
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tions of mechanical or structural systems,
combined with the systematic way in which all the
symmetry properties of the system are taken into
account (resulting in the maximum possible
reduction in computational effort), makes it a
particularly suitable topic for incorporating into
taught cases on vibration analysis.

The aims of the present three-part contribution
are (i) to outline, perhaps for the first time in a
mechanical-engineering teaching context, those
aspects of group theory that are most relevant to its
application to the vibration analysis of symmetric
mechanical systems; (ii) to present a step-by-step
illustration of the application procedure itself,
through a series of very simple examples which
students can easily follow; and (iii) to demonstrate
the substantial computational advantages of the
proposed new procedure over the conventional
approach, thereby justifying to lecturers why the
topic merits some treatment in advanced courses
on vibration of mechanical systems (especially if it
is also noted that symmetry features quite
frequently in mechanical-engineering systems).

The material should be presented to students of
mechanical and/or structural engineering only
after the conventional concepts of vibration
analysis (i.e. formulation and solution of the
eigenvalue problem, natural-frequencies, mode
shapes, etc.) have been covered. More specifically,
it is intended for senior undergraduates and/or
postgraduate students in mechanical engineering.
Material in each of the three articles of this
contribution can be covered in one formal double
lecture (2 hr), and consolidated in one tutorial
session (2 hr), implying a total time outlay of 12 hr
on this new topic. In teaching the theoretical
preliminaries (part 1), it must be noted that group
theory is a full course (in mathematics) in its own
right, and therefore impossible to cover in depth in
any course in engineering; only the important
results and consequences need be highlighted for
the purpose of teaching the background theory to
students of engineering.

OUTLINE OF THE GENERAL PROCEDURE
FOR APPLYING GROUP THEORY TO
EIGENVALUE PROBLEMS

For a symmetrical configuration of a system with
n degrees of freedom, it is possible to adapt the
arbitrary displacement functions defining the
motion of the system to the symmetry types of
independent subspaces (each of dimension a
fraction of n) into which the original eigenvalue
problem (in an n-dimensional vector space) may
be decomposed.

Corresponding to each of these subspaces is a
distinct irreducible matrix representation [1] of the
symmetry group of the configuration of the system,
such a representation being simply a set of the
smallest possible transformation matrices for the
symmetry elements (i.e. operations) making up the

symmetry group. The symmetry-adapted displace-
ment functions for a given subspace are actually
generated by applying the corresponding idem-
potent (which acts as a ‘projection operator’) [6,
13-15] to each of the n arbitrary displacement
functions. These special operators (i.e. idem-
potents for the various types of irreducible
representations), which are mutually orthogonal,
can readily be written down from the table of group
characters [1, 14, 15]. Character tables for all the
symmetry groups that may apply to physical
systems, of which mechanical and structural
systems form a part, are widely available in the
literature (see, for example, [1], [5], [13] or [16]).
Eigenvalues for the problem are then simply
obtained by consideration of the symmetry-
adapted functions for one subspace at a time,
independently of those of the other subspaces. In
this way, instead of solving a relatively complex
polynomial equation of (large) degree n, one needs
only solve, independently of each other, as many
considerably simpler polynomial equations (each
of degree a fraction of n) as there are subspaces.

THE SYMMETRY GROUPS G,, C,, C;, AND
Cdv

The group C,, describing the in-plane symmetry
of, say, a straight line AB about an axis 1-1
perpendicular to the line and passing through its
midpoint O (see Fig. la), has two symmetry
elements, namely

E identity
C, 180°in-plane rotation about O

which permute the ends A and B of the line. This
group is relevant to one-dimensional configura-
tions of systems, which can have no more than
single-fold symmetry (i.e. one plane of symmetry).
The groups C,,, Cs, and C,,, describing the in-
plane symmetries of the rectangle, the equilateral
triangle and the square, respectively, as shown in
Fig. 1, are only applicable to two-dimensional con-
figurations, It must be noted that two-dimensional
systems, unlike one-dimensional ones, can assume
symmetrical configurations of an infinite number
of symmetry groups (e.g. C,, or C,, where m=2, 3,
. » @); the groups C,,, C;, and C,,, being among
the simplest, and probably the ones most likely to
apply to simple models of two-dimensional
mechanical systems, have been chosen for illustra-
tive purposes.
The symmetry operations associated with the
group C,, (refer to the basic configuration of
Fig. 1b) are as follows:

E  identity
C, 180° in-plane rotation about the vertical axis
through the centre of symmetry O
o, reflection in the vertical plane containing the
X axis
o, reflection in the vertical plane containing the
y axis



Vibration Analysis of Symmetric Mechanical Systems—Part | 61

1

1
A
2 3
0
>'<
£ B
3/ 1 \2

©

8
1
8

Fig. 1. Symmetry planes and rotation axes for (a) a straight line (C,), (b) a rectangle (C,,), (¢) an equilateral triangle (Cs,), and (d) a
square (Cy,).

In addition to all the above symmetry operations,
the group C,,, whose basic configuration is shown
in Fig. 1d, also has the following elements:

C, 90° clockwise rotation about the vertical axis
through the centre of symmetry O

C;' 90° anticlockwise rotation about the vertical
axis through O

o, reflection in the vertical plane containing the
diagonal axis 1-1

o, reflection in the vertical plane containing the
diagonal axis 2-2

The symmetry operations of groups C,, and C,,
permute the respective corners A, B, C and D of
the rectangle and the square. These groups are of
order 4 and 8, respectively, the order of a group
being simply the number of elements (in this case,
symmetry operations) making up the group.

As illustrated by the basic configuration of
Fig. 1c, the group C;, is of order 6, with symmetry
elements

E  identity
C, 120°clockwise rotation about the vertical axis
through centre of symmetry O

C3' 120° anticlockwise rotation about the vertical
axis through O
o, reflection in the vertical plane containing the

axis 1-1

o, reflection in the vertical plane containing the
axis 2-2

o, reflection in the vertical plane containing the
axis 3-3

GROUP, CLASS AND CHARACTER TABLES

Multiplication combinations of group elements
generate the group table. In the group tables for C,
C,,, C,, and C,, given as Tables 1-4, the name of
the group appears in the top-left corner. The order
of the multiplication is defined by af = y, where
the element a is taken from the left side and the
element B from the top, and their product y is
entered at the intersection of row a and column .
It is noted that entries of a group table are elements
of the group itself. Groups C, and C,, are
described as Abelian because their group tables are
symmetrical about the principal diagonal (i.e.
group elements multiply commutatively).
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Table 1. Group table for C,.

e ! El G oy ve,
EIE G o O
G E. g g
o, 1o o0, E G
g jo, o G E

Table 3. Group tablefor C;,.

G|lE G G o6 a o

EIE G G o o o

G|G G E o o g

G'|G' E G o g o

e RS AR Reh G iy o

O AT o S i et g

bt i el A B

Table 4. Group table for C,.

G| 1B R ool e o, o, e
E VB NG e e, e g,
ol W R e TR W T
G | G By B e @, o,
G |G C-—] C. E g, O 0 0
P ST Y ST S i S o el o
g, | o oy ey le BB
oy ey e, e NG ER TR NG
o 1o o o, & ks GGl E

Classes of a group are obtained by first evaluat-
ing a~'Ba for all elements @ and B of the group;
taking a from the left side and f from the top, class
tables for groups C,, C,,, C5, and C,, are obtained,
with the help of the associated multiplication
tables, as given in Tables 5-8.

The various classes are then the distinct sets of
symmetry elements formed by collecting into a set,
for each symmetry element 8 of the group, the
distinct results of the conjugates a~'Ba for all
elements a of the group. Thus, group C, has two
classes with one element each, namely

K,=[E} K,={C)}

Table 5. Class table for group C,.
CHE C

i E 6

Table 6. Class table for group C,,.

C. | E C o, o
E|E G o o
G |E G o, o
o RS Lo ey
o, VE € 0, 0,

Table 7. Class table for group C,,.

G.|E G G o o o
EXRE € e B 8 e
G|E G G' 0 g g
G'|E G G' 0 0 o
g |EG G o o o
o tE--CAE e, 0 o
& PEGTG R T e

Table 8. Class table for group C\,.

ol G "6 o o oo
o oD e voaida e " el B
C B G G € o) o, 678,
om0 vl eongiel g™ S i S~
GIE €GeG o, g, 0 o0
& LB G Gt & 0 e
o, |E C' € € g o 0.0
o | By G G G Oy O By
o B GG ey e e lioy

while group C,, has four classes, each also with
only one element:

K,={E} K,=[C)} K;=[a} K.={o)
Similarly, the following classes are readily obtained
for groups C,, and C,,;

C K,=[E}); K,={C; C3'});
K;={0,, 0, 03}

Cop Ki={E} K,=[C,, CT'} K;={C)};
K,=lo,0);, Ks={(0),0)

Jv:

Notice that the identity element E always belongs
to a class of its own, and that for the Abelian groups
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Table 1. Group table for C,.

2y l E.C o o
ETE € o . 40
G |G E o o
o,lo, o, E G
alo o TG E

Table 3. Group table for C;,.

G.|E G G o o o

E|E G G o o o

G|G G E o o o

G |G E G o o o

e T e, RN G

0,0, 0 oo G E (

g . o e . R

Table 4. Group table for C,,.

Co | Bt s i w0, 0
il e o et e
ol R SR S AR e T TR S A
G GBS G s i > @, -0,
GG E R g og g g
o Lo O el B G
o, |0y oy eyl Y Y
oy e e, ey e TR R R G
0,0, 0, o0, o C Bl o oaT sl

Classes of a group are obtained by first evaluat-
ing a~'Ba for all elements a and B of the group;
taking a from the left side and 8 from the top, class
tables for groups C,, C,,, C,, and C,, are obtained,
with the help of the associated multiplication
tables, as given in Tables 5-8.

The various classes are then the distinct sets of
symmetry elements formed by collecting into a set,
for each symmetry element S of the group, the
distinct results of the conjugates a™'Ba for all
elements a of the group. Thus, group C, has two
classes with one element each, namely

K,=(E); K;=(C}

Table 5. Class table for group C,.
s el o

CE €

Table 6. Class table for group C,,.

258 I E-Clior o,
Bin G o 0,
G LEG ooy
o, |86 o o
o, | E & o, . 0,

Table 7. Class table for group Cs,.

G.|E G G o 6 o
EAE CI G o o,
G|E G G o g g
G'|E G G o 6 o
A ) e e e SIS s K
o, |EG G o0 o g
R R R ¢ N R

Table 8. Class table for group C,,.

CulE € & G o, gy 91
ol T o cael Tl A S G
i O R el SR R B A
o ¥ A1 s sl o K e
Rl BB A sl o TR SR A S
o |l C GG & alo.e
o, |EC € G o o o0 0
& | B G GGG By iy
oy B G GGy ey ey e

while group C,, has four classes, each also with
only one element:

K,={E} K,={C} K;=[o} K.={g)}
Similarly, the following classes are readily obtained
for groups C;, and C,,;

Ci: K;=(E} K,={Cs; C5'};
=l0y, 0, 03}

By Ky={C,, C');
U.\" U‘,}; K5 o {al* U.’.]

ke
|

Ky=(Cy);

Notice that the identity element E always belongs
to a class of its own, and that for the Abelian groups
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C, and C,,, every element is also in a class of its
own.

According to representation theory (see, for
example, [1] or [6]), the number of possible
irreducible matrix representations of a group is
equal to the number of classes, and all elements
belonging to the same class of a given irreducible
representation have the same character (see, for
example, [6] and [13]). Thus, the configurations of
the groups C,, C,,, C;, and C,, can be described
by two, four, “three and five different irreducible
representations, respectively. It also implies that
the vector space V of the variables describing given
physical systems with C, C,, C;, and C,,
symmetries can be decomposed into two inde-
pendent subspaces (U, U,)in the case ofgroup Cs
four independent subspaces (U, U,, Uy, U,)in the
case of group C,,, three independem subspaces
(U,, U,, Uy) in the case of group C;,, and finally,
five independent subspaces (U,, U,, U;, Uy, Us)in
the case of group C,,. In all cases, the number of
independent subspaces would be equal to the
number of classes of the group. Before obtaining
the basis vectors for such subspaces, it is necessary
to have the character tables for the respective
groups.

Characters are traces of matrices for irreducible
representations of the group elements. Methods of
generating character tables may be seen in [1], [14]
and [15], among others. Lists of character tables
appear in many places in the literature (e.g. [1], 5],
[13] and [16]). Character tables for groups L
C,, and C,, are given as Tables 9-12, in which the
left side gives the various types of irreducible
representations of the group (in standard notation),
and the top gives the classes of the group; it must be
noted that elements belonging to the same class all
have the same character.

Table 9. Character table for group C,.

G |{E} (G}

Table 10. Character table for group C,,.

{G} {0} {9}

A |1
R T R e SR
B |1
B |1

Table 11. Character table for group Cj,.

G, |{E} {G.G"} {000
A1l 1 1
A |1 1 -1
B 55 0

Table 12. Character table for group C,,.

C, | (B} {C.C'} (G} {o.0,} {0.0)

4 |1 1 1 1 1

41 1 1 -1 -1

B |1 -1 1 1 -1

B |1 -1 1 =1

El2 0 2. .0 0
IDEMPOTENTS

Idempotents 77(7r # 0) are linear combinations of
class sums, which, as such, belong to the centre of
the group algebra. They act as projection operators
[6, 13-15] by means of which the basis vectors of a
subspace U of a particular symmetry type can be
identified. Each idempotent, corresponding to a
particular irreducible representation, also corres-
ponds to a particular subspace of a specific sym-
metry type. Applying idempotents to arbitrary
functions of a problem generates symmetry-
adapted functions for the respective subspaces.
Such idempotents, which satisfy the usual relation
m? = 7, are also mutually orthogonal (i.e. ., # 0,
whilen:fr—()ifi#j,i—[12 k]andj—{lZ

, k}, where k is the number of idempotents =
numher of irreducible representations = number
of independent subspaces = number of classes of
the symmetry group).

Idempotents can be written down directly from
the character table, using the expression [6]

h.
”s:I‘ZXi(a_l)a (1)

where #. is the dimension of the ith irreducible
representation, given by x;(E), the first value of the
ith row of the character table; A is the order of the
symmetry group (i.e. the number of elements in the
group); x; is a character of the ith irreducible
representation; a is a symmetry element of the
group, and a™' its inverse.

Noting that E-! = E and C;' = C,, the
orthogonal idempotents of group C,, correspond-
ing to subspaces U, and U, of the group, respect-
ively, are thus

=YE+C)) (2a)
=HE-C) (2b)

The basis vectors of the two subspaces U, and
U, associated with group C, are obtained by app]y—
ing 7, (in the case of U,) and 7, (in the case of U,)
to all the displacement functions (@1, B2 - B0}
describing the motion of a system with n degrees of
freedom.

Similarly, noting that ™' = o, the idempotents
for groups C,,, Cs, and C,, are obtained from
equation (1) as follows (with idempotent
corresponding to subspace U, of a given problem):
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Group C,,
m=HE+C,+o0.,+0) (3a)
Rz =HE+C,—0 ~0) (3b)
m=YE—C,+0,~0a) (3¢)
Ty = %(b b= C: —~ g+ 0,) (3d)

Group C,,

(E+C,+C'+o0,+0,+0;) (4a)
a=HE+C,+ C'—o,~0,—a,) “{4b)
Ay =H2E = C,=Cy")

s,
[

mIE=C.=C3") (4¢)
Group C,,
my=YE+ C, 4+ Cito +o+0,+0,)
' (5a)
n=HE+C,+C'+C—0.—0,—0,—0)
(5b)
n=(E-C,—C'+C,+o0,+0,—0,—0)
(50)
Tt il SR B C;—0,—0o,t0,+0y)
(5d)
ns=i2E-2C)=E- () (S¢)

As with group C,, the basis vectors of the four
subspaces associated with the group C,,, the three
subspaces associated with the group C,,, and the
five subspaces associated with the group C,,, are
obtained by applying the respective idempotents to
all the functions {¢,, ¢,, ..., ¢,] describing the
motion of a system with n degrees of freedom.

CONCLUSION

In this article, the aspects of group theory most
relevant to its application to the determination of
eigenvalues for symmetric mechanical systems
have been outlined.

For engineering students, an understanding of
the mathematical proofs underlying some of the
statements made in the foregoing account is not
essential. Instead, emphasis should be placed on
the actual procedure for solving problems, which
will be illustrated in the follow-up articles [17, 18].

In parts 2and 3 [17, 18], the idempotents derived
in the present paper will be used to generate basis
vectors (i.e. symmetry-adapted functions) for the
various subspaces of specific examples, on the basis
of which the entire set of eigenvalues for a given
system may be obtained by considering its sub-
spaces independently of each other. In other words,
instead of solving a polynomial of full degree n for
the n roots (i.e.eigenvalues) of the system, it will only
be necessary to solve, one at a time, a small number
of polynomials whose individual degrees will only
be afraction of n, to obtain the required eigenvalues
for the entire system.

One-dimensional mechanical systems of C,
configuration will be considered in the next part
[17], while two-dimensional systems with C,,, Cs,
and C,, configurations will form the subject of the
third and final article [18].
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