Int. J. Engng Ed. Vol. 12, No. 5, p. 365-372, 1996
Printed in Great Britain.

0949-149X/91 $3.00 +0.00
© 1996 TEMPUS Publications.

X Windows on the World: A Systems
Approach to Designing CBL Tutorials

RUSSELL KEENAN
KEVIN FORWARD

Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia

CARMEL McNAUGHT

Academic Development Unit, La Trobe University, Victoria 3083, Australia

This paper describes a system which uses an X Windows environment to provide a system which can
be used to develop tutorials which use computer-based learning (CBL) The system can be used to
development tutorials which can provide tuition to, and assessment for, small groups of students.
Hence it provides a means of overcoming some of the problems associated with the provision of
small group tuition and the marking of assignments. When these tutorials are developed, in addition
to relieving tutors from some of their duties we explain how they provide an opportunity for CBL to
provide an improvement in the quality of teaching. In highly technical subjects computer-based
tools are available which can be used by the students during problem solving sessions. Simple
authoring systems do not provide access to such tools. Here we report upon more sophisticated
authoring systems running on a multitasking operating system such as Unix which permit the
tutorial to concurrently access tools running in other windows. Example tutorials are described
which illustrate how the development system is used. The need for evaluation techniques which can
be used to determine the effectiveness and student reaction to this style of CBL are also discussed.

EDUCATIONAL FRAMEWORK

Context of this project
THE DEPARTMENT of Electrical and Electronic
Engineering at the University of Melbourne has
approximately 400 students in years 2—4 of the
degree. All students have about two tutorials a
week throughout this time. At second year level,
the traditional tutoring system has operated with
one tutor (often a higher degree student) and a
class size of about 30 students. In third and fourth
years, the tutorial sizes are much larger—essen-
tially the same as the lecture group, which can be
as high as 140 students; tutors are often members
of the lecturing staff. Sessional tutors (higher
degree students) undergo a half-day training work-
shop and have regular interaction with the lectur-
ing staff. Little marking of student problem sheets
is done because of financial constraints.

The problems of this style of tutorial system are
clear:

® Insufficient individual assistance for students,
either in tutorials or as written feedback on
attempted problems

® Lack of interactive probing question/answer
sessions between tutors and students which can
enable problems to be explored and extended

® The promulgation of a view that there are set
answers to problems which can be learnt as a
generalisable strategy

* Accepted 15 July 1996.

365

® Limited development of student—student inter-
action and communication skills.

In order to improve the quality of teaching and
learning in the department, increasing use of
computer-based learning (CBL) has taken place.
In this paper the development of a suitable tutorial
environment is described.

Theoretical framework

The justification for developing a suite of com-
puter-based tutorials, whilst often couched in
terms of the capabilities of computers, is actually
underpinned by theories of learning. This is
because the choice of design features seen as
necessary for effective learning are determined by
whatever understanding of learning is held.
Broadly speaking, ideas in keeping with the con-
structivist model of learning have been used as a
basic philosophy in this project. These ideas are
that the tutorials might be used to ensure that each
student interacts with the course material, thereby
integrating new knowledge and developing prob-
lem solving skills.

Constructivism is a theoretical framework that
has been extensively explored in recent literature.
Current constructivist views of learning see indivi-
dual learners as building up their own internal
conceptual maps or models as a result of inter-
active processes between each learner and her/his
environment. Learning outcomes are dependent
not only on the environment but also on the
state of the learner with her/his existing concep-
tions and motivations. Learning occurs as an

366 Russell Keenan et al.

active construction of meaning as a result of
refection on experiences (e.g. [1]).

‘Reflection’ is one of those concepts embodied in
educational theory which deserves to be reflected
upon. It does not simply mean thinking over an
experience, but implies a conscious integration of
experience into an existing model. Our mental
frameworks are influenced by our sociocultural
environment as well as our physical environment.

Modelling often involves the construction of
mental images, of visual metaphors. Language
metaphors are an integral part of our way of
understanding the world [2]. The concept of
visual metaphors—graphical or visual ways in
which links are made between existing and new
knowledge—can also trigger the production of
useful questions which enable the learner to pro-
gressively explore, predict, test and refine models.
In CBL, extensive use is made of visual metaphors;
the means of ensuring students interact with their
course material has traditionally been done
through visual and verbal analogies, exercises,
such as performing calculations and plotting
graphs, and answering questions related to and
extending material which has been presented in
lectures.

It is this framework of progressively developing
models through a process of metaphorical associa-
tion, asking questions and testing ideas that has
driven the development of the CBL material
described below. The process of constantly refer-
ring to students’ interpretations of the material is
an integral part of the development of each pack-
age.

This approach to educational design is described
well by Laurillard [3]. She outlines a framework for
analysing educational media in terms of opportu-
nities for:

® discussion and negotiation between the learner
and the teacher;

® interaction between the learner and the educa-
tional context designed by the teacher;

® adaptation by the learning of the material pro-
vided in order to construct his/her personal
understanding;

e reflection on the learner’s performance by the
teacher and the learner.

Educational goals

The goal of producing these tutorials has been to
improve the quality of education of electrical
engineering undergraduates. The second and
third year tutorials were identified as the best
area for such work to focus on.

The primary educational objective of this project
is to deliver tutorial material to students on an
individual basis, using relatively new technology to
develop a suitable CBL system. The second objec-
tive, which is a consequence of the first, is to free
up staff to run discussions and practice classes for
small groups, where material which requires

intense tuition, but which is not amenable to
CBL, can be effectively dealt with.

The most suitable way of improving the depart-
ment’s tutorials seemed to be the development of a
suite of computer programs, comprising a shell,
specific tutorial modules and general tools. It was
felt that this approach would utilize many of the
department’s strengths, especially as staff and
students already had some familiarity and expert-
ise with the department’s large and growing com-
puter network infrastructure. The goals of such a
suite of programs would be to:

® Aid students’ learning of the subject matter.

® Develop students’ problem solving abilities.

® Develop students’ skills in using appropriate
computer tools.

® Cater for individual student’s approaches to
learning.

® Cater for individual student’s rate of learning.

® Foster interactive learning.

® Increase the relevance of the tutorials by incor-
porating practical engineering problems.

® Provide feedback to both students and staff
about how much students are learning.

® Provide evidence about the teaching effective-
ness of the course.

It is hoped that these tutorial modules will aid
students both in the learning of subject matter and
about the kinds of tools used to solve the relevant
problems. This could give a greater understanding
of the computer resources available for the rest of
the students’ studies. Many of these tools would
also be used by students later in their professional
lives and this will better equip students for the
workplace. This, however, does create a tension in
the planning and design of tutorials, as time
constraints make it difficult to cover both aspects
well. To resolve this, specifying goals for each
tutorial is essential.

Another advantage of a computer-based
approach was thought to be that students might
be able to take their tutorials at the times that suit
them. This would allow for greater flexibility for
students, giving them more control over the time,
place and pace of their tutorials.

One great advantage of computer-based tutor-
ials is the possibility of making problems inter-
active, especially those requiring much calculation.
Such interaction tutorials allow students to
actively explore models. By changing parameters
and seeing results instantaneously, students- are
able to develop a better feel for what are important
factors in a model, and what are incidental. Inter-
active tutorials might then be used to help bridge
the gap between understanding of theory and
practice [4—6].

There is also the possibility for the student of
being able to focus more upon the actual material
being presented. Since simple, repetitive calcula-
tions can be performed by an online tool, and
graphs can be drawn automatically by any
number of drawing or maths packages, doing

X Windows on the World: A Systems Approach to Designing CBL Tutorials 367

many of these sorts of exercises manually is no
longer relevant in a computer-based engineering
environment.

Problems can also be implemented with some
form of random factor so that the numerical
context changes. This would prevent the most
basic forms of cheating in any assessment. It also
allows problems to be attempted more than once
for additional learning reinforcement.

To ensure these other goals are fulfilled, ad-
equate feedback is vital. This feedback is required
on many levels; the performance of students, their
perception of course and tutorial presentation and
the relevance of the tutorials to students’ needs.
Feedback from teaching staff is also vital, as it
ensures that the goals of the tutorial correspond to
those in the curriculum.

Therefore it has been a goal of preparing these
tutorials to rethink the kinds of exercises that
students are required to do. This has required
clear thinking on the part of the relevant lecturers
about the educational goals of each tutorial, and
how they might best be achieved. This has brought
about a fresh focus on student learning in some of
the subjects for which tutorials are being prepared.

THE TUTORIAL ENVIRONMENT

The tutorial environment provides a consistent
way of interacting with the computer. It exists
within the existing software base and adds new
features.

Brief X Windows outline

X Windows is an extremely flexible graphical
environment that is standard on Unix platforms
and is available within many other operating
systems. Since X Windows runs with Unix, it
allows many applications to run simultaneously
and seamlessly in a networked environment. This
flexibility is available at the user and tutorial
designer levels. It allows the design of tutorials to
be quite modular and self-contained.

The issue of security is important within such a
tutorial environment. Users of the X Windows
system have a lot of control over their operating
environment, making security difficult where
user’s freedom is not to be too limited. In order
to prevent doctoring of results, some level of
security is needed to prevent access to those areas
of the system where results and attendances are
logged in some form. The tutorial software must
also protect students’ privacy in the results stored
and the confidentiality of responses to question-
naires.

Outline of tools

There are many applications available within the
X Windows Unix environment. They range from
quite general-purpose tools, such as Matlab (a
maths package), through circuit simulators, such

as Spice, to quite specific applications like Mosaic
(a hypertext viewer).

The X Windows environment is also quite open
to the development of custom applications. We
have developed these where available tools were
too general, too difficult to use or simply not in
existence yet. So far two custom applications have
been written—a neural network simulator and a
step response (pole-zero) simulator. These tools
have been able to be integrated within the tutorial
framework despite being written in various lan-
guages and within different design philosophies
and having quite different goals.

TUTORIAL SYSTEM CONSTRAINTS/
REQUIREMENTS

Importance of visual design

The aspect of visual design, though originally
seen as slightly peripheral to the overall success of
the project, has now assumed a much more central
role. Driving this is the realization of the need to
focus development of the tutorial module system
on the way in which students and lecturers, though
particularly students, will interact with the soft-
ware. While it may be that engineering students
have experience of coping with poorly designed
interfaces and some ability to figure out arcane
command sets, the time spent doing this can be
boring, discouraging and wasteful of time better
spent doing the tutorials themselves.

Visual cues have been used where possible to
focus attention upon relevant information. There
is a tension between wanting visual variety to keep
students’ interest, and the consistency required for
ease of use. Visual design also addresses the
difficult in working out exactly the right amount
of information to present to students, so that all
relevant information is able to be found. In most
cases it is not possible or desirable to present all the
relevant information on the screen at one time.
Instead information should be available at a level
of effort proportional to the importance of that
information, i.e. varying from on-screen to nested
deep within menus. It is undesirable to make the
path to information too obscure, or else it might
never be found [7].

Administration of the tutorial system

Planning the administration of the tutorial
system has involved addressing two main criteria.
The first is that the system should ease adminis-
tration of tutorials, by doing such things as report-
ing the progress of students, both collectively and
individually. The second is that the system be as
self-contained as possible, so that the need for
supervision may be kept to a minimum for the
running of the tutorials. Both these issues may be
addressed by working towards making the tutorial
software behave as intelligently as possible [8].

In order to ease the administration of tutorials,
such features as automatic marking and reporting

368 Russell Keenan et al.

of students progress seem to be desirable. Feed-
back forms can be tedious to collate by hand, but
this is easily done online. The time taken to answer
questions, and the various navigation paths stu-
dents take through the tutorials may also be used
to improve the tutorials and identify areas in the
course with which students are having difficulty.
The possibility is thus open for computer-based
tutorials to be more responsive, and better suited
to the needs of students.

Automatic correction, recording of results and/
or answers and reporting of students’ progress ease
the administration load. This necessitates the
requirement that the tutorial shell either be intel-
ligent or be able to be manipulated by intelligent
general purpose programs. Intelligent systems tend
also to be more flexible, aiding responsiveness. In
order to progress this aspect of this project we have
developed an equation solving program which is
used in conjunction with a question presentation
program and a full graphics editor to provide
tutorials on topics such as network analysis and
electronic circuits.

Features such as online, context-sensitive help
and consistency in the user interface reduce the
need for supervision. By reducing the need for staff
to provide the help necessary to those using the
tutorial system some of the burden on system
administrators is relieved. This allows that super-
vision that does occur to be based more on the
course material. Such help screens may be imple-
mented using hypertext style links on keywords
and diagrams, with the ability to call up further
help if that is required.

Finally, the tutorials need to be accessible by the
students. Planning for this raises further questions
as to the desirability and/or need of supervision in
the tutorial computer labs. The availability of
other computer labs on campus and their super-
vision is an issue that needs to be resolved.

TUTORIAL IMPLEMENTATION

Tutorial system

Figure 1 shows a diagram of the tutorial system.
The lines of interaction required to create and use a
tutorial are shown as full lines. From this diagram
it can be seen the person writing a tutorial does so
through the use of Windows 4GL and Mosaic.
These are the shell or glue programs which tie the
tutorials together. The variation possible in navi-
gation through tutorials places some demanding
requirements upon these shell or glue programs.
Such a program must be able to interact with
others, be able to call other tools and applications
transparently to the user.

The program must also allow for multiple
approaches to a particular problem. It must be
able to cater for students who are new to the X
Windows environment and present an integrated
environment to them. It must also allow students
with some experience to explore the environment

and let them interact with the utilities and specia-
lized modules at a more advanced level. These
programs are covered in more detail below.

Another requirement of the tutorial system is
that it provides automatic assessment of the stu-
dents performance. In Fig. 1 the activities of the
Intelligent Tutorial Software are shown as dashed
arrows. From a database of student activity this
system assess the student performance in a number
of possible different ways. It can, for example,
determine how far through the tutorial the student
has progressed, how many hints of what level they
used and the time taken to perform tasks assigned
by the tutorial.

The authoring system

When looking for a suitable program to use as a
shell to glue together the tutorial modules and
utilities, a number of features were quickly identi-
fied as being desirable or necessary. They were:

® The ability to incorporate text and graphics
within a unified framework.

® The ability to display equations.

e Hypertext capabilities.

® The ability to call outside programs.

® The need for the interface to have some form of
intelligence or programmability, to allow for
automatic correction.

® Some form of tool to author and layout win-
dows and screens.

® Easy administration of the system wherever
possible.

The initial systems reviewed were specifically
designed hypertext viewers. Of these, a large
number were still in the vapourware stage. The
others were generally unable to function interac-
tively with other programs. Existing shell pro-
grams were able to function fully in the
multitasking X Windows environment, but did
not possess good authoring tools and did not
come with pre-existing hypertext facilities,
making it necessary to write everything from
scratch.

Ingress Windows 4GL has proved itself a suit-
able tool to use as a tutorial shell, though it was
originally designed as a database front-end. It
possesses an authoring tool, has a general purpose
scripting language and is able to call both C
functions and exterior programs. It is also able to
display text and graphics in various formats.
Hypertext functionality is able to be programmed
in using transparent buttons. Similarly, equations
are able to be typeset using other tools, and are
able to be incorporated seamlessly into the text as a
piece of graphics.

Other benefits gained by using a database front-
end are security and the ability to record and store
any information required, in a form amenable to
further processing (such as for marking or evalua-
tion). The security features are standard require-
ments for databases. They were relatively well
tested and so did not require any development

X Windows on the World: A Systems Approach to Designing CBL Tutorials 369

Windows 4g|

Mosaic

B ——E T
— ¢ udent
= = = = & |ntelligent Tutorial Software

Fig. 1.

effort on our part. The ability to store data easily
and securely were not originally identified as being
of high priority. However, with hindsight it seems
that these are vital to the system we are developing.

Reuse continues to gain prominence within the
software industry. It saves time in code writing and
debugging. Within the environment of tutorial
development it gives the additional benefit of
consistency in the user interface. An example of
this is in the use of Mosaic—another package
which can be used to perform some similar func-
tions to Windows 4GL. At present it is used for the
online help system. Not only does the use of
Mosaic give a consistent interface to the help
information, it also exposes students to Mosaic,
which is gaining rapid acceptance in the user
community as a hypertext browser for the Internet.
Mosaic has been developed as a means of navigat-
ing the World Wide Web (WWW), a massive,
decentralized and growing hypermedia system.
The WWW allows the viewing of text, graphics,
and files. Sound and animation are also possible
(where available). Links may be made between
documents stored at the same site, or in another
country, without the user needing to worry about
the details. A local Mosaic server has the potential
of providing a consistent, easily used and extended
hypertext help system.

In a tutorial, students therefore have access to a
large number of utilities and programming tools
that they might use to solve any particular prob-
lem. A tutorial thus becomes a braided thread of
execution through the students’ desktop environ-
ment. A typical session may vary from just step-
ping through some information pages to
navigating through a host of text, utilities, graphs
and editors.

Custom tools developed

Several custom tools have been used as part of
tutorials in the first year of the project. They are a
neural network simulator, a step response simula-
tor, a transformer equivalent circuit and an RLC
circuit simulator. All of these were written and

Student Windows

used in the tutorials because no other pre-existing
tool was available.

The Xnet program is a neural network simula-
tor. It was developed within the department as part
of research into the functioning of neural net-
works, and has been modified for the teaching of
a fourth year course. Xnet was designed to provide
a general interactive graphical interface to neural
networks. The program stores networks and input/
output as loadable files, avoiding the time wasted
by students writing custom neural network simu-
lators from scratch. It was originally developed for
people who already had some familiarity with the
X Windows environment. Therefore, it is an intri-
cate tool, allowing the graphic adjustment of most
of the parameters of a neural network.

The step response program was developed spe-
cifically for teaching second year control theory. It
was designed to highlight the correspondence
between the common graphical representation,
abstract description and real world behaviour of
a continuous control system. Students are able to
interactively adjust the amount of feedback in the
control system and observe the effect of this. The
plant and controller may also be changed, and the
results of this seen immediately.

The interface of the step response simulator was
consciously kept simple. This was done to keep
attention focused firmly on the interaction of the
control parameters involved, rather than on learn-
ing to use the system. A graphic designer was
consulted for discussion on layout and colour to
increase the clarity of the user interface.

Example tutorials

As an example of the use of these tools a tutorial
has been developed which enables students to
explore the training application of neural net-
works. An introductory tutorial is designed to
teach the students how to use the Xnet tool and
then subsequent tutorials encourage the students
to use the Xnet tool to explore the training and
operation of neural networks. The aim of the
tutorials is to encourage the students to develop

370 Russell Keenan et al.

sufficient curiosity to use Xnet to extend their
knowledge of neural networks into areas which
are still in the province of research in this area.

Another example tutorial which has been devel-
oped uses a program which links in Simulink (a
part of Matab) to the tutorial environment. This
tutorial leads to the students step by step through
the development of the components of a micro-
processor to the point where these components are
assembled to complete a four-bit microprocessor
simulator. At the completion of the tutorial stu-
dents understand the concept of the use of tristate
buffers to provide a register transfer system which
shows the basic functionality of a Von Neuman
processor.

FUTURE DIRECTIONS

As the work has progressed it has become clear
to us that it is important to develop and set
standards for the development tools and environ-
ment for CAL packages [9].

We have been most impressed by the work of
Thomas et al. [10] who have developed INTER-
ACT. This is a project that uses Mosaic as a front
end to a group of interacting programs. Mosaic
forms the hypertext glue to link a number of other
programs together. Very small modifications to
Mosaic have made two way communications pos-
sible, and a C+ + toolkit library exists to aid the
development of programs that communicate
together. There are a number of sites in the UK
already developing CAL packages that use this
environment.

REFLECTIONS

Integration issues faced

While the aim of the project has always been to
develop a suite of programs, comprising a shell,
specific tutorial modules and general tools, the
majority of development time spent in the first
year has been directed toward the production of
custom tools. The initial reasoning for this was
both to gain some initial momentum and to try to
avoid becoming locked into an appropriate design.
Because this was done before the tutorial shell had
been put in place, an attempt was made to make
these programs relatively stand-alone. This proved
difficult, due to the large number of features
required for such a program. The experience
gained through this approach has reinforced
awareness that the programs used in a tutorial
setting need to be closely integrated set, reusing
wherever possible.

One way in which close integration was per-
ceived to be desirable was in the initial loading of
programs into the student’s work space. Some of
the earliest tools used within trial tutorials were
quite difficult for students to configure, even with
handouts and instructions on whiteboards. A pos-

sible solution to this problem lies in the use of tool
programs that are configurable, either statically or
dynamically, by the shell or some other program—
they should be configurable at the time of loading,
or as they run, through some form of inter process
communication (IPC), such as pipes or Dynamic
Data Exchange (DDE). The shell can configure the

tool program appropriately for the particular

tutorial. Unix provides most types of these com-
munication services. X Windows has another set of
program communication tools. Piping data is
perhaps the easiest to implement, as many X
Windows programs already have the facility to
be controlled from the command line. This
approach allows these tool programs to be used
as-is.

Another issue becomes apparent when commun-
ication between processes is considered. This is
how visible such communication should be. Inex-
perienced users may be uncomfortable or confused
watching or participating in low-level program
manipulation. However, experienced users might
like the extra control available from a more open
system. Again the question arises as to whether a
particular tutorial is designed to teach the tool or
the subject matter.

Integration highlights certain aspects of visual
design. The environment needs to be integrated
both at the level of user interaction, and at the level
of IPC. This requires the consistent use of symbols
and graphical devices to display and navigation
information. Otherwise the programs may be too
enigmatic for student use.

Evaluation of the experience thus far

In educational evaluation it is essential to seek
evidence of success by several means; the validity
of any approach comes from the coherence
between the interpretations of several measure-
ments [11]. In this project, four main mechanisms
were used to evaluate the success of the work being
done:

The use of a balanced reference group. The refer-
ence group members were electrical engineers,
programmers, computer systems experts, and an
educational consultant. The constant dialogue
between these professionals, both at an informal
and formal level, ensured that the final decisions
being reached considered engineering content,
hardware and software factors and educational
considerations. The inclusion of a graphic designer
enhanced this team.

Interviews with students. Students’ perspectives
and interpretations were constantly sought
throughout development. The formative evalua-
tion enabled the decisions of the reference group
to be fine tuned.

Questionnaire given to students. A formal sum-
mative evaluation was done on the Xnet custom
tool with 15 students. A summary of the results is:

X Windows on the World: A Systems Approach to Designing CBL Tutorials 371

e Students provided information about their per-
ceptions of the purpose of the tool; some
thought it was for teaching content and some
for training in the use of computer software.
Constant clarification of objectives for students
is an integral part of any CBL system.

e Students have acceptable levels of computer
confidence and feel relaxed when using compu-
ters.

e Some correlation between the students’ level of
computer skills and perceived helpfulness were
noted. This may indicate that the complex user
interface proved a barrier to some students.

e Students found Xnet easy, enjoyable and inter-
esting to use, though nearly half the students
were unsure about how useful it was.

e Students did not use the ‘Help’ information and
this may account for some students not seeing
the full potential of the tool. The one student
who admitted to using ‘Help’ claimed to have
done so by accident. This incomplete use of a
CBL tutorial system is a common problem [12]
and overcoming this will be part of future work.

e All students were satisfied with the screen design
and layout and found it intuitive to use; this
validates the increasing emphasis being placed
on visual design.

Discussions with all staff members in the Depart-
ment of Electrical and Electronic Engineer-
ing. The development of the CBL system and
the assurance of its use in a wide variety of
contexts has been enhanced by the outreach
made by project members to other members of
the department. The support and interest shown
by colleagues has been a very positive part of the
project.

Further work

Work continues in several main areas. The first
is the continuing design of the tutorial environ-
ment itself. The visual design of the environment
needs constant revision as more functionality is
built into the tutorial system and any shortcomings
in the current design become apparent. The pro-
grams that comprise the tutorial environment are
also being upgraded fairly regularly, and with that
come new design possibilities and new ways of
interacting with the shell. The planning for such
change will also become an issue as the tutorial
environment stabilises.

In response to the evaluation, each tutorial will
now have clearly specified objectives. In addition,
navigation towards online help and ‘Help’ itself are
being redone. The current direction of this work is
the inclusion of Mosaic into the tutorial system.

New tools continue to be written and become
available. Whilst there is no way to control what
becomes freely available, further work needs to be
done to allow the environment to interact with
these programs in a number of ways. New custom
programs will also be developed as the need for
them arises. Again planning for any new pro-
gram’s incorporation and writing custom tools to
conform to the needs of communicating with the
tutorial environment must also be done.

As the project shifts toward developing a seam-
less tutorial environment, previously written pro-
grams will need further modifications to allow
them to fully interact with the rest of the tutorial
system. These programs must also be updated to
conform to any new standards that are set, to try
to prevent them being orphaned.

As we have stated above, we are keen to
encourage the development and setting of stan-
dards for CAL tutorials and see the INTERACT
project as a step in the right direction towards
achieving this goal.

Finally, and most importantly, is the continued
work with the academic staff postgraduate tutors
and undergraduate students. The academic staff
are vital in the development of new teaching
material. The goals, possibilities and limitations
of the project need to be communicated in order to
ensure continued feedback, new ideas and teaching
material. Communication is necessary to ensure an
accurate understanding of what is possible, so that
realistic expectations are maintained. Student feed-
back will play a more prominent role as more of
the tutorials come online. Their use of the tutorial
environment will provide the impetus for much of
the change as the system matures.

Acknowledgements—This project has been made possible by the
financial support of a grant from the Committee for the
Advancement of University Teaching and subsequent financial
backing University of Melbourne. The authors of this paper
acknowledge the contribution of Catherine Gleeson of the
CHSE Graphic Information Design Dept. to the design of the
project’s graphical interfaces. Finally, we acknowledge the staff
members of Electrical Engineering who have helped through
their support and ideas, especially Dr M. Palaniswami and Dr
C. Zhang.

REFERENCES

1. R. Driver and B. J. Bell, Students’ thinking and the learning of science: a constructivist view,

School sci. Rev., 64, 443-456 (1986).

2. C. Sutton, Metaphorical imagery: a means of coping with complex and unfamiliar information in
science, Durham and Newcastle Res. Rev., 11, 216-222 (1981).
3. D. Laurillard, Rethinking University Teaching: A Framework for the Effective Use of Educational

Technology, Routledge, London (1993).

4. H. Diab and 1. Demashkieh, A Computer-aided teaching package for microprocessor systems

education, /EEE Trans. Ed., 34, 179183 (1991).

5. A. Read, Computers and computer graphics in the teaching of field phenomena, IEEE Trans. Ed.,

33, 95-103 (1990).

T TN

372

O © N o

11.

12,

Russell Keenan et al.

. F. Stremler, S. Klein, F. Luo and Y. Liao, Numerical solutions and mapping of electrostatic fields

using the Apple Macintosh computer, JEEE Trans. Ed., 33, 104-110 (1990).
J. Phillips and M. Crock, Interactive screen design principles, in B. Chia, R. Pennell and R. Sims
(eds), ASCILITE ‘92: A Promised Future, Sydney, pp. 237-250 (1992).

. B. Antao, A. Brodersen, J. Bourne and J. Cantwell, Building intelligent tutorial systems for

teaching in engineering education, JEEE Trans. Ed. 35, 50-56 (1992).

. R. Keenan and K. Forward, Standards for the CAL Environment, Proc. Pacific Region Conference

on Electrical Engineering Education, Marysville, Victoria, Australia, pp. 84-87 (1995).

. R. Thomas, I. Neilson, A. Slater and C. Smeaton, The INTERACT Project—an integrated

engineering simulation environment, Proc. Computer Aided Learning in Education, University of
Sheffield, England (1994).

S. Wills and C. McNaught, Evaluating computers in learning in tertiary education, in B. Lo (ed.),
Reaching out with IT. Proceedings of the Australian Society for Computers in Learning in Tertiary
Education ‘93 conference, Centre for Computing and Mathematics, the University of New England,
Northern Rivers, Lismore, pp. 691-703 (1993).

R. Day, C. McNaught, J. Tonkin and P. Sluczanowski, Teaching population dynamics at tertiary
level, in B. Chia, R. Pennell and R. Sims (eds), ASCILITE ‘92: A Promised Future, Sydney, pp. 53—
63 (1992).

