Int. J. Engng Ed. Vol. 12, No. 4, p. 286298, 1996
Printed in Great Britain,

0949-149X/91 $3.00 +0.00
© 1996 TEMPUS Publications.

Software Design for Engineers: A Practical
Undergraduate Course in Structured

Design*

J. E. COOLING

Department of Electronic and Electrical Engineering, Loughborough University,

Loughborough LEIl 3TU, UK

This paper describes the structure, development and implementation of an undergraduate course in
structured design methods for software systems. It is designed primarily for second year engin-
eering students, to provide them with design skills for the development of real-time systems. The
course is a highly practical one, assessment being entirely by coursework. It aims to allow students
to gain experience, both individually and in group working. The practical work is underpinned by
the use of a modern PC-based CASE tool. Cross-working is an integral part of the scheme, as also
is the peer marking of coursework.

INTRODUCTION

Twenty-five years ago few control, monitoring,
data-logging or display systems contained digital
computers. Software engineering did not exist as a
topic within the undergraduate curriculum. Most
engineers viewed computers as a tool to solve
mathematical problems, simulate systems, evaluate
control loops, etc. To use these (mostly main-
frame) computers, the only skill required was
that of programming.

All this began to change with the arrival of the
microprocessor. Initially, owing to the high costs,
its penetration into engineering systems was rela-
tively slow. However, by the mid-1970s, when the
prices had dropped substantially, it began to be
used in large numbers. This created a great
demand for programmers and proficient ones at
that (with relatively small storage and modest
clock speeds, the micro required efficient program-
ming). Thus, for the best part of the next decade—
even today in some organizations—software
development for microprocessors was seen essen-
tially as a programming task.

During this period, software engineering was
establishing itself as a subject in its own right. It
embraced a whole range of software topics: analy-
sis, design, modelling, testing, metrics, configura-
tion management, etc. Yet these made little impact
on the microprocessor field—many companies
continued to develop software in a most primitive
fashion.

During the mid- to late 1980s, concern was
expressed about the quality of such software-
based systems. It was seen that, to improve the
long-term situation, better training and education

*Accepted 26 March 1995.

286

was required. As a result the IEE and the BCS
advocated a formal approach to the education of
software engineers [1].

It was also clear to us at Loughborough that
software engineering should form an important
part of engineering courses. We began to introduce
the topic—as a subject in its own right—in the late
1980s [2]. By 1991 it was being taught in all 3 years
of our undergraduate degree course. For a variety
of reasons these had been developed in a somewhat
ad hoc fashion. With hindsight, the result of this
was predictable. Each year, taken in isolation, was
satisfactory. Unfortunately, considered as a whole,
the 3 years were poorly integrated and lacked
cohesion.

To remedy this, a major course review was
carried out, resulting in a new syllabus and struc-
ture. The aim was to provide our engineering
undergraduates with a sound foundation in soft-
ware engineering. At present, the revamped course
is now into its second year of operation. Year 1—
which remains essentially unchanged from the
earlier days—concentrates on program design.
Year 2 introduces the students to software
design, with special reference to embedded appli-
cations [3]. It has a very high practical content, the
design methodology being based on structured
design principles [4].

The rest of this paper is given over to describing
in detail the background, detail and operation of
this second year course.

SETTING THE SCENE—COURSE CONTEXT
AND OBJECTIVES

The course in context
In order to understand the rationale of this
course some explanation about its background is

Software Design for Engineers 287

necessary. First, it must be placed in context. We
are not dealing with software engineering per se.
Rather, it is the software aspects of an engineering
course. Second, the amount of time available
within the syllabus is quite limited. Third, it
needs to build on first year material—and inte-
grate with other second year modules.

Within engineering, a (if not the) major area of
work is that of real-time embedded systems.
Further, safety-critical aspects are becoming
more of an issue in such computer-controlled
applications [5]. Ideally, the syllabus would be a
very wide one, covering all the relevant topics in
embedded software development. There is,
though, relatively little time available for the soft-
ware work; one unit of 36 hr. Fortunately this is
not quite as limiting as it seems, as second year
students also study (amongst other subjects)
microprocessor engineering, digital electronics,
computer-aided electronic engineering (CAEE)
and computer peripheral systems (optional).

All the students have met software engineering
in the first year. There the emphasis is on program
and algorithm design, the teaching language being
Modula-2 [2]. The course involves both individual
and group working, developing software in a PC
environment. Hence, entrants to the second year
are generally quite proficient in terms of program
development.

Fundamental philosophy

From the beginning it was clear that the time
available for the course would heavily influence its
structure. It was felt that, to achieve useful results,
the approach taken should be a focused one.
Moreover, the feedback from graduating students
indicated that our existing course was weak in one
particular area: design aspects. We therefore
decided on the following.

1. To provide a sound if somewhat limited theo-
retical and practical course on software design.

2. To direct it at the area of real-time embedded
systems.

3. To achieve the desired results by having stu-
dents ‘learn by doing’.

4. To allow the students to develop design skills,
both individually and in groups.

5. To make the coursework reflect the nature of
software development within the industrial and
commercial worlds.

6. To present the subject as being interesting and
useful (and not merely another academic hurdle
in the race to a degree).

7. To introduce CASE tools.

One major decision we faced was ‘which design
method?’. In broad terms the choice lay between
object-oriented (OO) and structured methods. This
is a contentious subject [6,7], clouded by the excess
of hype relating to OO techniques. We felt, in the
light of our own (and other) work [8—10], uneasy
with the introduction of OO design. Moreover, it

could also pose problems from the language point
of view.

In contrast, structured methods are extremely
widely used in the real-time field, particularly in
embedded applications. It is an established and
proven method, with extensive CASE tool sup-
port. For instance, it has been the preferred design
method of Motorola for some years now [11], it is
used by British Rail Research as a preferred design
technique for safety-critical signalling systems [12]
and it is recommended for use in the motor
industry in the first set of software guidelines
produced by MISRA [13].

Consequently, the following was decided.

1. The course would be based on structured design
methods.

2. Design would be supported using CASE tool
technology.

3. All assessment would be done by coursework,
with no written examinations.

4. The students would be required to develop
software in two stages. Stage 1 would be done
individually, stage 2 being a group activity. The
objective of the second stage would be develop
software for a complete (if small) realistic
system.

5. A major factor in this would be the requirement
to implement the work of other designers.

6. They (the students) would play an active part is
assessing the software designs.

A final—difficult—issue was one relating to safety-
critical systems. In such applications an important
topic is that of formal specification methods [14].
We felt it important to include these in the
syllabus, demonstrating their application to real
software. The challenge was to do this is a limited
amount of time. A twofold solution was devised.
First, a set of lectures would be given over to the
basics of formal methods (illustrated using the
Vienna development method (VDM)) [15]. Second,
the students would be required to use this informa-
tion as part of their individual design task.

Within the university, the courses are organized
on a modular basis. To align with this, the follow-
ing overall course structure was defined: total time
timetabled, 36 hr; lectures, 20 hr over two terms;
practical (timetabled hours), 16 hr over two terms;
and practical (own time—estimated), 75 hr over
2.4 terms. It also incorporates some quite new
ideas (for us, that is). This includes a combination
of software module development on an individual
basis, group design tasks (which includes the
assessment and use of a set of individual software
modules) and group implementation tasks (which,
in part, assesses and uses the results of group
designs).

During group design, each group is required to
use the modules produced by other students (not
their own). During implementation, each group is
required to implement the design of another group.
This is a similar idea to that used in the Crossover
project [16]. However, the assessment is a true peer

288 J. E. Cooling

one—the students mark other students work.
Moreover, the marks awarded form part of the
total allocated for the course module.

The taught content

The conventional approach to software devel-
opment is a top-down one [17]. That is, start at the
requirements level and finish with the source code.
This is fine and reasonable. Or so it seems.
Unfortunately, in practice, this style creates a
number of difficulties for the novice designer.
One major problem is that it requires the ability
to take a broad (somewhat abstract) view of
system issues initially. Newcomers to design have
insufficient experience to take this viewpoint—
things need to be more concrete.

This course turns the conventional method on
its head by adopting a bottom-up approach. It
starts with what the student knows at the start of
the course, then builds on that knowledge, step by
step (Table 1). The gap between the steps is kept as
small as possible. Many ‘mental’ hooks’ are pro-
vided to bridge the gaps and make the learning
process a straightforward one. Moreover, the
reasons for and advantages of using several
design stages are made clear. The relationship
between the various stages is well defined, resulting
n an integrated design approach. In parallel with
this, the students study the fundamentals of formal
specification techniques (Table 2).

The practical content
There are two distinct sections of practical work:
assessed and non-assessed. The non-assessed activ-

Table 1. Course content—structured design details

Designing software for embedded systems

A pictorial description of programs
The program structure chart
Designing and building software machines
The module structure chart
Introduction to DFDs
Simple input—compute—output systems
Defining systems dynamic behaviour
The state transition diagram
The real-time data flow diagram
Control plus data
Implementing controls
From DFD to code via the structure chart
Concurrent systems
The task model of software

Table 2. Course content—formal specification methods

The engineering of quality software

Introduction

Foundations for correctness proofs

Formulating pre- and post-conditions

Applying correctness proofs

Introduction to VDM

Implementing VDM abstract data types using Modula-2
Designing correct programs

ities are intended to introduce the students to
CASE tool technology, allow the students to gain
experience with diagramming techniques and
directly support the taught material. This takes
places during the first term. The students are
provided with appropriate material, timetabled
laboratory sessions and full laboratory supervi-
sion,

Term 2 is given over almost entirely to the
assessed (course) work. This coursework is based
on developing software for a target embedded
system, performed in three stages (Fig. 1). Here a
PC is used as the target system.

Task 1. Task 1 isan individual one. Each student
is asked to develop one specific software module,
to demonstrate an understanding and use of the
following.

1. Structured design principles.

2. Source code (program) aspects—the style,
layout, naming, commenting, abstraction,
information hiding, interfaces, application of
pre- and post-conditions and provision of test
information.

3. Modularization, with special reference to ‘ser-
vice’ modules.

4. Design based on diagramming, specifically
Jackson structure charts.

5. Developing software as a set of abstract soft-
ware machines using structure chart principles.

6. A CASE tool for developing and recording the
design.

Task 2. Task 2 is a group one. Each group (four
students per group) is required to develop applica-
tion software for a real-world requirement. The
design is to comprise modules developed by other
students for task 1 and an application (monitoring,
control and display) task which uses these mod-
ules. The students are required to demonstrate an
understanding and use of the following.

1. Real-time data flow diagrams.

2. Control transformations and associated state
transition diagrams.

3. Process specifications and data dictionaries.

They must show how to develop structure charts
from DFDs.

The modules produced in task 1 are marked by
the students during task 2. Each group is to be
given two sets of modules (making eight in all).
They are required to mark these and then select the
best four for use in their own task 2 design.

Task 3. In task 3, each group is required to
implement the design arrived at in task 2—but
not for their own work. They are required to work
with the design of another group. The implementa-
tion should be taken to a fully operational state.
The designs produced during task 2 are marked
by the recipient groups. At the end of the imple-
mentation phrase, each group must give a pre-

Software Design for Engineers 289

WEEK 1 >

Individual Design and Implementation

TASK 1

WEEK 4 >

TASK 2

Group Design

WEEK 8 >

Group Implementation

TASK 3

WEEK 13 >

PRESENTATION OF WORK

Fig. 1. Coursework structure.

sentation to members of staff. The marks for task 3
are set by members of staff, taking into account all
the relevant circumstances.

Mark allocation. Task 1 is allocated 30% of the
marks, task 2 40% and task 3 30%, of which 10%
is allocated to the presentation.

SUPPORT FACILITIES AND
INFRASTRUCTURE

Specialist hardware

To simplify matters, it was decided to use a PC
as the target machine. This has the added advan-
tage that the same machine can be used as a host
development system. To provide real-world inter-
faces, a plug-in board was developed for the PC. It
houses a variety of circuits, as follows (Fig. 2).

1. Analogue input—single channel, 8 bits.

2. Analogue output—single channel, 8 bits.

3. Switch input—eight switch input lines, opto-
isolated.

4. Switch output—eight switch output lines, mod-
erate power capability.

5. Stepper motor drive—small four-phase stepper
motor.

6. Serial comms—simplified RS232 interface and
standard RS422 interface.

7. External device interface—no specific function.

All the design—circuit and board layout—was
carried out in-house. Thirty boards (Fig. 3) were
manufactured and installed in the computer
laboratory PCs. Sets of test units were also
designed and built. Their primary role was to
enable the students to test their software function-
ally.

The final piece of hardware was the item requir-
ing monitoring and control—the ‘games box’
(Fig. 4). Details of the game operation are given
later.

The development environment
To support the coursework, the following facil-
ities and tools are required.

. Host development hardware.

. A high-level language compiler.

. A CASE tool.

. Word processing and (optional) drawing
packages.

Draft and high-quality printers.

Software for checking out the test units.

£ N -

T

The chosen host platform was the PC, for the
following reasons. First, all the required facilities
can be provided on such machines. Second, the
students are familiar with PC systems, being con-
versant with DOS and Windows. Third, we are
able to design and produce our own I/O board for
the PC. Fourth, PCs are readily available within
the department.

i

P —————— e —————

290 J. E. Cooling

EXTERNAL EXTERNAL
BUFFER CNL DISPLAY
INTERFACE UNIT

SECTION

SHITCH O/P CNa s
SECTION

SHITCH I/P
SECTION

= FC BUS INTERNAL
SOF THARE
INTERFACE BUS
{ SECTION A

ANALOGUE O/P
SECTION

C S

ANALOGUE 1/P
SECTION

STEPPER
HOTOR
SECTION

SERIAL onaf
1/0
SECTION

Fig. 2. PC interface board—block diagram.

Fig. 3. The PC interface board and test units.

It was decided that the programming language
would, as in the first year, be Modula-2. The
chosen compiler (or, more correctly, language
environment) was the Stony Brook one. These
decisions were made taking into account the fol-
lowing factors.

1. Given the existing time allowance (for the
undergraduate course as a whole), it would
have been extremely difficult to introduce
another language.

. Modula-2 provides, as standard, most facilities

to handle real-world devices.

. The compiler includes processor-specific facil-

ities.

. five years experience has showed that this

compiler was a solid, trustworthy one.

. The students were already familiar with the

language and the development environment.

. Modula-2 inherently supports good software

engineering practice. We wanted the students

Software Design for Engineers 291

Fig. 4. The games box.

to learn how to apply such practices to
embedded systems programming.

A professional PC-based CASE tool was adopted
for use in the course, the SELECT Yourdon tool
[18]. This provides support for the methods of
Yourdon, Ward-Mellor and Hartley-Pirbhai. We
had previously used this within research and
project work for some years, with very satisfactory
results. The most recent version, operating under
Windows, was particularly easy to use.

To support the production of high-quality
reports, word processing and drawing facilities
were provided. The students, however, were not
restricted to these particular ones. Any suitable
packages could be used. It is also important to
provide printing facilities. This, of course, is taken
for granted in any modern computer-based course.
However, the amount of paperwork produced
when using CASE tools is substantial—and leads
to high printer workloads. Taken together, these
can increase costs significantly (students are notor-
iously cavalier in their use of ‘free’ facilities). To
deal with this, low-cost printing was provided for
draft quality work. However, for high-quality
(laser printed) documentation, charges were levied.

Finally, it seemed sensible to provide the stu-
dents with the means to check out the test units.
These devices were generally quite simple and were
expected to be highly reliable. However, the failure
of even a single unit could lead to a great deal of
student time (not to mention demoralizing, frus-
tration and loss of confidence). Furthermore,
experience has shown that many students react in
a predictable way when faced with malfunctioning
systems—they refuse to consider that their soft-
ware might be at fault. Hence, a suite of programs
was supplied. Using these, the students could carry
out independent tests of the test equipment. These
programs also verified the correct functioning of
the PC hardware.

External guidance

Many undergraduate courses have been criti-
cized as being narrow, highly specialized and
very academic. In short, quite removed from real
engineering. It was important to us that we did not
go down such a route. Our objective was to
develop a course which addressed the issues of
modern practical software engineering (this does
not imply diluting its intellectual content). To
assist with this, it was decided to involve a senior
industrialist as an external adviser to the course,
with the following brief.

Bring an industrial perspective to the topic.
Review and assess the course material.
Provide advice concerning coursework topics.
Evaluate how well the objectives were met.
Guide future refinements and developments of
the course.

Shude L) ho R

It is essential that the adviser should have a back-
ground and experience which is relevant to the
course. A second point is that a person of some
seniority is required—but one who is also techni-
cally active. We were fortunate to acquire the
services of the technical director of a well-known
SCADA (supervisory control and data acquisi-
tion) company as the course’s first industrial
adviser.

THE COURSE IN OPERATION

Preliminaries

The overall aspects of the software engineering
module were presented to the students at the
beginning of the course. We felt it was essential
they should have a clear view of its objectives,
structure and mode of operation—before travel-
ling down their chosen path. In particular, the
rationale for using a peer marking scheme needed
to be expounded. Our basic philosophy—that of a

292 J. E. Cooling

student-centred, learning-oriented practical
course—was carefully explained. It was also
made clear that we actively encouraged collabora-
tive efforts. This, after all, is how most engineers
work in real life. However, being realistic, we
recognized that this approach might not appeal
to all the undergraduates. Hence, the students were
encouraged to withdraw from the module if they
were not fully committed.

The overall task details, time scales and dead-
lines were defined at this opening stage. To make
the practical side work smoothly, a fast, reliable
staff-student communication channel was needed.
For this we used e-mail, setting up a group address
for the course. It was made clear that this would be
the normal mode of communication. All the stu-
dents were required to register on the campus e-
mail system. Furthermore, the onus was placed on
the students to read their e-mail; printed informa-
tion was to be used only in unusual circumstances.
We did, of course, ensure that our system worked
correctly—both technically and administra-
tively—before using it in earnest.

Task 1

As stated earlier, task 1 was carried out on an
individual basis. Its objectives were both general
and specific, including the following.

1. To enable the student to develop design and
implementation skills through a learning-by-
doing process.

2. To foster the use of a rigorous and sound
approach to software design.

3. To expose the students to programming for
embedded systems.

4. To get the students to produce testable soft-
ware, together with appropriate test methods.

5. To introduce the concept and practicalities of
design documentation.

6. To introduce, in a practical way, the idea of
separating application and service (support or
library) software.

. To put formal methods in a practical context.

To have the students appreciate the role and use

of CASE tool technology.

00 3

The students were told clearly what was
expected of them in the task-defining document
in Appendix 1.

Task 2

Task 2 is a group activity. Its outcome is a set of
design not implementation documents (that is, no
source code). Further, in deriving the design, each
group must incorporate a set of the service mod-

ules developed in task 1. The group is also required
to award a mark for each of these modules. This
complete exercise has a number of objectives, the
major ones as follows.

1. To force the students to make a clear separation
between design and implementation.

2. To demonstrate how service (library) software
affects application software.

3. To bring home the need for good, clear mean-
ingful interfaces to service modules.

4. To make the students assess the source code in
order to learn the problems of working with
existing software.

5. To show the need for comprehensive documen-
tation if the software is to be reused and/or
maintained.

6. To demonstrate the value of CASE tool
methods and documentation for a team devel-
opment.

7. To highlight the need for system-level testability
and test plans.

The overall task aspects are defined in Appendix 2.
The application task is to produce a design for
operating the games box of Fig. 4. Fuller details of
the game, together with information relating to the
box itself, are given in Appendix 3.
The assessment scheme used on the task 1
modules is given in Appendix 4.

Task 3

The target of task 3 is to take a design generated
during task 2 to a fully working state. This, like
task 2, is a group exercise. There is also a require-
ment to assess the design supplied to this imple-
mentation group.

Here the objectives are to make students do the
following.

1. Appreciate what it means to implement the
design of others.

2. Realize the need, when carrying out software
design, to produce comprehensive, correct and
clear documentation.

3. Understand the usefulness of good test docu-
mentation.

4. See how to integrate service modules into
application software.

5. Work together as a group to code, test and
debug a design.

6. Further develop their presentation skills.

Assessment and moderation

The overall assessment and moderation process
is shown below in Table 3 and Fig. 5. The
individual service modules produced during task

Table 3. Assessment and moderation scheme

Task 1 Task 2

Work
Assessed by
Moderated by

Student group during task 2
Laboratory supervisors

Student group during task 3
Laboratory supervisors

Task 3

Staff and laboratory supervisors

Software Design for Engineers

TASK 1
Design and Code
Module 1

Documentation,

Program and

Design
umentation

293

Documentation

Demonstration
System

....................

(

Test Spec. - |
]
1
'
1
L
1
;
]
. Task 1
Assessment
TASK 1 Documentation, Document
Design and Code Program and
Module N Test Spec. - N

Staff Assessment
and

Moderation
Process

MARKS

Fig. 5. Task assessment and moderation scheme.

1 are assessed by the student groups during the
task 2 session. Each module is marked (quite
separately) by two groups. The final mark used is
the mean of the two (significant differences in
marks were to be investigated, but fortunately
this problem did not actually arise).

To ensure that the assessment was fair and
consistent, it was essential to have a clear set of
guidelines. Those for task 1 are given, in full, in
Appendix 4. It can be seen that considerable
thought and effort has to be put into such docu-
ments. Further checks were carried out by the
supervisors using the moderation document of
Appendix 5.

Similar documents were produced for the other
tasks.

COMMENTS AND CONCLUSIONS

General comments

This approach to coursework produced two
major surprises. First, we had no significant pro-
blems with running the module; all went fairly
smoothly. Second, 10 of the 11 student groups
actually produced fully working, demonstrable
and correct games software (this, I might add, is
a tribute to our students).

The degree of interest and enthusiasm shown by
the students was consistently high (and, for us,
invigorating). This was maintained in spite of a
very heavy workload and tight deadlines. They
found working with real-world devices to be a

challenging task. It also brought a new perspective
to software development, being quite different to
earlier experience.

One of the most valuable aspects of the course-
work was exposing the students to the work of
others. It is no exaggeration to say that some
students were startled by the contents of such
designs. The move from producer to consumer
effected a clear shift in attitudes. At the beginning,
most (if not all) the students considered software
design to be synonymous with program design. On
completion of the course, most had changed their
views. They understood software design to be a
rigorous process, quite different to programming
(unfortunately, there are some who will forever
remain hackers).

We also, in a small way, narrowed the software—
hardware divide which is so commonplace nowa-
days.

The student viewpoint

The module was attended by students from three
undergraduate courses. For one course the module
was compulsory, while for the others it was
optional. To obtain feedback on the module, we
sent out a questionnaire to all the participants.
Many aspects were covered in the questionnaire,
with most relating to the internal and organ-
izational aspects. The following are perhaps the
ones most relevant to this paper.

COURSEWORK

294 J. E. Cooling

Question Mean score SD

Overall course evaluation 6.89 1.59
Overall content evaluation 6.52 1.95
Comparison with other course modules 7.30 2.02

Note: on a scale of 0 (lowest) to 10 (highest)

Q. What aspect of the course did you like least?
Formal methods—17 (63%)

Q. Which topics would you recommend that we
reduce?
Formal methods—16 (59%)

Q. Which aspects of the course did you like best?
Design/programming/practical interfacing—20
(74%).

No written examination—6 (22%).

Q. What was the most difficult part of the course-
work?
Formal specifications—12 (44%)
Practical design—9 (33%)
Time management—4 (15%)
Group working—4 (15%)
This exceeds 100% as some replies listed more
than one item.

Q. Would you recommend this course to others?
Yes—23 (85%)
No—4 (15%)

Conclusions

One of our prime objectives was to get the
students to recognize the importance of software
design. Based on both formal and informal feed-
back, we believe this has been achieved with great
success. Its acceptance by the students had much to
do with applying design techniques to a real (and
real-world) problem. Further, they ended up
appreciating the need for—and use of—related
design documentation.

The use of a CASE tool in the coursework had
many advantages. First, it enforced a consistent
and rigorous approach to design. Second, it took
the tedium out of producing design diagrams and
supporting paperwork. Third, it made the work

more interesting for the students. Finally, it
brought a flavour of the industrial world to the
course. We recommend that any practical software
design course should be supported by CASE tools.

Our experience showed that the decision to use a
PC-based host/target system was a sensible one
(and, in retrospect, a very wise one). We had
significantly underestimated the degree of diffi-
culty of the first coursework task. Most of the
students found this presented them with a com-
pletely new set of problems—some very taxing. To
have had to cope with a host/target environment
on top of this would have added an immense
workload. We do, however, intend to introduce
these aspects at a later stage in the undergraduate
curriculum.

The student reaction to the formal methods part
of the course is of some concern (although not
entirely unexpected). The fact that many identified
it as the most difficult part of the course is, in itself,
not an issue. Our students are expected to cope
with many demanding topics—Fourier analysis,
digital filtering and vector calculus, for example.

The peer marking of the students’ work—which
we have never employed previously—did not pro-
duce any problems. It did, however, have a number
of benefits. In particular, both subjectively and
objectively.

It can be seen from the student feedback that the
course has generally been a popular one. It also
shows that there is room for improvement, some-
thing we are very conscious of. In light of this, we
have made a number of changes. First, the subject
content of the formal methods has been slightly
reduced. Second, it has been more closely allied
with the practical work of the individual tasks.
Third, the practical (assessed) work now starts in
the first term. Task 1 is to be completed by the end
of this term. Only time will tell how effective these
changes have been.

Acknowledgements—Many people contributed to the develop-
ment and running of this course. Three however, deserve special
thanks: Paul Cherry, Mike Woodward and Alan Cuff.

REFERENCES

1. Joint Working Party of the British Computer Society and the Institution of Electrical Engineers,
IEE: A Report on Undergraduate Curricula for Software Engineering, Joint Working Party of the
British Computer Society and the Institution of Electrical Engineers (1989).

. R. Seager, Modula-2 in a first year software engineering course, Proceedings of the Conference on
Modula-2 in Undergraduate Curricula, Plymouth Polytechnic (1988).

. J. E. Cooling, Software Design for Real-Time Systems, Chapman & Hall (1991).

. 8. Goldsmith, 4 Practical Guide to Real-Time Systems Development, Prentice-Hall (1993).

. DEF-STAN 00-55, The procurement and use of software for safety critical applications (1989).

K. Shumate, Structured analysis and object-oriented design are compatible, Ada Lett., X1(4), 78—

90 (1991).

. D. Firesmith, Structural analysis and object-oriented development are not compatible, Ada Lett.,
XI(9), 56—66 (1991).

8. A. Collins, The Object-oriented Design of Real-time Embedded Systems, Project Report, Depart-
ment of Physics, Loughborough University of Technology, Loughborough (1993).
9. F. Detienne, Difficulties in Designing with an Object-oriented Language: an Empirical Study, IFIP
Human—Computer Interaction-INTERACT'90, pp. 971-976.
10. T. Grechenig and S. Biffl, The challenge of introducing the object-oriented paradigm—am
empirical investigation of a software-engineering course, Struct. Program., 14, 187-198 (1993).

AL EW N

~3

Software Design for Engineers 295

11. Motorola Inc., Training and education, ENG 232 Struct. Methods (1989).

12. A. C. Dumbill, Design using DFD Techniques, British Rail Research Document SCS-1001, Derby
(1993).

13. Motor Industry Software Reliability Association, Development Guidelines for Vehicle Based
Software, Motor Industry Software Reliability Association (MISRA), Nuneaton, Warwickshire
(1994).

14. M. Thomas, The industrial u se of formal methods, Microproc. Microsyst., 17(1), 31-36 (1993).

15. C. B. Jones, systematic Software Development using VDM, 2nd edn, Prentice-Hall (1990).

16. M. Holcombe, The ‘Crossover’ Software Engineering Project, Engng Prof. Council Bull., 3-5 (1994).

17. T. G. Rauscher and L. M. Ott, Software Development and Management for Microprocessor-based
Systems, Prentice-Hall Inc. (1987).

18. Select Software Tools, Select Yourdon User Guide, Select Software Tools, Prestbury, Cheltenham.

J. E. Cooling, B.Sc., Ph.D., C.Eng., MIEE, MIEEE specializes in the area of real-time
embedded computer systems, including hardware, software and systems aspects of the
topic. He has published extensively on the subject and is the author of a number of
textbooks relating to processor-based systems. Currently he is a senior lecturer with the
Department of Electronic and Electrical Engineering, Loughborough University of

Technology.

APPENDIX 1: TASK 1

Basic objectives

Task 1 is an individual one. You are required to
develop one specific software module as a ‘service’
module. Your work should demonstrate the fol-
lowing aspects of software design.

1. Structure design principles.

2. Source code (program) aspects—style, layout,
naming, commenting, abstraction, information
hiding, interfaces, application of pre- and
post-conditions and provision of test infor-
mation.

3. Modularization, with special reference to ‘ser-
vice’ modules.

4. Design based on diagramming techniques.

5. Developing software as a set of abstract soft-
ware machines using structure chart principles.

6. The Select CASE tool for developing and
recording the design.

Deliverables

1. All design and code information on disk.
2. A test program to demonstrate the working of
your design. This should be fully documented.

Technical details (part)

Switch in module. This module must provide
facilities for the application programmer to per-
form the following.

1. Read in the state of all switches.

2. Read in the state of any group of switches.

3. Read in the state of any individual switch.

4. Enable and disable the switch input interrupt.

Switch signal debouncing should be done in soft-
ware, but the application programmer must be
able to override this feature.

APPENDIX 2: TASK 2

Basic objectives

Task 2 is a group one. Each group is required to
develop application software for the game’s exer-
cise described below. To do this it will be necessary
to exercise various functions of the interface board.
The software is to comprise modules developed by
other students for task 1 and an application
(monitoring, control and display) task which uses
these modules.

You are required to demonstrate an understand-
ing and use of structured software design techni-
ques incorporating real-time data flow diagrams,
control transformations and associated state tran-
sition diagrams, process specifications and data
dictionaries and structure charts (specifically, the
Jackson types as defined in the Select CASE tool).

APPENDIX 3: THE APPLICATION TASK
DETAILS (PART)

Overview
This document describes a reaction challenge game
that compares the performance of two competitors
in a simple contest of speed and dexterity. In a
series of plays, each competitor must race to
complete a simple task more quickly than their
opponent. Winning requires both accuracy and
speed, the absence of either invokes a penalty.
The game uses a PC with parallel digital and
analogue I/O channels, which have to be pro-
grammed to achieve the specific functionality.
The core of the system is a games box. This
contains the following.

1. A stepper motor fitted with a small lightweight
disc fixed so that the disc rotates in a horizontal
plane. Sited around the circumference of the
disc are eight slotted optocouplers mounted so

296 J. E. Cooling

that they pass a signal only when a slot cut in
the edge of the disc passes by.

2. Eight LEDs, marked ‘0-7" are arranged in a
circle.

3. Analogue voltmeters.

4. Various switches and potentiometers.

On system start up, the PC de-energizes the
digital outputs and sets the analogue output to
zero. The user is invited to enter parameters via the
keyboard to set up the following.

1. The number of points to be played.

2. The timeout on each point.

3. The score ratio for the analogue input (see later
paragraph).

Pressing the start key on the keyboard causes the
system to run the stepper motor for a defined
number of steps. The number of steps should be
generated by a simple pseudo-random number
generator. When it stops, the slot in the disc will
be aligned with one of the eight slotted optocou-
plers mounted around the periphery. The system
reads its identity and the system lights the corres-
ponding LED.

Each competitor is furnished with three
switches, a push-button and a multiturn potenti-
ometer. Three simple analogue meters are also
mounted on the console.

As soon as one of the LEDs lights up, each
competitor must race to set their three switches to
the binary equivalent of the LED number, then
must turn the potentiometer so that their meter
matches the one driven by the system as closely as
possible. When satisfied, they press their push-
button once to input the values to the system.
The system only accepts input on the first press
of the button in any play.

On detection of the first button press from either
player, the system freezes the analogue output and
inputs the analogue value from that player’s
potentiometer.

APPENDIX 4: TASK 1 ASSESSMENT
DOCUMENT

Assessment points and marks allocation (%).

Documentation supplied 10
Working software 30
Software design 30
Code implementation 20
Formal specification aspects 10

Where written comments are required (or you wish
to make some), print these on a separate sheet(s)—
the comment sheet. All comments should be num-
bered to correspond with the appropriate assess-
ment point.

Documentation supplied
What you are assessing here is the extent, com-
pleteness and usability of the documentation.

Aspects relating to the specifics of contents are
covered in other sections.

1. Was the documentation well produced in
terms of appearance, binding and robustness?

2. Was it complete? If not, list what was missing?

3. Wasit clearly identified, including the name of
the author?

4. Was it easy to use the material as a working
document?

5. Was it easy to navigate your way around the
document?

6. Was it organized into sensible sections (e.g.
design, code, etc.)?

7. Were all the figures given identifying names
and numbers?

8. Did it clearly and accurately cross-reference
the software supplied on disk?

9. Did it clearly explain what the various disc
files contained?

10. Did it include a table of contents, a list of
figures, an overall description of the structure
of the document and a description of the
topics contained within each section.

Subtotal 1: Marks out of 10

Working software

1. The software worked correctly, the module was
correctly built as a service module and the
testing was complete, thorough and straightfor-
ward.

Award 30 Marks.

OR

2. The software worked correctly when tested but
could only be used with the test suite (i.e. it
failed to meet its objective of being a service
module). Testing was straightforward.

Award 15 Marks.

OR

3. The software was only partly complete. How-
ever, that which was done could be tested out.
Award marks out of 15.

List your difficulties in assessing and testing the
software on the comment sheet.

4. The software did not work.
Award 0 marks.

Subtotal 2: marks out of 30
Software design

Part (a).

1. Did the text clearly and accurately explain the
purpose and function of the module?

2. Did it clearly describe the structure of the
module and the reason for such structuring?

3. Did it clearly explain how to use the service
module and its component parts?

4. Were you able to understand the design struc-

Software Design for Engineers 297

ture charts (SCs) without the assistance of a text
description?

5. Were you able to understand the essentials of
the design without the assistance of a text
description.

6. Did the SC design conform to the rules laid
down for Jackson (or modified Jackson) struc-
ture charts? See also the last item—code skele-
tons.

7. Was the naming used on the SCs clear and
sensible. Did these, especially at the higher
levels, relate to the system details (rather than
code implementation aspects)?

Marks out of 15

Part (b).

1. Code skeleton: generate the program code ske-
letons from the SCs provided. Extract the
corresponding actual code skeleton from the
submitted code (copy and then modify the
appropriate disk file information). Attach
both to this assessment sheet.

(a) There is very good correspondence between
the skeleton defined by the SCs and that
actually produced in the source code.
Award 15 marks.

(b) There are important differences between the
two.

Award marks out of 15
List the more important points on the
comment sheet.

(c) There is no correspondence between the
two.

Award 0 marks.
Subtotal 3: marks out of 30

Code implementation

Part (a).

1. Was the software concisely housed within a
library module?

2. Could you have easily integrated this as a new
library module to extend that standard ones of
the Stony Brook compiler?

3. Did the definition module contain a clear
description of the function, features, objec-
tives, etc., of the module.

4. Did the definition module contain only those
items required for export?

5. Were items made visible in the definition
module which were used only within the imple-
mentation module?

6. Was the definition module easy to read and
assess?

7. Was a clear, comprehensive and meaningful
description provided for all exported items?

8. Was the information given in the definition
module sufficient to allow an implementation
to use the provided service facilities? Or would
you have to resort to reading the details of the
implementation module?

9. Were good abstract interfaces provided? Or
would you have to know considerable details
of the interface board to use the service soft-
ware?

10. Did the definition module include the author’s
name, issue date and issue version?

(a) The service module software was packaged
as a library module.
Award marks out of 10

(b) The service module software was not
packaged as a library module.
Award 0 marks.

Part (b).

1. Did the implementation module include the
author’s name, issue date and issue version?

2. Was a good, clear layout style used?

3. Was the naming logical and meaningful? Did it
lead to a self-documenting code?

4. Was the level and amount of commenting
satisfactory?

5. Did the names used within the program relate
(where applicable) to the corresponding SC
items?

6. Was it easy to follow and understand the code?
Would it have been easy to perform a code
walkthrough exercise?

Award marks out of 10
Subtotal 4: marks out of 20

Formal specification aspects

Part (a): VDM specification.

1. Does the specification describe a loop?

2. Are the pre- and post-conditions given in the
specifications?

3. Are the pre- and post-conditions valid logical
algebraic expressions?

4. Is the specification adequately explained by a
suitable comment?

Award 1 mark for Yes answers to each of 1-3.
Award 2 marks to a yes answer to 4. Each no
answer gets 0 marks.

Marks awarded

Part (b): correctness proof.

1. Have the pre- and post-conditions been carried
through from the VDM specification?

2. Has the proof been correctly decomposed into
its constituent parts

3. Is the proof correct?

Award 1 mark for yes answers to each of 5 and 6.
Award 3 marks to a yes answer to 7. Each no
answer gets 0 marks.

Subtotal 5: marks out of 10

Bonus aspects
Answer the questions only, no marking required.

298

BoW R —

00 -] O\ LA

. Was a context diagram produced?

. Was it accurate, meaningful and useful?

. Was a data flow diagram produced?

. Did it clearly express the functionality of the

service module?

. Did you find it useful?

. Was a state transition diagram produced?

. Was it accurate, meaningful and useful?

. Were you able to see how the SC was generated

using the information given in the DFDs and
the STDs?

. Was the relationship between the diagrams

obvious?

APPENDIX 5: TASK 1 MODERATION
DOCUMENT

. Are all the sections of the document com-

plete?

J. E. Cooling

. Has the fifth section (formal specification) been

marked (if not, note this in red)?

. Has the sixth section been dealt with ade-

quately?

. Do the marks total up correctly?

If not, note in red. Identify, if possible, where
the problem is.

5. Is there any sign of personal bias?
6.
7. What mark was given for the other copy?

What is the mark for this module?

If there is a difference of 20 marks or more
between these, note this in red. Then investigate
the problem (allow for the marking of formal
specifications). Attach your comments to this
document.

8.
i

What is the average of the two marks?
How well was this module marked (marks out
of 100)?

