Int.

J. Engng Ed. Vol. 12, No. 6, p. 457-466, 1996
Britain.

Printed in Great

0949-149X/91 $3.00+0.00
© 1996 TEMPUS Publications.

New Approach to Teaching Discrete
Event System Simulation*

A.

M. ZIKIC! AND B. LJ. RADENKOVIC?

! Department of Electronics Engineering and Physics, Electronics Division, University of Paisley,
Paisley, PAl 2BE, Scotland, UK
2 Faculty of Organisational Sciences, University of Belgrade, 11000 Belgrade, Jove Ilica 154, Yugoslavia

The paper presents a different way of teaching discrete event system simulation. A completely new
language, ISDS, based on GPSS concepts but with an interactive user interface and Pascal-like
syntax with many other new features was developed as the teaching tool. The main purpose of this
simulation system is to enable a cheap and easy learning and practising environment, particularly
suited for students of engineering. In addition to the language definition, it's implementation and
the user interface description, we also present a comparison of ISDS to GPSS and PASSIM and
performance comparison between ISDS and GPSSIFON in teaching simulation. Finally, our
experience in teaching simulation using ISDS is illustrated with an example of students’ exercise
that compares favourably with a previously published work.

SUMMARY OF EDUCATIONAL ASPECTS

1.

The article discusses material for a novel
course in modelling and simulation of discrete
event systems, based on the ISDS language.
In order to fully asses the merits of the new
approach and the ISDS language, a control
group is taught the same syllabus under other-
wise identical conditions, using GPSS/FON,
[1].

. Students of both groups (a minimum of 40
in each one) are selected such that they
possess almost identical average capabilities.
Additionally, the number of ‘best’ and
‘worst’ performers is equal in each group.
Students of mechanical, electrical/electronics
and industrial engineering as well as those of
computer science and management are taught.
Students of electrical and electronics engineer-
ing are taught at the postgraduate level while
others are taught at undergraduate level.
Mode of presentation is through lectures,
tutorials and laboratory course work. The
latter consists of six compulsory laboratory
and four compulsory homework exercises.
Material is presented in regular compulsory
lectures.

The course is taught for sixteen weeks with
two hours of lectures and two hours of tutor-
ials each week. Laboratory and homework
time is not strictly timetabled and varies
from student to student. However, the lecturer
is available twice a week for consultancy
purposes.

. The time needed to complete the ten
compulsory laboratory/homework exercises

* Accepted 27 February 1997

457

10.

11.

varies from student to student and averages
around 23 hours for ISDS users and 40 hours
for GPSS/FON users. Students of either
group that successfully complete the full
course need little revision before passing their
exam.

The novelty in our approach to teaching dis-

crete event system modelling and simulation

can be summarised in the following three
statements:

a) The new language ISDS with its modern
concepts and syntax rules, described in the
article, provides an easy, comfortable,
affordable and yet powerful tool that
enables faster learning and implementation
of the modelling and simulation concepts.

b) The integrated, interactive and user-
friendly environment of both GPSS/FON
and ISDS not only improve the rate at
which students accept new concepts and
improve their programming abilities but
also makes the process of learning less
frustrating than if other languages were
used.
The fact that both and especially ISDS are
free of any proprietor fees and royalties,
enables us to install as many copies as
necessary and give students a copy of the
appropriate language accompanied with
manuals also free of any charge.
Our experience shows that students’ study is
more relaxed if they can use their home
computers in addition to the University
facilities and that they gain better results
spending fewer hours studying than if only
the laboratory facilities were available.

The course notes issued to every student free of

charge have a comprehensive coverage of the

458 A. M. Zikic and B. Lj. Radenkovic

simulation concepts and respective language
features and a complete coverage of its syntax
and semantics. The short-form user-manual
for the integrated environment and a set of
worked ‘no-nonsense’ examples, that illustrate
harder to grasp concepts, improve the student
performance even further. Additionally, all
terminals and microsystems allocated to this
subject are equipped with complete GPSS/
FON and ISDS manuals.

INTRODUCTION

THE DISCRETE event system theory, simulation
and practice are covered in many books and
articles in scientific journals and started appearing
even in IEEE publications on control systems. The
reader of this paper can find a brief summary of
discrete event system theory in [1]. After many
years of teaching the discrete event system simula-
tion we monitored student progress in learning the
concepts of GPSS and GPSS/FON [1-3] as well as
the average time needed to accept an entirely new
approach to programming. Our findings can be
summarised as:

1. Students learn programming based on Pascal
and C concepts that employ very strict and
explicit typing of variables and objects.

2. On the other hand, GPSS does not have either
the explicit declaration or strict typing of vari-
ables but uses a mixture of implicit and explicit
of both.

3. A structured approach to programming devel-
oped by using Pascal as the main programming
language becomes the second nature to students
long before we attempt to teach them the
discrete event simulation.

4. GPSS syntax is of assembler type with many
labels and transfer block statements. At the
time of its creation, the structured approach
to programming was non existent and its struc-
ture is very similar to that of the contemporary
languages.

It is obvious from above that our findings
summarised in (1) and (3) are in an irreconcilable
conflict with those in (2) and (4). There was,
therefore, no doubt in our mind that the GPSS
syntax and structure posed a great impediment in
learning discrete event system simulation to all
those who had any pre-knowledge of modern
programming techniques and concepts. In order
to improve the students’ response to our teaching
efforts, we decided to write an entirely new lan-
guage that would satisfy the following require-
ments:

® cheap and affordable for an average student’s
home practising;

® language syntax with strictly divided specifica-
tion of the model database, model structure and
control of the simulation process;

® interactive environment with resident editor,
processor and result analyser;
e fast and easy model debugging.

Before an attempt was made to write a rather
pretentious package that would meet the above
requirements, we decided to investigate simulation
systems other than GPSS, available at the time.

- One of the affordable solutions was Passim, [4,5].

It embeds GPSS statements in a standard Pascal
program and uses the pre-processor to generate the
Pascal source. However, the main disadvantage of
this solution is a necessity of the Pascal compiler.
Second disadvantage is a fairly complicated debug-
ging process for an inexperienced user. As even the
most affordable package did not satisfy all our
criteria we adventured into development of an
Interactive System for Discrete-event System simu-
lation (ISDS) as a joint research project of the
Department of Organisational Sciences, University
of Belgrade and the Department of Electronic
Engineering and Physics, University of Paisley.
The main requirement was to develop a simulation
language with concepts similar to those of GPSS
but with a small and concise kernel of syntax rules
that would satisfy the following requirements:

® strict label, constants and entity declarations;

® model definitions with block statements, assign
statements, wait-until and logical branch state-
ments;

® input/output statements for interactive simula-
tion and graphical result presentation;

® a set of control statement that supports inter-
active environment.

ISDS LANGUAGE SYNTAX AND
SEMANTICS

When we started writing the syntax rules of the
new language, it occurred to us that our graduates
will have to use GPSS or some other commercially
available system, rather then our ISDS. Thus
whenever possible, we tried to retain the GPSS
instruction names. Those instructions that are
different in ISDS are either non-existent in GPSS
or cause confusion in a novice’s mind while using
the latter. Modern concepts of compiler design
‘demand’ a single pass compilation which, on the
other hand, means that the left recursion and
backtracking must be strictly avoided. Thus, we
adopted the recursive descent method for our
syntax analyser which in return defined the
global syntax structure of ISDS. The complete
language definition in EBNF is given in [6]. We
present here only a short description of the lan-
guage syntax, given in Fig. 1. In addition, a
number of pre-defined functions that define usual
statistical distributions is readily available to the
user. The semantics of typical ISDS statements is
shown in Table 1.

New Approach to Teaching Discrete Event System Simulation 459

<SIMULATION MODEL> ::= MODEL <ModelName>
[<KLABEL_definition>]
[<CONSTANT _definition>]
[<ENTITY _definition>]
[<FUNCTION_definition>]
[<MODEL_specification>]
[<CONTROL_specification>]
[<COMMENT>]

END_MODEL.

<ModelName> ::= <Identifier>
<LABEL_definition> ::= LABEL <LabelName>
<CONSTANT_definition> ::= CONST <ConstantName> = <Value>

<ENTITY_definition> ::= ENT <EntityName> : <EntityType>
<EntityType> ::= <SimpleType> | <ArrayType>
<SimpleType> :=LOGIC| VAR | FACILITY | STORAGE | QUEUE | TABLE| CHAIN
<ArrayType> 1= ARRAY <Dimension> OF <BasicType>
<BasicType> :=LOGIC| VAR

<FUNCTION_definition> ::= FUNCTION <FunctionName>[(<ListOfParametrers>)] := <ArithmeticExpression>

<MODEL_specification> ::= MOD_BEGIN
{<Statement_mod>}
MOD_END;
<Statement_mod> ::= [<Label> :] <CompoundStatement> | [<Label> :] <SimpleStatement>
<CompoundStatement> ::= BEGIN {<SimpleStatement>} END;
<SimpleStatement> ::= <BlockStatement> |<BranchStatement> | <AssignStatement>| <I/O_Statement>
<BlockStatement> ::= <ADVANCE> | <DEPART> | <ENTER> | <GENERATE> | <GATHER> | <LEAVE> |
<LINK> | <MARK> | <PRIORITY>| <QUEUE> | <RELEASE> | <SEIZE> | <SPLIT> |
<TABULATE> | <TERMINATE> | <UNLINK>
<BranchStatement> := <IF_statement> | <CASE_statement> | <TRANSFER_statement> | <WAIT_UNTIL>
<AssignStatement> ::= <SimpleType> := <ArithmeticExpresion>
<l/O_Statement> := <CLOSE> |[<INPUT> | <OPEN> | <PRINT> | <REPORT> | <PLOT>

<CONTROL_specification> ::= CTRL_BEGIN
{<Statement_ctrl>}
CTRL_END
<Statement_ctrl> ::= <RESET_statement> | <CLEAR_statement> | <START _statement>

<RESET_statement> ::= RESET

<CLEAR_statement> ::= CLEAR

<START _statement> ::= <terminal_counter_value>

<terminal_counter_value> ::= <numerical_operand>

<COMMENT?> ::=<comment_start> {<symbol>} <comment_end>
<comment_start> ::= {
<comment_end> :=}
<symbol> ::= any ASCII character
N.B. A comment can be placed anywhere between the MODEL <ModelName> and END_MODEL statements

Fig. 1. Brief format of the ISDS language syntax.

Comparison of ISDS to GPSS, PASSIM and runs a copy of that language. Thus, our com-

SIMANICINEMA parison of ISDS to SIMAN/CINEMA will be
Our knowledge of and the experience in using equally limited and is based on our experience

SIMAN/CINEMA is fairly limited compared to through occasional access that we were granted

that of PASSIM and various GPSS dialects, by the licensed institutions.

including our own [1], as neither of our institutions Unlike GPSS, ISDS possesses a strictly formal

460 A. M. Zikic and B. Lj. Radenkovic
Table 1. Semantics of the most important ISDS instructions
INSTRUCTION DESCRIPTION
ADVANCE Holds a transaction for a specified time interval
Operandl - Average Time ; Operand2 - Deviation (1/2 Interval)
DEPART Leave a specified queue
Operand] - Queue Address
ENTER Enter a storage
Operand] - Storage Address
Generales a transaction
Operand1 - Average Time Between 2 Transaction ; Operand2 - Deviation (1/2 Interval)
GENERATE Operand3 - Time to Generate | Transaction ; Operandd - Total Number of Transactions
Operands5 - Priority
LEAVE Leave a storage
Operand]1 - Storage Address
LINK Admission to a user_queue
Operand1 - User_queue Address ; Operand2 - Type of Entry FIFO/LIFO
MARK Set the ‘Marker’ to the current value
PRIORITY Transaction priority
QUEUE Admission to a queue
Operand] - Queue Address
RELEASE Release a device
Operand1 - Device Address
SPLT Split a transaction
Operand] - Number of Transactions
GATHER Merge several transactions
Operand1 - Number of Transactions
SEIZE Seize a device
Operand1 - Device Address
TABULATE Save value for histogram
Operandl - Table Address ; Operand2 - Table Attribute
TERMINATE Transaction leaves the model
Operand] - Decrement Value
Transaction leaves a user_queue
UNLINK Operand1 - User_Queue Address ; Operand2 - Address in the Queue
Operand3 - Number of Transactions Leaving ; Operand4 - Destination Address
RESIT Reset the simulator
CLEAR Delete the statistics and reset the clock
START Start the simulator
Operand] - Terminal Time
Open a data base
OPEN Operandl - Add or Remove Data
1-INPUT 2-OUTPUT
Operand2 - Data Base Address
CLOSE Close data base
Operand] - Data Base Address
INPUT Read from a data base
Operandl - Data Base Address ; Operand2 - List of Actual Arguments
INPUTIN Read a Line from a data base
Operandl - Data Base Address ; Operand2 - List of Actual M&ments
PRINT Write to a data base
Operandl - Data Base Address ; Operand2 - List of Actual Arguments
PRINTIN Write a line to a data base
Operandl - Data Base Address ; Operand2 - List of Actual Arguments
PLOT Plots a table of data (Histogram)
IF - THEN - ELSE || Conditional branching
CASE Computed conditional branching
TRANSFER Unconditional branching
WAIT_UNTIL Conditional temporary s?op
Operand1 - Condition for Restart

New Approach to Teaching Discrete Event System Simulation 461

syntax definition and checking if operands are of
permissible type for a given function. Also, a very
useful feature is introduced through the condi-
tional branching instruction set IF-THEN-ELSE-
CASE that allow the nesting of program segments
in a clear and easy-to-follow manner. Like GPSS
and SIMAN/CINEMA, ISDS possesses the block
oriented syntax structure in its processing of pro-
cess interactions, but unlike the two it also has a
facility of abstracting many instructions into a
compound statement that makes the branching
instructions much easier to use, follow and debug.

Unlike in GPSS, all static entities like
FACILITY, LOGIC SWITCH, SAVE VALUE,
etc. must be explicitly defined in a separate pro-
gram segment and cannot be used unless pre-
viously defined. Thus, those errors due to a
wrong implicit specification that may (as well as
not) become obvious at the GPSS program execu-
tion are fully eliminated in ISDS and are reported
at the compilation stage as non-defines. The ability
of ISDS to compound statements and accept only
explicitly defined static entities enables a trainee to
make fewer mistakes in modelling a system than in
either GPSS or SIMAN/CINEMA.

Although the PASSIM enables both Pascal and
GPSS structures to appear in the same program,
thus ‘marrying the best of the two worlds’, it still
lacks several properties of ISDS:

1. Firstly, a PASSIM user should be reasonably
fluent in both GPSS and Pascal which is not
necessary in the case of ISDS; indeed, many of
our re-training course attendants are not fluent
in either and do not normally require any
knowledge of Pascal for their present and/or
future work.

2. Secondly, not all of the GPSS shortcomings are
eliminated by the availability of Pascal code
whereas practically all of them are in ISDS.

3. The user of PASSIM must have a Pascal
compiler whereas an ISDS user does not require
any additional piece of software other than the
operating system.

4. An ISDS user has to debug only one language
structure and not possibly two entirely different
ones as a PASSIM user may.

ISDS PROCESSOR

The syntax analyser is designed by using a
recursive descent method which translates the
model into an internal representation, in a single
phase. The internal representation of the model
consists of two main parts.

1. Handling of transactions as dynamic entities. It
includes:
a) transactions
b) transaction chains.
2. Static entities—Dblocks, storages, queues etc:
a) tables of permanent entities;

b) tables of statements;
¢) other global variables.

Transaction handling mechanism consist of
two linked lists: Current Event Chain (CEC) and
Future Event Chain (FEC) and procedures for
transaction manipulation. In the execution phase,
the processor prepares the simulation process as
the ‘next event strategy’, by using a data base
consisting of the model structure and its param-
eters [7]. The implementation was realised by using
Turbo Pascal language and its object-oriented
libraries.

STATISTICAL DATA ACQUISITION

The user must build his/her own set of control
statements that depend on model structure. ISDS
has facilities for collecting statistical data during
run time, similar to those of GPSS. The standard
numerical attributes, assign statements, input/
output and control statements permit custom-
designed data collection. The computation of the
statistical parameters is performed by using stand-
ard recursive techniques. The main advantage in
using the recursive technique is that only a simple
database, consisting of two values, has to be
updated in each pass. The statistical data related
to permanent entities such as Storage, Facility,
Queue and User Chain are obtained by using the
well known statistical formulae.

The determination of the statistical values is
performed when either a transaction and the
entity meet or when a transaction leaves the
entity. The actual evaluation is done by the appro-
priate block procedures as specified above. Some
block procedures (Generate, Advance and Trans-
fer) use three internal random number generators
for computing their operand values. In this imple-
mentation of ISDS we use a linear multiplicative
congruent pseudo random number generator [8].

USER INTERFACE

The user interface is built in accordance with
prepositions given in [9], using an object-oriented
approach. The communications among parts of
the environment are realised through an event-
driven mechanism. The latter, named ‘dialogue
acceptor’, detects every change in the state of the
environment and performs a task chosen by the
user, such as the screen editor, operating system
interface, simulator and the simulation result
analyser.

ISDS interactive environment can be formally
described by using the discrete event formalism:

IE = (IES, IM, OM,s, o)
where

IE = integrated environment;

462 A. M. Zikic and B. Lj. Radenkovic

IES = integrated environment states comprising
the finite set:

{Idle,

edit = (file-1, file-2, . . ., file-n),

compile (file-1, file-2, . . . ,(file-n),

simulate,

analyse = (statistical, graphical),

utility = (Chdir, Dos_shell)}

IM = input messages consisting of either key-
board or mouse motion sequences;

OM = output messages consisting of various
comments, warnings and error messages;

s = state functions s: IES x IM = IES; (The
event scheduler suspends the currently
executed task several times per second
and checks for input messages; if no input
message is detected, the execution of the
suspended task is resumed.)

o = Output functions o: IES x IM = OM;
(The output messages scheduler is triggered
by either an input message or the currently
executed task.)

The number of files that can be edited or
compiled simultaneously is limited by the available
memory. The system operates as a quasi multi-
tasking system; each state can be temporarily
frozen in favour of some other one and reassumed

MODEL mini_mark:
LABEL
ENT
Basket
Till stan
Till_expr
Que_stan
Que_expr
Hist_Stan
Hist_Expr : TABLE (
Hist Wait : TABLE (
ATA . VAR; 1
Av No Itm : UAR;
Sim_time : UAR;
FUNCTION

EXIT,GO;

. STORAGE (28);
. STORAGE (2);
. STORAGE (1)
: QUEUE; [1]——
: QUEUE:

. TABLE (

latter. There is, however, no background execution
of any suspended tasks.

The integrated environment provides a quick
and comfortable means of system modelling, simu-
lation and data analysis. In addition, the utility
option enables a quick access to the operating
system utilities. A typical control screen of the IE
is shown in Fig. 2.

Example
A similar model to the one published [1] is used,
for comparison reasons, to illustrate the language:

Write the simulation model by using the following
experimental data: Maximum number of customers in
the shop is 40 at any time; currently, the manager runs
the shop with 20 baskets only and virtually no
queuing at the tills. There are two standard tills for
any number of items and one express till for up to 5
items. Shoppers arrive at average time intervals of one
minute with exponential distribution. A shopper buys
20 items in average. If baskets are not available, a
shopper leaves the shop (a lost customer). The shop
opens at 9.00h and closes at 18.00h.

Figure 3 presents one of the solutions submitted
by students. Figure 4 shows the queue length at
standard tills. Additional analysis identical to the
one in [1], including 3D plots, can also be per-
formed and is not included in this paper for
obvious reasons.

STORAGE :
Capacity Average

STORAGE :

No. of shoppers }

{ Two standard tills >5 items }

{ One express till <5 items 1}
C:\BOZANSAMOP1 .REZ ———1= [1]—1 }

d

Entries |

TILL_EXPR
fiverage
utilisation
A.492 116

contents
B.492

TILL_STAN

FUNCTION
FUNCTION
FUNCTION
FUNCTION

MOD_BEGIN
GENERATE (EXPO (ATA.Val),0,8,1088,8); { Shoppers at imin * EXPO }

Serv_time:
Dev_Se_Ti:
Num_Items:
Shop_time:
Dev_Sh_Tim:=

Capacity Average Average Entries
contents wutilisation

VA 1.641 8.820 391

}
{]
1)
B
}
}
}
}
}

=P(

1
!
J

Fig. 2. A typical interactive environment screen of the ISDS system.

New Approach to Teaching Discrete Event System Simulation

MODEL mini_mark;

LABEL GO;

ENT
Basket
Till_Stan
Till_Expr
Que_Stan
Que_expr
Hist_Stan
Hist_Expr
Hist_wait
ATA
Av_No_Itm
Sim_Time

FUNCTION Serv_Time
FUNCTION Dev_Se_Ti
FUNCTION Num_Items
FUNCTION Shop_Time
FUNCTION Dev_Sh_Tim

:STORAGEQ20);

. :STORAGE(20);

:STORAGE(1);
:QUEUE;
:QUEUE;
sTABLE(L,1,10);
+TABLE(1,1,10);
:TABLE(18,18,10);
:VAR;

:VAR;

:VAR;

+=P(1)*40+120;
=Serv_Time/3;
:=Expo(Av_No_ltm.val);

- =P(1)*120+180;

:=Shop_Time/4;

MOD_BEGIN

GENERATE (EXPO (ATA.Va 1),0,0,1000,0);
IF(Basket.S = Basket.R)
THEN TRANSFER GO;
ENTER (Basket);
ADYANCE (Shop_Tim,Dev_Sh_Tim);
TABULATE (Hist_Wait,M1);
IF Num_Items >4 THEN
BEGIN
QUEUE (Que_Stan);
ENTER (Till_Stan);
DEPART (Que_stan);
TABULATE (Hist_Stan,Que_Stan.Q);
ADVANCE (Serv_Time, Dev_Se_Ti);
LEAVE (Till_Stan);
END
ELSE
BEGIN
QUEUE (Que_Expr);
ENTER (Till_Expr);
DEPART (Que_Expr);
TABULATE (Hist_Expr,Que_Expr.Q);
ADVANCE (Serv_Time, Dev_Se_Ti);
LEAVE (Till_Expr);
END;
LEAVE (Basket);
TERMINATE (0);
GO: TERMINATE (0);
GENERATE (Sim_Time.Val,0,0,100,0);
TERMINATE (1);

MOD_END

CTRL_BEGIN
Sim_Time.Val :=28800;
ATA.Val =60;
Av_No_Itm.Val :=20;
START (1);

CTRL_END

END_MODEL.

{Max. No. of shoppers

{2 standard tills >5 items
{1 express till <5 items
{Queue standard till
{Queue express till
{Waiting at a standard till
{Waiting at the express till
{Time spent in the shop
{Average arrival time
{Average number of items
{Simulation time

{Service time
{Deviation from service time
{Number of items purchased

{Time spent in the shop
{Deviation of the above

{Shoppers at 1 minEXPO
{If no basket available
{Leave the shop

{Take the basket

{Do the shopping
{Shopping time statistics

{Standard tills

{Standard till statistics
{Come to a till

{Pay and leave the queue
{Save statistics for histogram
{Time at a till

{Leave the till

{Express till

{Express till statistics

{Come to the till

{Pay and leave the queue
{Save statistics for histogram
{Time at the till

{Leave the till

{Leave the basket
{Exit

{Simulate 8 working hours
{Average arrival of 1 minute
{Average purchase 20 items

Fig. 3. A sample of ISDS program simulating a mini market (see text for details).

—

}
}
}

463

464 A. M. Zikic and B. Lj. Radenkovic

13D Histogranm/Table display

Table

HIST STAN

2 A lI-l-l =
5 6 7 8

4

Fig. 4. A histogram produced by the ISDS graphical result-analysis tool.

ISDS PERFORMANCE METRICS

As soon as the ‘zeroth’ version of ISDS was
finished and debugged back in 1991, as reported in
[10], it was introduced in our teaching program.
During the following academic year, we monitored
the students’ progress in accepting the new lan-
guage and the merits of ISDS; both results were
compared to those based on and accumulated over
many years of GPSS practice. Encouraged by our
preliminary findings we spent the following two
years in accumulating relevant statistical data
regarding the ISDS merits. The experiment was
conducted by using two groups of students having
similar learning and programming skills; the cri-
terion used to form the groups was based on the
past performance obtained from the Students’
Record Department and a personal view of the
relevant lecturers. The most ‘talented’ representa-
tives from either group were used to form the
“Pascal control” group. Each of the main groups
consisted of at least forty students and the Pascal
control group consisted of ten students irrespective
of the main group sizes. One of the main groups
was taught discrete event simulation by using
ISDS and the other, the control group, covered
the identical syllabus in GPSS/FON. GPSS/FON
rather than the standard form was used in this

assessment so as to eliminate the clear advantage
that the ISDS’s interactive environment would
have over the standard implementation of GPSS.
The Pascal control group was taught, in addition
to its respective language, the event presentation,
event chain management and other simulation
concepts in Pascal.
We measured the following parameters:

® time needed to understand basic concepts;
® time needed to develop a simulation model;
® duration of the simulation process;

® ease of the simulation results analysis.

Evaluation criteria
A weighting factor, based on the following

criteria was assigned to each student, irrespective

of the group:

1. Average mark a, taken over all previous
subjects (6 < n < 10).

2. Average mark a, taken separately over relevant
subject like mathematics and programming
6 < n < 10).

3. Relevant subject lecturers’ ranking a; from 1 to
10.

A set of individual weights are assigned to each of
the contributing factors; the assigned values are

New Approach to Teaching Discrete Event System Simulation

ISDS - Log-Normal Fit

0.4
3
3
=
w03
2
5
3
= 0-2'
2
3
£
A
3
2
[

o A

0 10 20 30 40 50 60

Hours

based on the principle of importance and objec-
tivity; for this purpose, the highest weight is
assigned to relevant subjects and the lowest to
the least objective, but still very important, lec-
turers’ ranking. The weighting factor, w, is then
calculated as:

w = 0.35a, + 0.45a, + 0.2q;

It is assumed that a higher scoring individual
needs less time to complete the same task then the
lower scoring one. The time, in hours, needed to
complete each of the 10 stages of the syllabus was
multiplied by the weighting factor and the average
time was then evaluated over the group size. The
Pascal control group performance, based on the
same criteria, was compared to the respective
students’ performance in their main groups. Our
analysis shows that there is no significant dif-
ference in understanding the basic concepts of
ISDS and GPSS. This result showed us that our
criteria in the statistical analysis are very likely to
be correct; as GPSS and ISDS share the same basic
concepts, any other result would indicate a serious
fault in our assessment strategy. As we hoped for,
our further analysis showed that translation of the
basic concepts into the respective codes took
between 45-60% less time to the ISDS group
than to the GPSS/FON group when writing
models for identical exercises. Finally, the Pascal
control group needed 300-400% more time to
understand basic event scheduling concepts in
Pascal.

The analysis shows that ISDS, compared to
GPSS/FON, is:

30%-60% simpler at the model/specification
stage;

40%-60% faster at the compilation/debug stage;

10%-20% faster at the execution stage;

3-5 times easier to use at the model testing

stage.

Probability taken over 157 students

465

GPSS - Log-Normal Fit
0.16 T -

0.12}

0.08

0.04}

120

Hours
Fig. 5. Performance statistics of ISDS and GPSS groups at the compilation/debug stage.

The limiting values of the model-specification
and compilation performance intervals (say
40%—60%) are determined so that 95% of all
students’ weighted performances fall below the
average performance of the control group and
that the mode and average values are both within
the stated limits referenced to the control average.

The actual statistical distribution of perfor-
mances, shown in Fig. 5, is of log-normal type
and is fitted to the experimental data by using the
strategy described in [11]. The ISDS performance
distribution is described by the standard deviation
of ¢ = 0.3 and the geometric mean of b = 2. The
GPSS performance distribution is described by
the standard deviation of 044 and the
geometric mean of 36.44. By using these param-
eters, the average values are easily obtained, using
E[X]=bx exp(0?/2) [11], and are 23 and 39.66
for ISDS and GPSS distributions, respectively. The
location parameters of both distributions are nega-
tive and negligibly different than zero. It is easily
verifiable from Fig. 5 that more than 95% of all
students in ISDS group fall below the 40 hour
average of the control group and that the mode of
20 and average of 23 also fall between 40% (16)
and 60% (24) of the same control average.

CONCLUSIONS

This paper has a goal to demonstrate the cap-
abilities of ISDS language in teaching simulation
of discrete event systems. ISDS has a number of
features which help novices in a discrete event
system ‘environment’ to start modelling very
quickly. Our experience shows that once the new
programming concepts are accepted it is a matter
of days rather than weeks which is taken to
become a GPSS (or in that matter any similar
language) programmer. A typical example of the

466 A. M. Zikic and B. Lj. Radenkovic

mini-market model, superficially different from the
one published in [1], illustrated the usage of ISDS
language and if compared to the almost equivalent
GPSS/FON one in [1] shows the strength and
simplicity of the proposed system. Finally, the com-
parison results between ISDS and GPSS/FON
performances and the comparison of the former
to GPSS, SIMAN/CINEMA and PASSIM show
the superiority of ISDS in teaching discrete event
system simulation. Based on these positive results

we adopt ISDS from this academic year as the only
teaching tool.

Our professional application, on the other hand,
proved that ISDS is not only more powerful than
GPSS in teaching simulation but that it also proves
to be a more comfortable and faster environment
for serious applications. For future improvements

_ of ISDS, we plan to include a graphical tool for the

model specification phase. The current version of
the ISDS, 3.15 at present, is available on request
for teaching and research purposes only.

REFERENCES

1. A. M, Zikic and B. Lj. Radenkovic, Applications of GPSS/FON in teaching simulation, Int. J.
Engng. Ed., 8, 5, pp. 355-366 (1992).

2. B. Lj. Radenkovic and A. Markovic, An application of GPSS/FON language in teaching
simulation at the Universityof Belgrade, Proc. of SCS Western Simulation Multiconference,
Newport Beach, California (1992).

3. A. M. Zikic and B. Lj. Radenkovic, A fully portable implementation of GPSS language on 8 and
16 bits microprocessors, Proc. of the 7th System Engineering Conference, Las Vegas, Nevada,
pp. 773-779 (1990).

4. D. H. Ueno and W. Vaessen, PASSIM: A discrete-event simulation package for Pascal, Simulation,
35, 6 (1980).

5. C. C. Bamett, Micro Passim: A discrete-event simulation package for a microcomputers using
UCSD Pascal, in L. A. Leventhal(ed.), Modelling and Simulation on Microcomputers, The Society

- of Computer Simulation, La Jolla, California (1982).

6. B. Lj. Radenkovic, Interactive simulation system for discrete-stochastic simulation and it's
implementation on mini and micro computers, Ph.D. Thesis, University of Belgrade, Yugoslavia
(1989).

7. T. J. Schriber, Simulation Using GPSS, John Wiley and Sons, New York (1974).
8. G. S. Fishman, Principles of Discrete Event Simulation, Wiley Interscience, New York (1978).
9. J. O. Hernriksen, The integrated simulation environment, Operations Research, 31, 6 (1983).
0. A. M. Zikic and B. Lj. Radenkovic, Interactive simulation system ISDS definition of a new
language, Proc 8 Int. Conf. on Sys. Engr., Coventry, pp. 260-266 (1991).
11. A. M. Zikic, R. L. Ristic and J. N. Sherwood, Three parameter distribution function fit to growth
rate dispersion among small crystals, Journal of Crystal Growth, 158, pp. 560-567 (1996).

1

Dr. Aleksandar Zikic is currently a lecturer and consultant at the University of Paisley,
Scotland, at the Department of Electronics Engineering and Physics, a position he has held
since 1986. Previous to this he was a lecturer, then consultant and lastly Head Designer. He
started his career at the University of Belgrade, Yugoslavia, as a Junior Lecturer in 1974,
having graduated from there with an equivalent to BSc (Hon) degree in Physics. He was
granted his equivalent of MPhil in Scientific Instrumentation Design in 1978 and his PhD in
Control in 1984, from the same University. Between 1980 and 1982 and during 1985 he was an
invited researcher into self-tuning regulators and sigma-delta modulators at then Coventry
Polytechnic. His interests are: real-time computer control of industrial processes and scientific
experiments, mathematical modelling and computer simulation of analogue, discrete and
discrete-event systems and development and implementation of numerical algorithms.

Dr. Bozidar Radenkovic is currently a Professor at the Faculty of Organisational Sciences,
University of Belgrade, Yugoslavia. He was granted his equivalent of MPhil 1987 and his
PhD in 1990 at the University of Belgrade in the area of computer simulation. From 1987
until 1990 he worked at the Faculty of Organisational Sciences as an assistant for computer
simulation and simulation languages. Between 1990 and 1994, after becoming an Assistant
Professor for computer simulation, he developed a version of the simulation system CSMP
for continuous time system simulation and a portable version of GPSS for discrete event
systems, both suitable for the minimum specification of 8-bit microprocessor-based
computers. His primary areas of interests are implementation of simulation languages for
discrete event systems simulation and optimisation and management of ‘large structures’
like industrial site harbours and steel and wood manufacturing/processing plants.

