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The Fourbar Linkage:
Pseudographic Kinematic Analysis™*

W. P. BOYLE AND K. LIU
Division of Engineering, Saint Mary’s University, Halifax, Nova Scotia, Canada, B3H 3C3

Kinematics for the fourbar linkage, in both open and crossed configurations, are modelled using
plane geometry rule statements written in the software TK Solver. The solution is iterative,
initiating from guessed position co-ordinates for one end of the rocker, with the program generating
new guesses for successive angular positions. Diagram drawing is not required, although a sketch is
an aid in making the initial position co-ordinate guesses.
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SUMMARY OF EDUCATIONAL
ASPECTS OF THE PAPER

. The paper discusses materials/software for a

course in Dynamics of Rigid Bodies.
Students in all branches of engineering are
taught in this course.

. Level of the course: Sophomore—2nd year of a

5-year programme.

Mode of presentation is through lectures.

The material is presented in a regular course.
Class or hours required to cover the material: 3
hours of lectures per week plus 3 hours of
tutorial/laboratory work for 1 semester.

. Student homework or revision hours required

for the materials: about 10 hours per semester.
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8. Pseudographics offers an alternative method
for the kinematic solution of planar mecha-
nisms. The method is non-vectorial and strongly
reinforces the principles of graphical methods
for mechanisms.

9. The standard text recommended in the course,
in addition to authors’ notes: A. Bedford and
W. Fowler, Engineering Mechanics-Dynamics,
Addison-Wesley Publishing Co. Inc. (1995).

INTRODUCTION

VELOCITY and acceleration parameters for the
fourbar linkage can be derived [1] by successive
differentiation of the loop position vector equation.

thetaAB

{or
Iy

Fig. 1. Fourbar linkage, open configuration. The model is solved for nondimensional data as presented in Norton [1]. Table P7-1,
row ¢, p261: AO =10, AB = 6, BC =8, OC = 3, crossed, thetaAO = 45°, omegaAO = —15, alphaAO = —10.

* Accepted 15 March 1996.
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Vertex | x y Location as per TK model
0 s oy Origin of coordinates placed at pin O.
A xA vA Locus of A is circle of radius AO, centre O.
B xB yB Locus of pin B is circle of radius BC, centre C; the locus of the disp. of B rel. to A is a circle of rad.
AB, centre A.
C xC* " xC is the length of the earth link OC; yC = 0.
o,cC ¢, o° | ¢, " | Vertices o, c, are at the origin of coordinates.
a xa ya Locus of a is circle of radius VA, centre o, with the line oa being +£90° out of phase with the
position line OA.
b xb yb Vertex b is at the intersection of the lines cb (slope m5) and ab (slope m4).
ol,¢cl | ¢, ¢" b, ¢* Vertices o1, c1 are at the origin of coordinates.
al1 xal1 yal1l Locus of a11 is circle of radius aAn, centre o1, with the line 01a11 being 180° out of phase with
the position line OA.
al xal yal Vertex a1l distanced aAt from a11, with the line a11a1 being +90° out of phase with the position
line OA.
b11 xb11 |[yb11 Locus of b11 is a circle of radius aBn, centre c1. The line c1b11 is 180° out of phase with the
position line CB
b111 | xb111 | yb111 | Vertex b111 distanced aBAn from a1 with the line a1b111 parallel to the position line BA.
b1 xb1 yb1 Vertex b1 located at the intersection of the line b111b1 (slope m4) and the line b11b1 (slope m5).
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vBA
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Fig. 2. Co-ordinate generation. Input co-ordinates (twelve) appear with asterisks. (a) Position diagram, crossed and open. Upper case
letters denote the ends of links. (b) Velocity diagram, crossed and open. Lower case letters denote the ends of velocity vectors. (c)
Acceleration diagram, crossed and open. Lower case letter with single, double, or triple numerals denote the ends of acceleration

vectors.
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xB < xA
<
)y’g1< yygﬁ

Fig. 3. The signs associated with angular velocity/acceleration
of the links AB and BC are determined by comparing values of
the appropriate co-ordinates of the kinematic polygons. Anti-
clockwise rotation or acceleration is positive, so if one, and only
one, of the pair of conditions below is untrue, then the
rotational velocity/acceleration is negative (clockwise).

if xB > xA and yb > ya then omegaAB > 0
if xB > xA and ybl > ybll then alpha AB >0

However, the mathematical steps are somewhat
tortuous, and it can be difficult to relate inter-
mediate results to physical parameters.

An alternative approach, in vogue in intro-
ductory dynamics texts [2], involves vectorial
expression of the rigid body kinematic relations
between pairs of points at each end of the
members. Simultaneous solution of sets of scalar
equations yield the unknown kinematic variables.

Graphical methods offer a more intuitive
analysis, but are usually limited to a single driving
link position, with determination of the complete
status requiring a large number of repetitions of
the diagram set. An earlier paper [3] outlined a TK
Solver-based non-iterative method [4] for genera-
tion of the kinematics of the slider crank, and the
present paper extends the technique to a fourbar
mechanism, as shown in Fig. 1.

MECHANISM ANALYSIS

A model was used to derive numerical values for
co-ordinates of the vertices of the position, velo-
city, and acceleration polygons, for both the open
and crossed configurations of the fourbar linkage.
The TK rules handle the problem in the same
manner, and in the same order, as a uni-position
graphical solution.

The three kinematic diagrams for a particular
crossed fourbar mechanism with a driving link
position of 45° above the horizontal are shown
in Fig. 2. With twelve given input values, an addi-
tional eighteen co-ordinates completely define these
figures.

Position, Fig. 2(a)

The locus of pin A is circular, with the co-
ordinates (xA, yA) defined by the angle thetaAO
and the link length AO. The point B is constrained
to move in a circular path, centred at pivot C and
with radius equal to the rocker length BC; xB is

Rule

call position{thetaAO;xA,yA.xB,yB xP.yP.thetaAB.thetaBC,m4,mS5)

call velocity(thetaAO.xB.xA.m4,m5;vB,omegaAB,omegaBC)

call acceleration(thetaAO,thetaAB, thetaBC,xA,xB,m4,m5,0megaAB,omegaBC:alphaAB.alphaBC)
if and (solved(),elt()<length('thetaAQ)) then place ('xB,elt()+1)=xB

if and (solved(),elt()<length('thetaAO)) then place ('yB,elt()+1)=yB

Fig. 4. TK Solver Rule Sheet. The ‘if and’ conditional statements serve to (a) delay the insertion of generated guesses until each pass is
complete, (b) prevent the length of the guess list from becoming longer each time the model is solved.
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Comment: position

Parameter Variables: AQ,AB,BC,xC,ratio

Argument Variables: thetaAQ

Result Variables: xA,yA.xB,yB xP,yP thetaAB,thetaBC.m4,m5
S Rule

(xA,yA)=(AO*cosd(thetaAO),AO*sind(thetaAQ)) ;xA,yA
ABA2=((xB-xA)*2+(yB-yAY*2) .xB,yB

BCA2=((xB-xC)*2+yB~2) ;xB,yB

thetaAB=atan2d(yA-yB.xA-xB) ;thetaAB

thetaBC=atan2d(yB,xB-xC) ;thetaBC

m2=tand(thetaAB) ;m2

m3=tand(thetaBC) .m3

m2*md=-1 :m4

m3*mS=-1 ;mS5

(xP,yP)=(xA+AB*ratio*cosd(thetaAB+180),yA+AB *ratio*sind(thetaA B+ 180)) xP.yP

(a)

(b)

Comment: velocity

Parameter Variables: AO,AB.BC xC,omegaAO
Argument Variables: thetaAO.xB.xA,m4,m5
Result Vanables: vB,omegaAB,omegaBC
S Rule

vA=omegaAO*AO vA
(xa,ya)=(vA*cosd(thetaAO+90),vA*sind(thetaAO+90)) ;xa.ya
xb*(m5-md)=ya-md*xa ;xb

yb=m5*xb :yb

vB=sqrt(xbA2+yb*2) vB

vBA=sqrt((xb-xa)*2+(yb-ya)*2) vBA

if and (xB>=xA,yb>=va) then omegaAB*AB=vBA :omegaAB
if and (xB<=xA,yb<=va) then omegaAB*AB=vBA :omegaAB
if and (xB>=xA.yb<=ya) then omegaAB*AB=-vBA .omegaAB
if and (xB<=xA,yb>=va) then omegaAB*AB=-vBA ;omegaAB

if and (xB>=xC.yb>=0) then omegaBC*BC=vB  ;omegaBC
if and (xB<=xC,yb<=0) then omegaBC*BC=vB ;omegaBC
if and (xB>=xC,vb<=0) then omegaBC*BC=-vB  :omegaBC
if and (xB<=xC.yb>=0) then omegaBC*BC=-vB  ;omegaBC

Fig. 5. TK Solver Rule Function Subsheets for (a) position, (b) velocity, (c) acceleration.
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Comment:

Parameter Variables:

Argument Variables:

Result Vanables:

S Rule
aAn=omegaA0”2*A0 ;aAn
aAt=alphaAO*AO ;aAt

aBn=omegaBC"2*BC ;aBn

aBAn=omegaAB"2*AB ;aBAn

ybll-ybl=m5*(xb11-xbl) ;ybl

acceleration

AO,AB,BC.xC,omegaAO,alphaAO

thetaAO,thetaAB thetaBC.xA,xB,m4,m5 omegaAB,omegaBC
alphaAB.alphaBC

(xall,yall)=(aAn*cosd(thetaAO+180),aAn*sind(thetaAO+180)) :xall.yall
(xal,yal)=(xall+aAt*cosd(thetaAO+90),yal | +aAt*sind(thetaAO+90)) :.xal.yal

(xbl1,ybl1)=(aBn*cosd(thetaBC+180),aBn*sind(thetaBC+180)) :xbll.ybll

(xbl11l.ybl11)=(xal+aBAn*cosd(thetaAB),yal+aBAn*sind(thetaAB)) ;xblll,ybll1
xb1*(m4-m5)=m4*xb1l1+ybll-ybl11-m5*xbll ;xbl

aBAt=sqrt((xb111-xb1)*2+(ybl11-yb1)*2) ;aBAt
aBt=sqrt((xbl1-xb1)*2+(yb11-yb1)*2) ;aBt

if and (xB>=xA,ybl>=yb111) then alphaAB*AB=aBAt :alphaAB
if and (xB<=xA,ybl<=yb111) then alphaAB*AB=aBAt :alphaAB
if and (xB>=xA,ybl<=ybl11) then alphaAB*AB=-aBAt ;alphaAB
if and (xB<=xA,yb1>=ybi11) then alphaAB*AB=-aBAt ;alphaAB

if and (xB>=xC,ybl>=ybl1) then alphaBC*BC=aBt
if and (xB<=xC,ybl<=yb11) then alphaBC*BC=aBt
if and (xB>=xC,ybl<=yb11) then alphaBC*BC=-aBt ;alphaBC
if and (xB<=xC,ybl>=ybl1) then alphaBC*BC=-aBt :alphaBC

;alphaBC
;alphaBC

(©

Fig. 5. Continued.

found by the simultaneous solution of the equation
for this path, and the equation for the circle
centered at A, with a radius equal to the length
of the coupler AB. TK Solver performs an iterative
solution for this pair of equations, and initial
guessed values are required for xB, yB. TK rules
are shown in Fig. 4, the position Function
Subsheet in Fig. 5(b), and the Variable Sheet in
Fig. 6.

A sketch of the mechanism in both open and
closed configurations provides these starting
values. There is no need to specify the branch—
the initial guessed co-ordinates for pin B determine

which version is implemented. TK generates the
corrected values, and these values are used as the
guessed co-ordinates at the next angular position
of the crank AO. The success of this iteration
depends on the guessed values being reasonably
close to the true solutions. Incrementing link AO
by 5° keeps the guesses acceptably close, but for
mechanisms with dramatic positional changes a
smaller interval may be required. TK is very
accommodating vis-a-vis the guesses used for the
solution of linear equations, but as the system
becomes more nonlinear, then the guesses must
be more judicious.
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St loput Name Qutput Unit Comment
+10 AO length of link AO
+6 AB length of link AB
+8 BC length of link BC
+3 xC horizontal location of pin C
+4 ratio length AP/length AP
-15 omegaAO angular velocity of link AO
-10 alphaAO angular acceleration of link AO
L +45 thetaAO angle of link AO
L xB +1.11 coordinate of pin B
L yB +7.77 coordinate of pin B
thetaAB -6.73 angle of link AB
thetaBC +103.65 angle of link BC
L xP -16.76 coordinate of point P
L yP +9.88 coordinate of point P
L omegaAB -22.77 angular velocity of link AB
L omegaBC -15.7 angular velocity of link BC
L alphaAB -65.25 angular acceleration of link AB
L alphaBC -148.03 angular acceleration of link BC

Fig. 6. TK Solver Variable Sheet. Values of intermediate variables employed in the Rule Function Subsheets are not displayed.

Velocity, Fig. 2(b)

The locus of vertex a is circular, with radius
equal to the speed of pin A, vA. The co-ordinates
(xa, ya) are defined by the fact that the velocity
vector for point A is £90° out of phase with the
spatial line OA. The velocity of point B is normal
to the link BC; the velocity of point B relative to
point A is represented by the line ab perpendicular
to the link AB. Thus the slope, m4, of line ab is
known, and the co-ordinates (xb, yb) are found by
the simultaneous solution of the equations for the
lines ab and cb. The velocity Function Subsheet is
shown in Fig. 5(b).

Links AB and BC have angular velocities
omegaAB and omegaBC, with the associated
signs determined by the two nests of four condi-
tional (if and) statements appearing at the end of
the velocity Function Subsheet, explained in Fig. 3.

Acceleration, Fig. 2(c)

The locus of vertex all is circular, with radius
equal to the normal acceleration of pin A, aAn,
with the co-ordinates of all being (xall, yall).
This normal acceleration is 180° out of phase with
the spatial line OA.

The distance of point al from point all corre-
sponds to the tangential acceleration of pin A, aAt,
with the line allal being +£90° out of phase with
the position line OA. The appropriate sign is
determined by the sense of the angular acceleration.

The line alblll of the acceleration diagram
represents the normal acceleration of pin B relative
to pin A, aBAn, with an inclination parallel to
the spatial tine BA of slope m2, i.e., alBlll =
aBAn = (omegaAB)’AB.

With the angular speed of the coupler AB
determined in the velocity Function Subsheet, the
vertex bl11 is thus located.

The point B has two components of acceleration;
the normal component, aBn, is directed from B to
C, and is of magnitude, aBn = (omegaBC)’BC.

With the angular speed of the rocker link BC
determined in the velocity Function Subsheet, the
vertex bll is thus located. The tangential compo-
nent of acceleration of pin B, aBy, is perpendicular
to the link BC of slope m3, and is represented by
the acceleration polygon line b11bl.

The tangential acceleration of pin B relative to
pin A is represented by the line bl11bl, perpen-
dicular to the link AB. Thus the slope, m4, of line
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xP
Fig. 7. Pathline for point P on the extended copler rod, ABP;
AP = AB 4.

bl11bl is known, as are two of four co-ordinates,
allowing xbl and ybl to be found by the simul-
taneous solution of the equations representing the
lines b11bl and b111b1. The acceleration Function
Subsheet is shown in Fig. 5(c).

Links AB and BC have angular accelerations
alphaAB and alphaBC, with the associated signs
determined by the two nests of four conditional
(if and) statements appearing at the end of the

acceleration Function Subsheet, and explained in
Fig. 3.

CONCLUSION

The computer model presented here offers a
system, with a simple mathematical content, for
the analysis of both branches of the fourbar
linkage. Student feedback on their experiences
with the technique has been positive. Vector alge-
bra is not required to grasp the features of pseudo-
graphics, allowing the method to be introduced at
an early stage of education.

The iterative position analysis is convenient to
execute in TK Solver, with the requirement of a
‘reasonable’ estimate of some initial co-ordinates
imposing a demand only on the common sense of
the user.

Easy to display results give students good insight
of less obvious kinematic features. So, for example,
the pathline of an arbitrarily selected point, P, on
the extended coupler rod ABP, Fig. 7, allows
observation of the approximately linear motion
in the crank range 145° < thetaAO < 265°, and
also provides a qualitative perspective on the
velocity of point P. Design data can be con-
veniently generated using pseudographics, in com-
bination with TK Solver, while employing only
elementary Cartesian geometry.
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