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It is proposed that meaningful employment of computers in introductory mechanics courses can
only be achieved if matrix methods are used to formulate the theory. An approach to do this is
presented in the form of lecture material and examples for an introductory mechanics of materials
course. Topics begin with a traditional introduction from which matrix formulations are con-
structed. These are computer-ready for solution. The sample lectures, which cover equilibrium and
energy approaches to uniaxial deformation problems, demonstrate the general idea.

SUMMARY OF EDUCATIONAL ASPECTS
OF THIS PAPER

1. The paper proposes the introduction of com-
puters in introductory mechanics of materials
(MOM) through employment of matrix methods
and provides illustrative lecture topics and
examples on how to do it.

2. Students in all engineering departments except
electrical and computer engineering are taught
this course.

3. The level of this course is usually second-year
undergraduate in the United States.

4. The mode of presentation is typically lecture
with demonstrations.

5. The course is regular for engineering students.
6. The entire course requires 45 hours to cover

the material. The sample lessons in this paper
require 9 hours.

7. Student homework requires 3 hours per hour of
lecture.

8. The novel aspect of this paper is an approach
which (1) breaks with a traditional course
content in place since about 1930 and (2)
introduces the use of basic computational
methods and computers and/or advanced
scientific calculators in a meaningful way.

9. A text which covers the material is not available,
but one by Roylance [1] comes close.

INTRODUCTION

TRADITIONAL introductory mechanics of
materials (MOM) modeled upon Timoshenko's
classic text [2] has served the engineering com-
munity well since its introduction in 1930. But

the advent of the personal computer running
user-friendly software tools and the advanced
scientific calculator, now normally used to teach
calculus, presents a technological change so signifi-
cant that modernization through radical revision
of this and other introductory mechanics courses
in order to exploit these technologies is essential.

The problem with the current MOM curriculum
is that these technologies are not employed and the
loss is significant. Computers are not actively used
to solve problems and powerful scientific calcula-
tors are used to only do basic arithmetic. The
reason is the underlying theory necessary to their
meaningful use, namely matrix methods, is not
employed. The current curriculum fails in three
ways:

1. Students do not actively use computers and
do not take full advantage of advanced scien-
tific calculators which breaks the computa-
tional thread in the engineering curriculum and
departs from routine practice in the profession;

2. Students are not exposed to modern conceptual
thought in the form of matrices, arrays and
their manifestation as physical quantities,
hence their physical thinking remains locked
in a scalar world whereas related mathematical
and computer learning is not;

3. Students are disconnected from linear algebra
by mechanicians who ignore the issue, leaving
them oblivious to its usefulness to mechanics,
and by mathematicians who fail to clarify the
importance of theory through physical appli-
cations, in effect stifling motivation to learn the
linear algebra itself.

These problems can only be solved by modernizing
the MOM curriculum and revising the linear
algebra curriculum. This is not to say the tradi-
tional curriculum in mechanics of materials has* Accepted 15 June 1997.
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not served the engineering fraternity well. It has,
but neither can the community rest upon past
laurels.

At issue here is how to modernize MOM with-
out losing concepts long viewed fundamental to
understanding mechanics, for instance, construc-
tion of free-body diagrams, imposition of bound-
ary and compatibility conditions and conceptual
insight to problem solution. The solution pro-
posed in the present paper is to blend traditional
approaches with the new matrix methods by devel-
oping the latter from the former and to integrate
modeling and analysis so that the focus seldom
becomes the mathematics. It is presented in the
form of a series of lecture topics which illustrate
the following approach:

1. Initiate the formulation from first principles
using traditional scalar methods and equilib-
rium laws and apply these to basic problems.

2. Construct the matrix methods from the scalar
methods and apply these to more advanced
problems.

3. Introduce potential energy formulations con-
sistently as an advanced topic in order to
complete a well-rounded treatment.

4. Point to future directions.

The lecture topics chosen here cover axial defor-
mation. Student exercises to complement these
topics are not discussed, but one may start from

examples given here and expand upon those given
in traditional texts.

It should be understood that for this proposal to
be successful, independent prerequisite courses in
linear algebra and computer science are envisioned
and they must be co-ordinated with the MOM
course. These supporting courses are not treated
here.

EQUILIBRIUM: DEFORMATION OF A BAR

Lectures in this section present first principles of
uniaxial deformation and introduce concepts of
stress and strain in one dimension together with
associated material properties and an explanation
of the tests necessary to obtain them. These con-
cepts are integrated with simple exercises and
applied to basic problems over lectures 1 through
4 in Table 1.

The approach is traditional, hence details are
omitted, but one important result of these lectures
is development of the axial displacement u of a bar
(Fig. 1) given by:

u � PL

AE
�1�

where E is the modulus of elasticity, L and A are
length and section area, respectively, and P
denotes the internal force in the bar. The distinc-
tion between the internal and applied load is an
important one to make.

Other discussion points include: (1) Displace-
ment u is relative and an internal function of all
variables on the right-hand side. Hence the bar can
move with constant velocity under a constant
stress and this can be clarified by writing:

u! u1=2 � u2 ÿ u1 �2�
where 1 and 2 denote stations or nodes at each end
of the bar, respectively. Clearly u is the same as
long as the difference between u1 and u2 is con-
stant. (2) So what happens if a boundary condition
is applied at 1 or 2? (3) What happens if a
numerical solution is attempted for u2 if u1 is not
set (or vice-versa), that is, a boundary condition is
not applied?

The importance of boundary conditions can
again be addressed in the solution of simultaneous
equations. Equations (1) and (2) and notions they
engender serve as a transition into the matrix

Table 1. Syllabus listing lectures for the axial deformation unit.
Asterisks denote new, nontraditional material

1. Displacement, strain (linear elastic and thermal), boundary
conditions and modeling (simplification, conventional
symbols and free-body diagrams)

2. Force, concept of stress (uniaxial, bearing and simple
shear) and equilibrium

3. Properties of linear elastic materials (mechanical and
thermal behavior)

4. Fundamental applications (solution for forces, stress, strain
and displacement)

5. Stiffness matrix formulation (physical approach)*
6. Applications: statically determinant and indeterminate

problems*
7. Applications: statically indeterminate problems with

thermal strain*
8. Elastic strain energy, work and potential energy

(equilibrium wells)*
9. Energy minimization formulations (advanced topic) and

future directions*

Fig. 1. Bar with elastic modulus E, length L and section area A under tensile force P.
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method covered next. If equation (1) is rearranged
as follows:

AE

L

� �
u � P () ku � P �3�

one has the connection

k � AE

L
�4�

where k is the stiffness of the bar and indeed
provides the important and simplifying spring
analogy, Fig. 2, given by the second equation in
(3). It should be emphasized that the bar and its
spring model are now synonymous.

THE MATRIX METHOD:
A PHYSICAL APPROACH

The matrix method for a uniaxial bar, listed as
lecture 5 in Table 1, introduces the concept of a
properly posed problem as well as derivation of the
matrix method. Well-posedness, so necessary to
matrix inversion, provides a setting for discussion
of boundary conditions and their physical impor-
tance. An example is presented to illustrate appli-
cation of the method and, in particular, engineering
modeling. The principal result of this section is a
problem formulation which emphasizes engi-
neering constructs and is in the form of simulta-
neous algebraic equations ready for solution by
computer or advanced scientific calculator.

The matrix method is derived using a physical
approach which permits application of the above
scalarmethods.Tobegin, thedisplacement influence
function is defined as:X

j

kij uj � Pi ()
k11 k12

k21 k22

� �
u1

u2

� �
� P1

P2

� �
�5�

where the matrix form is emphasized and the
nodal quantities are illustrated in Fig. 3; the matrix
equation is called the bar stiffness equation and
the entries of the 2� 2 matrix are, for descriptive
purposes, called influence factors which must yet
be determined. The question is posed: How does
each nodal displacement of an elastically resisting
bar influence the forces at the nodes?

Case 1. Fix node 2, determine the influence of u1

Using modeling concepts already covered, con-
struct the free-body diagram with the boundary
condition shown in Fig. 4. Then application of the
first row of the stiffness equation (5) yields:

k11u1 � 0 � P1 �6�
Again referring to the diagram in Fig. 4, tradi-

tional scalar methods for static equilibrium of the
spring yields:

P1 � ku1 �7�
Since equations (6) and (7) must be equal, one

obtains k11 = k where k is the intrinsic stiffness
property of the bar. Referring to Fig. 4, appli-
cation of the second row of the stiffness equation
(5) yields:

k21u1 � 0 � P2 �8�
Again referring to Fig. 4, static equilibrium and

equation (7) yields:

P2 � ÿP1 � ÿku1 �9�
By comparison of equations (8) and (9), one

finds k21 � ÿk.

Case 2. Fix node 1, determine the influence of u2

This case is very similar and will not be pre-
sented. It is recommended as a student exercise.
The results are k12 � ÿk and k22 � k. All influence
factors are now known. Substituting these results
into the stiffness equation (5) yields:

k
1 ÿ1

ÿ1 1

� �
u1

u2

� �
� P1

P2

� �
�10�

which is the bar element stiffness equation. It
contains in order, respectively, the bar element
stiffness matrix, the element displacement vector
and the element nodal applied force vector (which
include reactions). Class discussion should include:

1. Correct forces are obtained for any given set of
displacements u1, u2.

2. The inverse is not true; one cannot arbitrarily
assign forces P1, P2 because the problem in Fig.
3 is not well posed which returns the discussion
to equilibrium and boundary conditions.

Fig. 2. Bar/spring analogy.

Fig. 3. Bar element showing nodal forces and nodal displacements.

Fig. 4. Bar element under the influence of u1 with u2 fixed.
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3. Reanalysis of Fig. 4 using equation (10) with
actual numbers and with emphasis on the
importance and effects of boundary conditions.

Example. This example demonstrates application of
(10) to a chain-like structure. Here only the matrix
equation assembly is illustrated, but a more
complete example should be provided to students.

The structure in Fig. 5 is composed of an
assembly of elements each of which can be repre-
sented by equation (10). It is appealing to refer to
(10) as a template. Here detailed explanation is
bypassed, but the process of overlaying templates
will be obvious by inspection and students should
prove as a homework exercise that any row of the
resulting matrix equation represents a scalar equi-
librium equation written about a node of the
structure. Assembling the structure results in the
matrix equation:

k1 ÿk1 0 0

ÿk1 �k1 � k2� ÿk2 0

0 ÿk2 �k2 � k3� ÿk3

0 0 ÿk3 k33

26664
37775

u1

u2

u3

u4

26664
37775�

P1

P2

P3

P4

26664
37775

�11�
which is called the structural stiffness equation. It
contains in order, respectively, the structural stiff-
ness matrix, the structural displacement vector
and the structural nodal applied force vector
(which includes reactions). Clearly, for each ele-
ment i, ki � �AE=L�i and each ki can be different.
Class discussion should include:

1. The nature of applied forces at nodes. Can they
be zero? Yes.

2. At each node, nature dictates that either the
applied force or the displacement must be
known, but not both. Having one, the other is
obtained from solution of equation (11). Once

all displacements are known, the unknown
reactions can be found by substitution.

3. What happens in the solution of equation (11) if
boundary conditions are not specified?

APPLICATIONS: STATICALLY
INDETERMINANT PROBLEMS

Applications to problems, statically indeter-
minant and otherwise, are covered in lectures 6
and 7 in Table 1. They clarify application of the
matrix method, but more importantly explain
engineering modeling, prescription of boundary
conditions and compatibility conditions. First a
mechanical example is presented. Subsequently,
the formulation for thermal problems, rather
subtle to grasp, but easy to employ, is done and
followed by an example. Overall this process is a
radical departure from scalar procedures.

Example: a composite cylinder
The composite cylinder shown in Fig. 6 illus-

trates Problem 233 in Pytel and Singer [3] who
state:

`Problem 233. A steel bar 50 mm in diameter and 2 m
long is surrounded by a shell of cast iron 5 mm thick.
Compute the load that will compress the combined
bar a total of 0.8 mm in the length of 2 m. For steel,
E � 200 GPa, and for cast iron, E � 100 GPa.
Answer: P = 192 kN.'

The solution is found as follows. (1) Construct
the model also shown in Fig. 6. To do this, it must
be understood that both cylinders move com-
patibly together at node 1, hence their displace-
ments are equal. Note: The two concentric
cylinders are modeled as parallel springs. Although
shown offset from each other for visual reasons,
both connect between nodes 1 and 2; the bold bar
denoting node 1 is not permitted to rotate. (2)
Prescribe the obvious boundary conditions at
node 2. (3) Using values given in the problem
statement, compute for steel, ks � 196 MN=m;
for cast iron, kc � 43:2 MN=m. (4) Assemble the
structural stiffness equation:

�ks � kc� ÿ�ks � kc�
ÿ�ks � kc� �ks � kc�
� �

u1

u2

� �
� P1

P2

� �
�12�

Fig. 5. Four-node, three-element chain-like structure.

Fig. 6. Example problem, Problem 233, from Ref. 3.
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(5) One can clearly see the assembly; however it may
need more explanation for students. But note:
the system matrix is singular! So the boundary
condition u2 � 0 must be applied. Doing this and
substituting the given displacement u1 � 0:8 mm
yields directly P1 � �k1 � k2�u1 � 192 kN, in agree-
ment with the textbook answer. Discussion points
include prescription of boundary conditions (repe-
tition perhaps ad nauseam) and the notion of
compatibility of displacements. (6) The reaction
is recovered by substituting the given u1 and
boundary condition u2 � 0 into the second row
of the matrix equation and solving as follows:

P2 � ÿ�k1 � k2�u1 � �k1 � k2�u2

� ÿ�k1 � k2�u1 � ÿ192 kN:

(7) Other quantities such as strain and stress can
be obtained using classical equations. With the
stresses in hand, a discussion point is the distinc-
tion between internal and external (applied) forces
(which include reactions).

Thermal problems
A very similar, but more subtle procedure

applies to thermal problems. First it is necessary
to derive an effective force vector due to thermal
strain. A physically appealing approach is to
assume that a positive temperature change �T
acts upon an initially stress-free element fixed
between rigid walls as shown in Fig. 7.

Intuition guides one to the conclusion that the
constraint against thermal expansion generates
internal compression PT

B in the bar. By making
a sharp distinction between thermal wall reac-
tions at the nodes PT

1 , PT
2 (like applied forces,

both shown positive) and element thermal forces
PT

B which act internally in the bar, the following
steps become palatable. (1) Using traditional
methods and the free-body diagram of the cen-
tral portion of the bar in Fig. 7, one finds for a
completely constrained bar, PT

B � �EA � �T
where � is the coefficient of thermal expansion
and the sense of these forces are as shown in
Fig. 7. (2) Knowing that u1 � u2 � 0 at the

Fig. 7. Free-body diagram of bar between rigid walls in compression under increase in temperature. Nodes shown shaded.

Fig. 8. The P functional for non-equilibrium with Mathematica code.
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walls, the matrix assembly procedure on the left
gives a vanishing load vector:

k
1 ÿ1

ÿ1 1

" #
u1

u2

" #
�

0

0

" #
� Applied forces

at nodes

� �

�
PT

1

PT
2

" #
�
ÿPT

B

�PT
B

" #
�13�

On the right, equilibrium is employed together
with strict adherence to direction of forces at the
nodes to obtain proper signs. (3) In general, a
problem may not be completely constrained (u1,
u2 may be nonzero) and may involve both mechani-
cal and thermal loads, hence the applied forces (or
reactions) are not self-equilibrating (do not sum to
zero) as in equation (13). Since the nodal forces are
now general, superscripts T can be dropped and
the matrix method formulation for an element
with both applied nodal forces (or equivalently
reactions) and element thermal forces is:

k
1 ÿ1

ÿ1 1

� �
u1

u2

� �
� P1

P2

� �
� �EA�T

ÿ1

�1

� �
�14�

where step 1 is recalled and it is important to view
the trailing vector as an internal element thermal
load.

Example. A rod composed of two components of
equal length in series, but different properties, is
attached on the left to a rigid wall and separated
initially from a rigid wall on the right by a gap g.
Solve for the mechanical state of the rod if the

temperature rises �T . Using two bar elements to
model the rod, the structural matrix equation is:

k1 ÿk1 0

ÿk1 �k1 � k2� ÿk2

0 ÿk2 k2

2664
3775

0

u2

g

2664
3775

�
P1

0

P3

264
375� ÿPT

B1

PT
B1 ÿ PT

B2

PT
B2

264
375 �15�

where PT
Bi � ��EA � �T �i is known for each part i

of the rod as designated.
Many discussion points exist for this problem,

among them the trade-off between known and
unknown variables. If the rod is uniform and
node 2 is in the middle so that all properties are
equal, for instance ki � k � 2AE=L where L is the
entire length of the rod, then row 2 yields:

k�2u2 ÿ g� � 0 ) u2 � g=2

Row 3 yields:

P3 � ÿkg=2� kg ÿ �EA

L=2
�T

L

2
� k

2
�g ÿ �L�T �

Hence, if �L � �T > g, the rod is in com-
pression. Otherwise P3 either produces a tensile
stress and must be applied to the end of the rod
or P3 � 0 and the right end just touches the
wall generating no mechanical stress since the
constraint is not activated.

POTENTIAL ENERGY AND WORK

Potential energy and work, covered in lectures 8
and 9, round out the unit. Strain energy would first

Fig. 9. The P functional for neutral equilibrium with Mathematica code.
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be introduced in lecture 3 and here energy concepts
are expanded to include the net potential of a
mechanical system. Work and the minimization of
the potential energy functional are introduced and
used to re-derive the bar stiffness equation (5).
Concepts on the meaning of well-posedness, defi-
niteness and the importance of boundary conditions
in numerics is elaborated upon through graphics.
An important result is the concept of the potential
well which ties energy and equilibrium together.

These two lectures are viewed as an advanced
topic with the aim of conveying concepts rather
than methods to solve problems. It also serves to
launch future directions.

The matrix method: an energy approach
To derive the matrix method from an energy

approach, the strain energy density (lecture 3) is

integrated over the volume of the bar (Figs 1±3) to
obtain the potential energy PE:

PE �
�

Vol

U dV � EA

2

�L

0

du

dx

� �2

dx

� EA

2L
�u2 ÿ u1�2 � k

2
�u2 ÿ u1�2 �16�

where U is strain energy density, x is the axial
coordinate along the length of the bar and
du=dx � �u2 ÿ u1�=L. Define work done by the
applied loads to be W � P1u1 � P2u2, then the
net potential energy � is:

� � PE ÿW

� k�u2 ÿ u1�2=2ÿ P1u1 ÿ P2u2 �17�
It is easily accepted by students that the u's are

Fig. 10. The � functional for equilibrium displayed in 3-D with Mathematica code.
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the independent variables and that their equilib-
rium values occur at a minimum. It then remains
to say that � is what needs to be minimized.
Hence:

0 � @�

@u1
� k�u2 ÿ u1��ÿ1� ÿ P1

0 � @�

@u2
� k�u2 ÿ u1��1� ÿ P2

�18�

By solving equation (18) and casting it into
matrix form, the bar stiffness equation (10) is
recovered.

Meaning of energy and equilibrium
The meaning of energy, non-equilibrium and

equilibrium can be explored using graphics
through the following series of cases based upon
Fig. 3 for the most part. With no loss in generality,
the spring constant k � 100 units. Mathematica [4]
is used to produce the graphics and the code to
do it is reproduced below where � is denoted by
pie.

Case: Non-Equilibrium. A plot of the net potential
energy � for non-equilibrium is shown in Fig. 8. It
is observed that � has no level surface. Students

may be asked why this case is termed indefinite. Of
course the applied forces are not equal and the
boundary conditions have not been set.

Case: Neutral Equilibrium. � is plotted in Fig. 9. It
has a level surface along the tangent line shown
and is said to be positive semi-definite which serves
as a discussion point. In this case the applied forces
are equal, but the spring can drift yet be in
equilibrium as long as the displacements satisfy
the tangent line equation shown in Fig. 9; the
spring position is not unique. Why? Because the
boundary conditions are not set. Discussion point:
How does this effect numerical solution?

Case: Equilibrium. First � is plotted in three
dimensions in Fig. 10. In order to achieve this,
the single spring in Fig. 3 must be modeled
(inefficiently) as two elements in Fig. 10 in order
to obtain two nodal displacements. (Students
might show that if k is the stiffness for the full
length of spring, then 2k is the stiffness for a half-
length.) The potential well, observed with the help
of contours superposed onto the plot, locates the
equilibrium solution; � is said to be positive
definite and convex.

But � plotted in Fig. 10 is not very accurate.

Fig. 11. The � functional for equilibrium displayed in 2-D with Mathematica code.
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Improved resolution is obtained by again solving
the problem, but in two dimensions and the results
are shown in Fig. 11. It is reasonably clear that the
minimum occurs at u � u1 � ÿ0:1 units.

FUTURE DIRECTIONS

Future directions (lecture 9) motivate students
by reinforcing the utility of what they have learned
and introducing them to other courses and pro-
fessional areas open to study. For one example, the
nodes in a discrete model can be endowed with
mass m. Then application of D'Alembert's prin-
ciple to nodal mass point i yields inertial forces
mii �ui which can be treated statically (oppositely
directed to the acceleration). By including the
spring and applied forces, one easily obtains for
one node:

ÿmii �ui ÿ k1�ui ÿ uiÿ1� � k2�ui�1 ÿ ui� � P�t� � 0

�19�

and, upon assembly of the matrix equation for a
chain-like structure,

�mii�f�ug � �k�fug � fP�t�g �20�

where the applied force is now a function of
time.

Discussion may address solution approaches,
simulation packages, natural frequencies, etc.,
and it is certain to generate interest.

CONCLUSION

This paper is based upon the proposition that
an effective way to meaningfully integrate com-
puters into introductory mechanics courses is to
formulate the theory in terms of matrices and solve
problems by matrix methods. This approach
permits full utilization of advanced scientific cal-
culators and even more powerful mathematical
software tools. To demonstrate feasibility of the
proposition, sample lectures and example prob-
lems covering uniaxial deformation for introduc-
tory mechanics of materials (MOM) is developed.
The advantages of this radical revision over tradi-
tional course content are (1) a consistent, compre-
hensive coverage that provides several viewpoints
of the topic, (2) a formulation that is computer- (or
calculator-) ready for solution and usefully inte-
grates supporting courses, namely linear algebra
and computer methods and (3) a directly related
spring-board to advanced courses and professional
practice. Nonetheless, traditional material is also
included, however the principal disadvantage is
less time for traditional exercises, the repetition
of which `burn in fundamental concepts'. This new
course may move along faster than traditional
courses, but topics are laid out to reinforce each
other and some traditional approaches can be
dropped.

Each topic in this paper has been taught in part,
but the complete sequence has not been taught
as a whole. Hence it is a model curriculum. Future
work is to co-ordinate supporting courses and
teach it as a pilot class.
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