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Designing a Buckling Experiment:
a Teaching Experience*
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A laboratory demonstration of column buckling is important to civil engineering students. An
experimental set-up consisting of a laterally loaded slender column subjected to an increasing axial
load proved to be helpful in demonstrating buckling mechanisms. However, the interpretation of the
student results had to be adjusted to take into account the actual support conditions, thus leading to
improvements in the design, formulation and understanding of this laboratory experiment.

EDUCATIONAL SUMMARY

1. The paper describes new training tools or labora-
tory concepts/instrumentation/experiments in:
laboratory concepts/experiment in column
buckling and deformation under axial loads.

2. The paper describes new equipment useful in
courses on mechanics of solids.

3. Undergraduate level students are involved in
the use of the equipment.

4. New aspects of this contribution include an
original interpretation of experimental results
obtained from a simple buckling set up.

5. The material can be used directly as a laboratory
text.

6. A basic textbook in mechanics of solids is
sufficient to accompany the presented materi-
als.

7. The concepts presented have been tested in the
classroom. This laboratory experiment was
useful in demonstrating end effects and the
need for new interpretations.

8. This work emphasizes the need for considering
all parameters when analyzing actual cases even
for very simple set-up.

INTRODUCTION

Understanding the mechanics of the buckling of
structural members is an important aspect of civil
engineering. Amplification of the deflections and
sudden failure caused by axial or in-plane loading
must be avoided in any safe design. Therefore, it is
important that mechanical and civil engineering
students have an opportunity to observe and
understand the concepts of buckling and instability
through a laboratory experiment.

Because of the size of student classes (com-
monly 20-25 groups of four to five students) it is
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impractical to bring columns to failure, due to the
prohibitive costs of the materials and machining
time involved, as well as safety considerations.
Methods based on the extrapolation of elastic
behaviour to critical instability are thus needed if
one wants to design a practical and repeatable
buckling experiment.

This paper describes how the author, working
from basic theory, had to modify the initial experi-
mental column buckling set-up in view of the
results and difficulties encountered by students.
A final laboratory version is presented together
with a simple method for an interpretation of the
critical buckling load.

PREVIOUS EXPERIMENTS AND
OBJECTIVES

The existing buckling experiment carried out by
the students used aluminium and stainless steel
rectangular strip columns, with both ends resting
on guttier-type supports. The determination of the
critical load was made according to Southwell’s
plot [1]. In this method, an initial sinusoidal shape
for the column is assumed, using a graphical
hyperbolic plot for determining the critical load.
For over 5 years this set-up proved to be frus-
trating for the students and instructors, since the
results were not reproducible and showed a poor
agreement between the experimental critical load
and Euler’s theoretical value. The actual type of
support was questionable as well as the initial
assumptions on the unloaded beam.

The ideas that led to a modified design were as
follows.

1. To use different type of supports (fixed
supports).

2. To create a known initial deformed shape for
the column by applying a perpendicular force at
the midspan and then approach the critical load
by applying the axial load in steps.
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3. To change the initial deformed shape to confirm
the critical load value and check the assump-
tions made on the material properties and type
of end supports.

BASIC BUCKLING COLUMN THEORY

If a vertical elastic column of span L, of mini-
mum moment of inertia / and modulus E, rigidly
fixed at the ends is subjected to a horizontal force
F at the midspan and an axial force P (see Fig. 1),
the differential equation governing the lateral
deflection v at the distance x from the top end is

d*v Fx
where M, is the reaction moment at the top.
Introducing the dimensionless quantities

p = PL?/AEI
f =FL?/EI
=L
a=p®

the deflection at the midspan is given by
teiding f (2 —sin(a)a — 2cos(a))
mid = 1643 sin (a)

2)

and the inverse of upig can be expanded in series as
follows:

1 16
a=7[12—§1’—7&51’2—3§%m1] (3)

This equation shows that the inverse midspan
deflection is very close to a linear function of the
axial load, since the second degree term is small for
the full range of p values (0—10). The buckling load
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Fig. 1. Buckling of a fixed end column subjected to a midspan
force.

is given by sin(p®5) =0 or p=n>=9.87. The
series expansion (two terms) would give p = 12 x
5/6 = 10 which is within 1.3% of the exact answer.
Taking three terms will lead to a 0.143% difference.

The conclusion of this first basic case is that by
plotting the inverse of the midspan deflection
versus the applied axial load, one should be able
to determine by extrapolation from the small
initial values of p a satisfactory value for the
critical load. Repeating the process for different
values of the horizontal load F should the produce
a set of concurrent lines. When there is no axial
load the classical result is obtained:

Umid = %2- (4)

FIRST EXPERIMENTAL SET-UP AND
PROCEDURES

The initial set-up is shown in Fig. 2 with actual
dimensions. The ends of the rectangular cross-
sectional beam of aluminium alloy were tightly
inserted into solid blocks respectively fixed to the
base of the frame and to the load cell-jack unit at
the top. The horizontal load was applied by means
of a pulley-cable arrangement with dead weights
(+0.2kg taking into account the pulley friction).
The axial load was applied with a hydraulic jack
and recorded by a load cell (accuracy =+0.5kg).

Structural frame
Hydraulic jack

Top support and load cell
Column under testing
Frictionless pulley

Cable

Dial gauge and stand
Bottom support (bolted)
Dead weights

Additional stiffener

PEEVEE@EE®EE

Fig. 2. The experimental set-up.
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Fig. 3. Normalized force deflection plot for a lateral midspan loading.

The deflections were recorded with a dial displace-
ment gauge (accuracy +0.01 mm) at the midspan.
The length between the support was known to
within +1 mm and the width and thickness of the
column to within +0.05mm. The corresponding
value of 7 is 8.13 x 10~ °m* for a length of L =
490 mm.

The initial laboratory procedures given to the 14
groups of students were as follows.

1. Apply a horizontal force of 4kg and record
the displacement at the midspan (Vmiq). Then
increase the axial load by equal increments of
454kg (100lbs) up to 272.4kg (6001bs)
recording vpmig in each case.

2. Repeat the procedure using F = 8 and 12kg.

After collecting all the students’ reports and
analysing the results, nine reports were found to
be reliable and five had to be rejected. The reasons
for rejection were varied, from an obviously poor
recording of the dial gauge to misunderstanding
the procedures and failure to report the appro-
priate measurements. However, the nine remaining
groups showed consistency in their measurements.

Figures 3 and 4 show the basic plots required,
where the results of the nine groups were averaged.
The first plot indicates the relation between up;g
and f for p = 0 (the column without an axial load).
Figure 4 is a plot of 1/upig as a function of p for
S =0.166, 0.332 and 0.497 (F =4, 8 and 12kg,
respectively).

1200
== Theoretical (fixed ends)
o~ — Measured by students
1000 \
800

0.0 20 4.0

6.0 8.0 10.0 12.0

Normalized axial load p

Fig. 4. Normalized (axial force) — (lateral displacement) plot.
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Fig. 5. Buckling of a column with an elastic support at the top
end and a midspan lateral force.

DISCUSSION OF THE EXPERIMENTAL
RESULTS

The theoretical relation between f and upig for
an aluminium alloy (E = 70 GPa) and the fixed
supports is shown in Fig. 3 and departs obviously
from the measured values which can be repre-
sented by the line f = Kup;q. This disagreement
is reported on the p =0 axis of Fig. 4 which
makes the comparison between the theory and the
experimental data somewhat discouraging.

In order to interpret and eventually remediate
the difference, the discrepancy between the theo-
retical case and the actual one, the end conditions
must be discussed. Since the bottom block was
strongly attached to the frame, the top support
was questioned and a theoretical analysis of the
behaviour of the support has been carried out,

0.1

assuming an elastic reaction, for both horizontal
displacement and angle (Fig. 5):
Vmp = _AHIDP (5)

where v, and 6yop are the deflection and rota-
tion at the top support for a shear reaction Hiqp

- and a moment reaction Mio,. Using the reduced

variables o and 3,

EI EI
a=A7; and B=B— 0

the response of the column to a horizontal f
becomes

_ f [147B+60a + 963
Umid = 792 [1 +48 + 12a + 12aﬁ] (8)

According to equation (8), a can be plotted as a
function of f for different values of K = f/uniq
and this is shown in Fig. 6. This, however, is not
sufficient to select a particular set of values for
(a, B) and the plot in Fig. 4 must also be used.

The fundamental equation for elastic beams
with an elastic support at the top (o,8) and
subjected to a lateral force f and to an axial
force p must be solved. However, the solution is
not simple and has been worked out using the
mathematical software MAPLE [2]. A typical
result of this analysis is shown on Fig. 7 where
the following can be observed.

1. For p ranging from 0 to 3 the plot is close to a
straight line whose slope is inversely pro-
portional to the normalized lateral load f,
following the equation

1 M
slope [— vs p] =— 9
Umid at point p=2 f
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Fig. 6. Relation between the support stiffness parameters and K.



This parameter M, which is independent of
f, can be calculated for different values of
(o, B) and the plot shown in Fig. 8 can be

obtained.
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Fig. 7. Buckling plot for a column with an elastic support at the top end.
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two fixed ends) and 72/2 (the case of one fixed
end and one pinned end). The value of p. is not
appreciably affected by the value of o and the

relation between 3 and p. can be plotted as in
. The critical value p; lies between 7 (the case of Fig. 9.
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Fig. 8. Relation between the support stiffness parameters and M.
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Fig. 9. Relation between the normalized buckling load and the stiffness parameters.

MODIFIED SET-UP AND PROPOSED
METHOD OF INTERPRETATION

In order to be closer to the fixed end conditions
it was decided to limit the lateral displacement of
the top support by providing additional stiffness
(see the detail in Fig. 1) at the base of the jack
cylinder. The experiment was carried out as before
by a team of instructors and the results were
analysed by drawing the same plots (Figs 3 and
10). The top support has obviously gained some
‘fixity’ but it is still not perfect. It is, however,
possible to give a coherent interpretation of the
difference. For that purpose the chart given in Fig.

11 as been prepared. It is the superposition of Figs
6 and 8 with a secondary x-scale equivalent to
Fig. 9.

To find the critical buckling load of the beam
and the elastic coefficient of the top support, the
following steps must be followed.

1. Normalize all the measured values vy,g, F and p
tO Um;i4, f and p using the measured L and I and
tabulated E.

2. From the plot of f versus upiq for p = 0 deduce
the slope K = f /umi4.

3. From the plot of 1/umiq versus p at successive
values of f compute the parameter M at p = 2
and take the average value.
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Fig. 10. Experimental results and interpretation (the improved set-up).
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Fig. 11. Chart for determining the critical buckling load.

4. Select the appropriate K and M curves on the
chart in Fig. 11 (interpolate if necessary).
Determine the intersection of these curves and
read the values of (a,f3). Finally, read the
value of the critical load p. either on the
secondary x-axis of the chart or in Fig. 9.

5. Change the normalized values for actual values
using E, I and L.

The modified experimental results have been tested
using this method and values of @ = 0.01, g = 0.14
and p.=7.8 have been found which corre-
spond to A=2x10°m/N, B=12x10"3
(mN)-! and p. = 7400N (16601bs). The corre-
sponding ideal behaviour of the beam with an
elastic support is indicated in Fig. 10.

CONCLUSIONS

To improve the understanding of buckling
phenomena due to axial loading a simple experi-
mental set-up has been designed where a sup-
posed fixed end column has been laterally loaded
and then axially compressed. The theoretical
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analysis of this case suggested a simple method
of determination of the buckling load.

However, the initial experimental results clearly
indicated that the end supports were not fixed
and possessed some elastic components. This was
verified by modifying the initial set-up and increas-
ing its stiffness. A theoretical analysis of the same
column having one fixed support and one elastic
support for both displacement and rotation has
been conducted and a simple graphical method has
been proposed to determine the elastic parameters
and the critical load.

Not only is this experiment a valuable tool for
illustrating the concept of a critical load in a fairly
inexpensive and reproducible way, it also provides
the students with a feeling for the actual end
conditions and their influence on the buckling
phenomena. The use of charts is part of the
design process and is welcomed at this stage of
undergraduate training despite the advent of
computer calculations.
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