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A New Approach for the Vibration
Analysis of Symmetric Mechanical
Systems—Part 3: Two-Dimensional Systems*

ALPHOSE ZINGONI
University of Zimbabwe, Harare, Zimbabwe

In this paper, the final of a three-part series, application of group theory to the free undamped
vibration of symmetric mechanical systems is extended to two-dimensional spring-mass
idealizations, whose dynamic response students of mechanical engineering (and designers in
industry) may sometimes need to evaluate relatively quickly in order to predict the behaviour of
real machinery. Examples based on the C,, symmetry of the rectangle, the C,, symmetry of the
equilateral triangle, and the C,, symmetry of the square—these three symmetry groups and their
properties were described in Part 1—are considered in turn. It is shown that the computational
gains of using group theory for such two-dimensional systems (belonging to higher-order
symmetry groups) are even greater than in the case of one-dimensional systems that were dealt
with in Part 2. As before, the step-by-step presentation of these illustrative examples is primarily

geared towards teaching.

INTRODUCTION

IN THE first part [1], idempotents (with the
properties of projection operators) for symmetry
groups C,,, C;, and C,, were derived from the
character tables of these groups. In this paper, these
results are applied to four examples of two-
dimensional spring-mass models (in which transla-
tional motion is confined to, say, the horizontal
plane), with the aim of finding the eigenvalues.

The first two examples involve four-mass
systems with one degree of freedom per mass, and
with configurations belonging to group C,,; in one
of these, the (vertical) symmetry planes of the
configuration coincide with the position of the
masses, while in the other, the two symmetry planes
lie between the masses. These two examples are
then followed by one of a three-mass system with
one degree of freedom per mass, and having a C,,
configuration. The last example involves a C,,
configuration of four masses, each mass having two
degrees of freedom.

Spring deformations are assumed to be very
small compared with the distances between the
masses, so that the shape of a system configuration
does not alter appreciably as a result of any of the
deformations to which it may be subjected. Fur-
thermore, the linear form of Hooke’s law is
assumed to apply throughout.

In all cases, the greatly simplified approach of
group theory enables closed-form results for the
eigenvalues to be actually obtained through the
solution of very simple first- or second-degree
equations.

* Paper accepted 15 May 1995.

A G, SYSTEM: EXAMPLE 1

Consider the C,, configuration depicted in
Fig. 1, with the vertical x and y symmetry planes
lying between the masses, as shown. The values of
the spring constants (k) are as indicated in the
figure, while masses m,, m,, m, and m,, being all
equal to each other, are simply denoted by m.
These masses are free to move in only one (guided)
direction, as shown in Fig. 1, with x,, x,, x; and x,
denoting their respective freedoms.

Symmetry-adapted displacement functions

The basis vectors for the present problem are
obtained by applying the idempotents of group
C,,—see expressions (3) of [1]—to the functions ¢,
(=x,), 9, (=x,),9; (=x;)and ¢, (=x,), as follows:

Subspace U,
mé,=(E+C,+o, +0,)8,
=g, +o;+9,+¢,)
=P, =M p;= 7.9,
O=¢,+¢,+¢,+9¢, (1)
Subspace U,
g =HE+C,—0,— a,)9,
=g t9:— 9.~ ¢))
==, = 0=,
P=¢,—¢,+9,— ¢, (2)
Subspace U,
7P, =%(E_C2+UX_Q»-)¢1
=g — P+~ 92)

=T, =—N3p;=7:9,

D=9, —9,—9;+¢, (3)
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Fig. 1. C,,spring-mass system with n = 4. Example 1: symmetry planes lying between the masses.

Subspace U,
7y ={E— C,— o, +0),
=i, —9:— 9, +¢))

=P, =—nP;=—ng,

P=¢,+¢,—¢;— 9, (4)

Symmetry-adapted stiffness matrices S

These are obtained as explained for the one-
dimensional cases [2]. Unit displacements of the
masses are applied in accordance with the co-
ordinates of the basis vectors (as given by expres-
sions (1)-(4)), as illustrated in Fig.2. For
two-dimensional models in general, the stiffness
coeflicient s, (i=1,..,rj=1,.., 7 ris the
number of basis vectors spanning the subspace in
question) is the component in the direction of any
one of the freedoms of @, of the force acting on the
mass located at any of the stations of @, as a result
of unit displacements applied in all @, directions at
all the stations of ®,, while all the freedoms other
than those associated with @, if any, are sup-
pressed. (For a definition of a station of @, see [2].)
For the present example, where i = j = 1 for all the
four subspaces, the results are as follows:

Subspace U,

S, = |k, + 2k, + 2k, cos® a + 2k, sin® a]
Subspace U,

S, =k + 2k,

Subspace U,

§;= [k, + 2k, sin’ a|

Subspace U,

Sy= |k, + 2k,, cos’ a]

Eigenvalues
The usual condition [3, 4]

M=K — Al|=0 (5)

applies, where A = @? (w being a natural circular
frequency of the system), K is the stiffness matrix,
M the mass matrix, and [/ the corresponding
identity matrix. As before [2], the subspaces are
considered independently of each other, using the
associated symmetry-adapted stiffness matrix § in
place of the K in the above equation. In general, the
mass matrix M to be adopted for a given subspace
is the diagonal matrix [m;] giving the value of the
mass at any of the stations of a basis vector @, of the
subspace, fori =1, .. ., r, where r is the dimension
of the subspace (i.e. the number of independent
basis vectors spanning the subspace). Thus, in the
present example, M is one-dimensional and given
by

M = [m]

for all the subspaces. Applying equation (5) to the
four subspaces in turn, one obtains the following
first-degree characteristic equations in A, with
roots readily following:

Subspace U,

k, +2k, +2k,, cos® & +2k,, sin’ &
A=0

m

k, +2k, +2k,, cos’ @ +2k,, sin’
& m

A

Subspace U,

k. +2k, 1=b
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Fig. 2. Unit displacements of masses applied in accordance

with the coordinates of the basis vectors for the first C,,

example: (a) subspace U; (b) subspace U,; (c) subspace U; (d)

subspace U,.
k, +2k,
AT
Subspace U,
k, +2k,,sin’
r 52 £ ‘1 = 0

m

k, +2k,, cos’ o

m

The above four values of A are the eigenvalues
sought in the original problem. Thus, by means of
group theory, the problem has been reduced to
solving a set of four very simple first-degree
equations which are independent of each other,
instead of a fourth-degree polynomial equation in 4
that is yielded by conventional considerations.

A G,, SYSTEM: EXAMPLE 2

For the C,, configuration of Fig. 3, the vertical x
and y symmetry planes coincide with the positions
of the masses. These masses have one degree of
freedom each, in the guided directions denoted by
X, X,, X5 and x,, as shown in the figure.

Symmetry-adapted displacement functions
Applying the C,, idempotents [1] to the variables
$1(=X,).8:(=x2).85(=x,)andg, (= x,), thefollow-
ing symmetry-adapted displacement functions—
basis vectors for the respective subspaces—are
obtained:

Subspace U,

e, = 4(£+C,+or +0,)¢,
=i+ 9t t9) =1 +¢;) =70,

9, 4E+Ca+a+a¢
4(¢ +¢4+¢"+¢4)"(¢ +¢) =m0,

D, =¢,+¢; (62)
®,=¢,+¢, (6b)
Subspace U,
“2¢|=4(E+C’ 0,9,
=i, +¢;— ¢z ¢)_0 T
np,=i(E+C,—0a,—o0),
=ip,+ 9. —¢.—¢4)=0=n9,

U, is a null subspace.
Subspace U,
g, =HE—C,+o0,—0),
=§(¢1_’¢ +¢:—¢, -
nyp,=E—C,+o0,—0),
4(¢ — gt 9 —4)=¥p:—9) =7,

0=um.9,

k,+2k,,sin’a

m

Subspace U,

k, +2k,, cos’ a
m

P=¢,—9¢, (7
Subspace U,
g, =(E—C,—o,+0)8,
=i’(¢:"¢1 ¢'x+¢)_ g — @) =—n8,
s = ~ 0.+ 0)p-
=4(¢_ ¢4 ¢.+9)=0=n4,
¢'=¢1_ 3 (8)
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J

Fig. 3. C,,spring-mass system with n=4. Example 2: symmetry planes coinciding with the masses.

Symmetry-adapted stiffness matrices Subspace U,

With reference to Fig. 4, the coefficients of the :
stiffness matrices for the various subspaces are ky +2kgy +2k, cos® 6
obtained as explained above. The resulting stiffness m, =4
matrices are as follows:

Subspace U 2k, sin@ cos @
| m2
(k,, +2ky +2k, cos’0)
e (2k, sin@ cos@ ) [Zk, sin@ cosf J
m
(2k, sin@ cos@) h . -0
(k,, +2k,, +2k, sin* 0) {ku +2kdzr:2k, sin” 0 'AJ

Subspace U, :

S, =|k,, + 2k, sin’ ) x;‘(—bi {7‘&,2_46)
Subspace U,

8, =k, + 2k cos* § where

1

4 b=_rmz{(k,l+2kdl+2k, cos’ @ Ym,
o i e +(k,, +2k,, +2k, sin® 0 )m, )

Using expression (5), with the appropriate stiff-
ness matrix for the subspace in question in place of
K, and the mass matrices M, (for subspace U,), M, o
(for subspace Us;) and M, (for subspace U,), where

lmz {(k,, +2k, )k, +2k,,)+2k,

m 0 x[(k,, +2k,,)sin® 0 + (k,, +2k,,)cos’ 0]}
M, = i | M;=[m]; and M, =[m,]

:; Subspace U,
in accordance with the definition for M given o
earlier, the following characteristic equations and k., +2k, sin” 8 ~A=0

their roots ensue: m,
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Fig. 4. Unit displacements of masses applied in accordance with the coordinates of the basis vectors for the second C,, example: (a)
subspace U,; (b) subspace U; (c) subspace U,.

5 k,, +2k, sin’ @ A G, SYSTEM
m
: Figure 5 shows a C,, configuration, with the
Subspace U, equilibrium positions 1, 2 and 3 of the oscillating
k. +2k cos’B masses lying at the vertices of an equilateral
rl s —21=0 triangle. The three masses are all equal to each
m, other (i.e. my = m, = m; = m), constrained to

move only along the line passing through the
§ centroid of the equilateral triangle and its equi-
= k, +2k, cos” 6 librium position, each mass m; thus has one degree

A m, of freedom x; (i = 1, 2, 3), as shown in Fig. 5.
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ol

Fig. 5. C;,spring-mass system with n=3.

Symmetry-adapted displacement functions

Applying the C,, idempotents [1] to the variables
¢1 (= x1), $; (= x;), and ¢, (= x;), the following
symmetry-adapted functions, which form the basis
vectors for the respective subspaces, are readily
obtained, noting that the positive sense of rotations
has been arbitrarily taken as clockwise.

Subspace U,

g, ={E+Cy+ Ci'+ 0, + o,+ 0.,
_%'(¢l +¢:+¢3+¢| +¢3+¢2)
(9 to,to)=ng,=m9,

C=¢,+¢,+4¢; )

Subspace U,

g =oE+ Cs+ C3'— 0, - 0,— 0,4,

=6, +914 0.~ 9,4, ,)

=7,0,= 7,9,
U, is a null subspace.

Subspace U,

P, = %(ZE —C— Gy, = I}(z¢1 —¢,—¢3)
T3P, = .Ii(zE — GG, =i(2¢,— ¢, —91)
3P =32E — 5 C§|)¢3=%(2¢3 — ¢, —¢,)
=—n¢, +¢,)
D, =g, —ig,— ¢, (10a)
D, =¢,— ‘2['¢3 B~ é¢‘1 (10b)

Symmetry-adapted stiffness matrices

The stiffness coefficients for these are obtained
as explained previously. Normalized displace-
ments are applied as illustrated in Fig. 6, noting that

for subspace U, only the first vector (®,) has been
considered, since the normalized displacements of
®, deform the spring-mass system to exactly the
same shape as that caused by the normalized dis-
placements of ®,. (The fact that the deformed
shapes actually differ in orientation is immaterial,
since, quite clearly, this difference does not affect
natural frequencies.) Such consideration of only
the effects of one vector (®,), for an essentially
two-dimensional subspace (U;), might appear at
first sight to constitute an inconsistency, since this
would, quite clearly, lead to only one value for A,
when two values are actually expected from U 3
The simple explanation to this apparent incon-
sistency is that this solution would, in fact, be a
repeated root.
The required stiffness matrices are as follows:

Subspace U,

8, = [k, + 4k, cos? 30
Subspace U,

§y=[k,+ k,cos? 30°]  twice

Eigenvalues
From expression (5), noting that

M,=M,=|m],

the following characteristic equations, and their
roots, are readily obtained:

Subspace U,
k, +4k, cos® 30"

m

A=0



Vibration Analysis of Symmetric Mechanical Systems—Part 3

193

Fig. 6. Normalized displacements applied in accordance with the coordinates of the basis vectors for the C,, example: (a) subspace U,;
(b) subspace U, (P, notshown).

_ k, +4k, cos’ 30°

m

A

Subspace U,
k, +k, cos® 30°
m

-A=0 twice

k, +k, cos® 30°
Tk , cos” 30
m

twice

A C,, SYSTEM

The final example involves four equal masses
occupying the corners of a square, and inter-

connected through springs, the whole arrangement
having a C,, configuration [1], as shown in Fig. 7.
Each mass is free to move in any direction in the
plane of the configuration, so that there are eight
independent freedoms in total. The system of free-
doms shown in Fig. 7, and the assumed directions
of their positive displacements, have been chosen
to conform to the C,, symmetry of the physical
configuration.

Symmetry-adapted displacement functions

The C,, idempotents—expressions (5) of [1]—
are applied to the variables ¢, (= x,), ¢, (= X,),
B3 (= X3), §4 (= X3)s Bs (= 1), $6 (= Y2), 97 (= ¥3)
and @4 (= y,). As before, the positive directions of
rotation operations are arbitrarily taken as clock-
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Fig. 7. C,, spring-mass system with n =8,

wise. Symmetry-adapted displacement functions,
which are the basis vectors for the respective
subspaces, are obtained as follows:

Subspace U,

e, ,,(E+C +Ci'+C,+o,+0,+0,+0,)¢,
ﬂ(¢1+¢6+¢ﬂ+¢3+¢4+¢ +¢s+¢?)
Mg, = WPy = Mp, = Tps = TP
=m9,=mds
¢=¢l+¢2+¢3+¢4+¢5+¢b+¢7+¢8
(11)

Subspace U,

P, = 5(E+C +C"+C1—o -y 01):;151

H(¢1+¢u+¢ﬁ+¢z —p:—¢s—
=—T,0, = M0, = m¢4 =5 = n:m
=—1,0;= T,Pq
¢=¢|_¢2+¢1_¢4_¢5+¢h_¢7+¢H

(12)
Subspace U,

0, = N(E Ci—C'+C+o.+0,—0,— 0)¢,
"(¢| ¢(\ ¢s+¢’ +¢4+¢ ¢s
=Ny, =4, =m0, = TP = -71'.1¢ﬁ

=—Tp;= TP

q)=¢|+¢:+¢3+¢4_¢5~¢h_¢7_¢*
(13)

Subspace U,
n4¢]=,‘;(E—C'4—C;'+C2-—Ur—cr_“+o,+
o,
_8(¢1 ¢ﬁ_¢s+¢3"‘¢4_¢’2+¢5+¢7)
=P = Py = =Py = WP =—TP
=, = —MPg
P=¢, —g,+¢;— P +ds—ds+¢,— ¢
(14)
Subspace U,
”5¢|=(E C))p =39, — 9;)=—nsp;
Wy =HE — C)p, = ¢, — $,) = —n:,
sps =1 (‘E Co)ps =1 (¢‘- $q)=—nsp;
n<¢6 (E_( )¢b= ¢h ¢K)=_ﬂi¢ﬁ
Q,=¢,—¢, (15a)
®,=¢,— 4, (15b)
D;=¢;—9¢, (15¢)
D, =¢,— ¢ (15d)

Subspace U; can be further decomposed into
two independent two-dimensional subspaces U,
and Us,, spanned by new basis vectors obtained by
linearly combining the above vectors in such a way
as to form two orthogonal sets, as follows:

Subspace U,
P =D, +D, =9, —¢g,+¢;—¢, (l6a)
(DE=(])2—¢4=¢1—¢4—¢‘,+¢3 (léh)
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Subspace U,
¢E=¢:+¢4=¢2_¢4+¢h_¢ﬁ (173)
q)g=¢|_¢_1=¢l_¢3—¢i+¢7 (!7b)

The orthogonality of the two sets of these new
basis vectors is depicted in Fig. 8, in which equal
coordinates of each of the new basis vectors are
plotted at their respective stations. Symmetry and
antisymmetry planes of the configurations of these
vector plots are marked as solid and dashed lines,
respectively, inside the squares. Notice that each
new subspace (Us, or Us,) must have, in common
with any other subspace, basis-vector plot con-
figurations of the same symmetry type.

Symmetry-adapted stiffness matrices

The coefficients of these matrices are obtained in
accordance with the procedure outlined previ-
ously. Unit displacement components are applied
in accordance with the coordinates of the basis
vectors, as illustrated in Fig. 9. The resulting
matrices are as follows:

Subspace U,
S, =k, + 2k, + 2k|]

@)

1
P ——
| 2
4 %3
4
/
P
L
l 2
4 .
A

Subspace U,

$,=[0]

Subspace U,

S, =[2k]

Subspace U,

S,=|k+ 2k}

Subspaces Us, and Us;,
[(k, +k,) k,]

=85, =

S
51 52 k.q k,
Eigenvalues
Characteristic equations and their roots are
readily obtained, on the basis of relation (5), as

follows:

Subspace U,
k, +2k, +2k,
S el =
m
e k, +2k, +2k,
m

—
| 2
P 3
\
6,
i
I #
4 A

(b)

Fig. 8. Symmetry and antisymmetry planes of the plot configurations of the new basis vectors of subspace Us, for the C,, example: (a)
subspace Us,; (b) subspace Us,.
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Fig. 9. Unit displacement components applied in accordance with the coordinates of the basis vectors for the C,,example: (a) subspace
Uy; (b) subspace U,; (c) subspace Us; (d) subspace U,; (e) subspace Us,; (f) subspace U.,.

Subspace U, approach, second-order spring extensions arising
0 P from transverse motion of masses are neglected).
mon Subspace U,

2k,
A=0

-A=0

m

This subspace is associated with a zero fre-
quency of vibration (i.e. the system does not A= 2k
vibrate at all if, consistent with the present overall o
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Subspace U,

k +2k
a4 1§
® k, +2k,

m

Subspace U, or U,

[k,+k, } k,
il —t
m m

b ()"

s —-A

m m .
A=§(~bi\/b’ —4c)
where

k, +2k, k, k,

M i and c= -
m m

Note that the original problem (with n = 8
degrees of freedom) has been decomposed into six
independent subspaces, requiring the solution,
independently of each other, of four very simple
first-degree equations and two simple quadratic
equations in A. The conventional method would
have required the solution of an eighth-degree
characteristic equation in A, which, quite clearly,
implies many times more computational effort. In
fact, the gain in computational speed achieved by
use of group theory, whenever the group C,, is
involved, is even higher than these last two state-
ments suggest, because only one of the Us sub-
spaces (ie. Us; or Us,) actually needs to be
considered, since in problems of the present type,
these subspaces always yield identical roots. In
other words, subspace U, is always associated with
repeated roots, and the process of decomposing
this subspace into a further two independent sub-
spaces Us, and Us,, in accordance with the cri-
terion given earlier, effectively achieves a
factorization of the U; polynomial (always of
degree n/2 for n even, or (n— 1)/2 for n odd) into
two identical polynomials (of degree n/4 for n
even, or (# —1)/4 for n odd).

CONCLUSIONS

In this paper, group theory has been applied to
the determination of eigenvalues for the vibration
of two-dimensional spring-mass models. The
procedure has been illustrated through the con-
sideration of two examples with differently
orientated C,, configurations, a third example with
C,, symmetry, and a final example featuring C;,
symmetry, the symmetry groups C,,, C,, and C,,
and their properties having been described in an
earlier article [1].

While considerable reductions in computational
effort were also noted for one-dimensional
mechanical systems of the C, symmetry group [2],
the computational gains of the group-theoretic
approach (over the conventional method for eigen-
value determination) are even larger in the case of
two-dimensional systems belonging to the higher-
order symmetry groups C,,, C,,and C,,. Of all the
six examples that have been considered between
this and the previous article [2], the particularly
efficient decomposition of the group C,,, at least
for n 2 8, is noteworthy.

In general, the computational merit of the group-
theoretic method becomes greater with increase in
the order of the symmetry group (i.e. the number of
symmetry elements, including the identity element
E, making up the group) that is applicable to a
given system, and also with increase in the size of
the problem (i.e. the number of degrees of freedom,
n, defining all the possible motion of a system).

It is hoped that the teaching-oriented presenta-
tion of group theory and its highly beneficial
application to the vibration analysis of symmetric
mechanical systems, contained in this and the
previous two articles [1, 2], will encourage the
introduction of this interesting topic into existing
courses, ideally at senior undergradute or post-
graduate level.
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