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A New Approach for the Vibration
Analysis of Symmetric Mechanical
Systems—Part2:One-Dimensional Systems™

ALPHOSE ZINGONI
University of Zimbabwe, Harare, Zimbabwe

Basic concepts of the theory of symmetry groups and their representations were outlined in Part 1.
In the present paper, the theoretical results for the simple group C, are applied to the determina-
tion of eigenvalues for two examples of freely vibrating, undamped mechanical systems with a
single plane of symmetry, and extending in one spatial dimension. These comprise the torsional
motion of a shaft-disc system, and the extensional oscillations of a spring-mass assembly, two
models which are quite familiar to students taking a course in mechanical engineering vibrations.
The systematic simplification of the solution of these problems by the group-theoretic approach is

clearly illustrated.

INTRODUCTION

TWO examples of one-dimensional symmetric
mechanical systems are considered in turn. These
comprise the rotational vibrations of a shaft-disc
system, and the extensional vibrations of a spring—
mass system, the first having an even number of
degrees of freedom (n = 6), and the second an odd
number (n = 5). Both configurations belong to the
symmetry group C,, which was described in the
first article [1].

Using the idempotents for group C, which were
derived in the first paper, basis vectors (ie.
symmetry-adapted functions) spanning the respec-
tive subspaces of each of the two problems are
deduced. These enable symmetry-adapted stiffness
matrices (corresponding to the symmetric and anti-
symmetric subspaces) to be derived, leading to two
independent characteristic equations. If n is even,
these equations are both of degree n/2; if n is odd,
one equation will be of degree (n + 1)/2, while the
other will be of degree (n — 1)/2. In either case, the
computational effort that would be incurred in
solving for the eigenvalues is considerably less than
if a polynomial equation of full degre n (as yielded
by the conventional method) were to be solved.

A SHAFT-DISC TORSIONAL SYSTEM

Consider a shaft with both ends fixed, and having
six discs attached to it in a symmetrical configura-
tion, as shown in Fig. 1. The system has six degrees
of freedom, describing the rotational motions 6,
0,, 0,80, 0, and 6, ofdiscs 1,2, 3,4, 5 and 6. The
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mass moments of inertia (/) of the discs, and the
torsional constants ( k) of the various shaft intervals
are as shown in Fig. 1.

Symmetry-adapted rotation functions

The basis vectors (i.e. symmetry-adapted rota-
tion functions) of the two subspaces U, and U,
associated with the group C, are obtained by
applying the respective idempotents (7, in the case
of U,, and m, in the case of U,) to the system func-
tions @,(=0,), ¢(=6,), (= 06;), g.(=6.),
¢s(= 65) and ¢,(= 6), as shown below. The idem-
potents 7, and 7, for group C, have been defined
in equation (2) of the first article [1].

Subspace U,
g, = (E+C2)¢1=2(¢1+¢ﬁ) s
TP, "‘(E+C)¢2= (Pt ¢s)=m,95
gy =HE+ C)p;= (¢ +o,)=m9,

Thus, the symmetrical subspace U, is three-
dimensional. Its basis vectors may be taken as
follows:

D, =¢,+ ¢ (1a)
D, =¢,+ ¢, (1b)
D,=¢,+¢, (1c)
Subspace U,
P, = 2(E G, = %(¢l_¢ﬁ)=_ﬂz¢h
P, = (E Cy)p, = WP, —@s)=— 7,95
Ty =HE — C)p;= 2(¢3 Pi)=— 79,

The antisymmetrical subspace U, is also three-
dimensional. Its basis vectors may be taken as
follows

D, =¢,— ¢ (2a)
(Dz=¢z ?s (2b)
®,= 45—, (2¢)
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Fig. 1. Shaft-disc torsional system with n==6.

Symmetry-adapted stiffness matrices

Let these be denoted by §, and §, for subspaces
U, and U,, respectively. These matrices will both
be 3 X 3 in size since both U, and U, are three-
dimensional.

To generate the symmetry-adapted stiffness
matrices S, (for the symmetrical subspace) and §,
(for the antisymmetrical subspace), unit rotations
must be applied upon the system (and the resisting
torsional moments noted) in accordance with the ¢
coordinates of the respective basis vectors, as
elaborated below.

Each of the sketches in Fig. 2 shows a longi-
tudinal section of the system through the shaft axis,
with the shaft itself and the cross-sections of its
discs merely shown as lines. A dot in the square at
one end of a cross-section of a disc denotes move-
ment (of this end of the disc cross-section) towards
the observer, while a cross denotes movement
away from the observer—this convention for
tangential motion of the disc edges across the plane
of the sketches automatically defines the relative
senses of the unit rotations associated with a given
basis vector.

For either subspace, ®, has components ¢, and
¢4, P, has components ¢, and ¢, and P, has
components ¢, and ¢,—see expressions (1) and
(2). For the purposes of defining the coefficients of
the symmetry-adapted stiffness matrices, disc
locations 1 and 6 on the shaft will thus be referred
to as the stations of ®,. Similarly, locations 2 and 5
will be referred to as the stations of @,, while
locations 3 and 4 will be referred to as the stations
of @,

The stiffness coefficients for §, and §, are
obtained in very much the same way as in the con-
ventional procedure. However, instead of the six
rotation variables (¢,, ¢,, @5, @4, @5, @4 of the
conventional approach, only three symmetry-
adapted rotation functions {®,, ®,, ®,} are now the
variables of interest. Also, instead of considering as
many as six locations (1, 2, 3, 4, 5, 6} in assessing the
effects of the unit rotations, the two stations of a

given @,(i = 1, 2, 3) are treated simultaneously,
resulting in oniy lhree independent locations at
which the effects of unit coordinates of a given
rotation vector (®,, @, or ®,) are sought.

Thus, for each subspace, the stiffness coefficient
s; (i=1,2,3;j=1,2, 3)is the value of the moment
at any of the (two) stations of ®; due to unit
rotations at all the stations of ®,, while all the discs
other than those at the stations of ®, are held at rest
(see Fig. 2). The senses (clockw1se or anticlock-
wise) of the unit rotations applied at the stations of
®, are given by the coefficients (+1 or —1) of the
components of @, as appear in equation (1) (in the
case of subspace U, ) or equation (2) (in the case of
subspace U,).

In terms of the torsional constants shown in
Fig. 1, the results are as follows:

Subspace U,
sij=k;+ ks sip=—ky; $3=0
sn=—ky Sp=kytky $3=—k
su=0; sp=—k; s;3=k;
ie. k,+k) -k, O
Si=| -k, (k+k) -k
0 S
Subspace U,
sny=k tky s,=—ky 5,3=0
sn=—ky Sp=kytk; $;3=—k;
Sy =0; 8;=—ksy; s”——k 2k,
ie. (k, +k)  —k 0
Sy | kg (k, +k,) —ky
0 ~k,  (ky+2Kk,)
Eigenvalues
These are obtained from the usual condition (2, 3]
IMT'K—A1|=0 (3)
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Fig. 2. Unit rotations of discs applied in accordance with the coordinates of the basis vectors for the shaft-disc torsional system: (a) sub-
space U,; (b) subspace U..

where 4 = w? and w is a natural circular frequency

I ey sl
of the system. The subspaces are considered :
independently of each other, so that for subspace M=M,=10 I, 0
U,, the stiffness matrix K assumes the form §,, 0.0 &
while for subspace U,, K assumes the form §,. For
either subspace, the non-zero elements of the 3 X 3
diagonal mass matrix M are simply the mass The identity matrix / in equation (3) is, for both
moments of inertia occurring at (i) any of the two subspaces, of dimensions 3 X 3.
stations of @, (ii) any of the two stations of ®,, and Applying expression (3) to the two subspaces in

(iii) any of the two stations of @5, i.e. turn, one obtains the following equations:
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Subspace U,
k, +k, 1 k;
I! Il
5 480 -5 o
[2 12 12

Subspace U,

k, +k k
(L_AJ I 0
[I |
_ky (k2+k‘_AJ k& ik
12 12 2
5 k. ky+2k o
13 13

Expanding the determinant in each of the above
equations leads to two independent cubic equa-
tions in A, which, upon solving separately, yield the
six required eigenvalues 4,, 4,, 43, 4,, 45 and 4.
This represents a considerable simplification in the
determination of the eigenvalues, in comparison
with the conventional approach that would require
the evaluation of a full 6 X 6 determinant—not a
trivial task—and the solution of an ensuing sixth-
degree polynomial equation.

A SPRING-MASS RECTILINEAR SYSTEM

The second example involves a spring-mass
system with five degrees of freedom, describing the
rectilinear motions x,, x,, x4, x, and x5 of masses
m; (at locations 1 and 5), m, (at locations 2 and 4)
and mj; (at location 3), as shown in Fig. 3. The
spring constants (k) of the various intervals of the
system are also shown in the figure. It is clear that
the stationary configuration of the system is sym-

|" X, l-.:Cz

3

n
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metrical about a perpendicular axis through loca-
tion 3, and thus belongs to the group C.,.

Symmetry-adapted displacement functions

Applying the respective idempotents for sub-
spaces U, and U, of group C,, as defined by
equations (2) of [1], to the system functions
¢ (=x1), $2(=%), §3(=x3), ¢s(=x,) and
@5 (= x;5), one obtains the basis vectors for the two
subspaces (i.e. the symmetry-adapted displace-
ment functions) as follows:

Subspace U,
9, = (E+C)¢1=%¢ +¢s)=m,0;
T, =HE+ C)p, =@, +¢,)= 7,8,
1¢%_“(‘5 - C’)¢3_“(¢1 +¢3)'¢2
Thus, the symmetrical subspace U, is three-
dimensional, with basis vectors
D, =¢,+9¢; (4a)
D, = ¢: + ¢, (4b)
D, =9, (4¢)
Subspace U,
oy =3 (F C°)¢I=%(¢l Ps)=— 7,05
TP, = (‘5 C, )¢ gf(‘ﬁz Ps)=—m9,
-’Tz¢ —C)ps=3¢;—¢3)=0
The antlsymmemcal subspace U, is two-
dimensional, with basis vectors
D, =¢,— ¢ (5a)
P, = ¢2 — P, (5b)

Symmetry-adapted stiffness matrices

For each subspace, these are obtained as explained
for the shaft-disc example, with unit displacements
now taking the place of unit rotations, and axial
forces now taking the place of moments. In working
out the stiffness coefficients, the unit displacements
of the masses are applied in accordance with the
coordinates of the basis vectors (equations 4 or 5),
asillustrated in Fig. 4. Thus, for a given subspace of

la my kz, m E.

Ma

Ly |-p Ly I-b Lsg

Fig. 3. Spring-mass rectilinear system with n=5.
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Fig. 4. Unit displacements of masses applied in accordance with the coordinates of the basis vectors for the spring-mass rectilinear
system: (a) subspace U ; (b) subspace U,.

dimension r, the stiffness coefficient s, (i=1,...,r;
J=1,..., r)is the force acting on the mass located
at any of the stations of @, as a result of unit
displacements applied at all the stations of @, while
all the masses other than those at the stations of ®;
are held at rest. The results are as follows:

Subspace U,

su=k tky s,=—k; 53;=0
S21 Kay Spy=k;+ky sSa=—k,
S, =0 sp=—=2k; S.a=I1K,

Le. (k,+k;) -k, 0
Si=[ -k, (k+ky) -k,
0 — 2k, 2k

Subspace U,

Su=k t+ky s,=-k,
Sn=—ky Sp=k,tk;

Le. s [k -k
27 =k, (k, +k,)

Eigenvalues
Using equation (3), with S, and §, in place of K for
subspaces U, and U, respectively, and the mass

matrices
e 0 - -
1
M=l0 m 0| M, :[0 - ]
0 0 m, :
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for subspaces U, and U,, respectively, the follow-
ing equations are obtained.

Subspace U,

beb, )iooky ;
m, "y
s Reocs, {Ridgta Yooy s
m, m, LR b
5 2k [2;:3 2 'lJ
ms m,
Subspace U,
[f_k,l] 4
m, m, e
k, k, + k &
L. (_2_3_ ,1]
n, m,

Expanding the determinant in each of the above
equations results in two independent equations in
A, one a cubic and the other a quadratic; upon
solving these separately, the five required eigen-
values ensue. The conventional method would
have required the evaluation of a 5X 5 deter-
minant for the full system, and the solution of the
resulting fifth-degree polynomial equation.

CONCLUSION

The application of symmetry group C, to two
examples of one-dimensional mechanical systems

has been illustrated. These have comprised a shaft-
disc torsional system with an even number of
degrees of freedom, and a spring-mass rectilinear
system with an odd number of degrees of freedom,
both configurations having a single plane of
symmetry.

Denoting the total number of degrees of freedom
of any C, system by n, group-theory decomposi-
tion of the problem into the constituent sym-
metrical and antisymmetrical portions results in
two independent polynomial equations each of
degree n/2 if n is even; if n is odd, the symmetrical
subspace yields a polynomial equation of degree
(n+1)/2, while the antisymmetrical subspace
yields a polynomial of degree (n — 1))/2. In either
case, the computational effort involved in solving
for the n eigenvalues of the problem on the basis of
these two mutually independent subspace poly-
nomials is only a fraction of that which would be
incurred were a polynomial equation of full degree
n (as yielded by the conventional method) to be
tackled.

In the third and final part [4], the illustration of
the application of group theory to the vibration of
symmetric mechanical systems is extended to the
more diverse class of two-dimensional problems,
where even greater computational gains can be
achieved. More specifically, the theory developed
in the first part [1] for symmetry groups C,,, C;,
and C,, is applied to the vibration analysis of two-
dimensional spring-mass models with symmetries
based on the rectangle, the equilateral triangle and
the square, respectively.
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