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This paper describes how Mathcad is used to deepen understanding of fundamental aspects in the
field of rotor and structural dynamics in two of the undergraduate courses in the education program
of Bachelor of Science in Mechanical Engineering with emphasis on Product Development at the
University of Karlskrona/Ronneby, Karlskrona, Sweden. Integrating this mathematical software
has clearly given an improved interest for mathematics as well as mechanics among the students.

INTRODUCTION

THE MACHINE Elements Course is given in
the second year of the Bachelor program. Rotor
dynamics is a main part of this course. Other parts
are springs, connections, bearings, lubrication
theories, and brakes. The class-room hours are
28 for lectures and 28 for supervised individual
practice on sample problems. When problems of
common interest occur the teacher deals with them
on the white board in a seminar-like manner.
Throughout the course students are also perform-
ing a larger compulsory rotor calculation assign-
ment. With the theories supplied at lectures they
individually calculate the critical angular speed of
a given rotor. Individual guidance for this assign-
ment is given in the exercise hours, but only as
answers to questions raised, since one of the
general ideas with the assignment is to make each
student seek the knowledge necessary to solve the
task. The Mathcad [2] features of matrix handling,
such as eigenvalue calculations, fits perfectly for
this assignment, making it possible for the students
to advance further in learning dynamics than they
otherwise would have managed.

The Structural Dynamics Course is given in the
third year of the Bachelor program. The class-
room hours are 16 for lectures, 32 for supervised
individual practice on sample problems and 8
hours in preparatory work learning the Mathcad
software, I-DEAS Master Series [3] as the dynamic
simulation tool, and the experimental facilities in
the structural mechanics lab. After this intro-
duction the students have full access to all the
necessary equipment for solving their problems.
The same idea of problem-oriented learning as
above is applied. Throughout the course problems
are given without any answers. Even the textbook
lacks answers. Instead the students should present
solved problems in a weekly seminar where the
other students bring their questions. The teacher

has to explain and help if the solution is not
correct. Normally the students come to the
teacher and ask for guidance before the seminar,
which was the intention.

In addition to the textbook sample problems
some other limited problems are given to the
students as real physical models, which have to
be analyzed in three main steps: theoretical model-
ing, computer-based simulation and experimen-
tal verification. Mathcad is here used to solve
differential equations, especially to calculate the
dynamic response to different excitations with the
Laplace transform and to correlate the simulation
results and the experimental verification. Mathcad
is also used as the report writing tool.

ROTOR DYNAMICS ASSIGNMENT IN THE
MACHINE ELEMENTS COURSE

The assignment is presented for the students in
the first week of the course and is then supposed to
be solved within the seven weeks of course dura-
tion. Each student has the total responsibility to
hand over a carefully written report including, in
all aspects, a correct solution before a stated date.
Students who fail to do this are not allowed to
participate in the ordinary theoretical test at the
end of the course and must perform a new assign-
ment, when the course is repeated next year, in
order to achieve their final grades. This rule has
turned out to function very well, not the least in
making the students active in demanding the
teacher to share his knowledge. Only very few
students have failed so far. During the work
some intermediate results may be checked from
the teachers solution. Cooperation between stu-
dents is allowed and encouraged, but each student
has an individual set of data and must produce an
individual report. The students have some Math-
cad experience from prior courses in mathematics.
In this course they therefore achieve the necessary
additional knowledge by consulting the manual* Accepted 5 June 1997.

426

Int. J. Engng Ed. Vol. 13, No. 6, p. 426±432, 1997 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 1997 TEMPUS Publications.



and/or the teacher whenever problems occur. This
is probably one of the most effective ways of
learning this kind of software. A translated version
of the 1995 year assignment sheet follows.

Calculation assignment in the Machine Elements
Course 1995

Figure 1 shows a rotor from a gear box. The
shaft has diameter d � 30 mm, Young's modulus
E � 2:06� 1011 N=m2 and density� � 7800 kg=m3.
The two cog-wheels have masses m1 and m2 and
are placed on the shaft according to x1 and x2

respectively. The rotor is supported by two bear-
ings at a distance of L � 0:5 m. The bearings
together with their surrounding support have
linear stiffnesses c1 and c2 respectively in all direc-
tions perpendicular to the shaft. The left bearing
also supports a bending moment proportional to
the alignment of the shaft in this bearing, that is
M � cM � �. The right bearing cannot support
bending moment.

Question 1.
Calculate the ordinary critical angular speeds

with respect to bending deformation of the shaft.
Consider the cog-wheels as point masses. Distri-
bute the mass of the shaft to the point masses and
the bearings. After that the shaft is considered
mass-less. The inertia of the mass distributed to
the bearings is neglected.

Question 2.
For the critical angular speeds (eigenvalues),

calculate the deflections of the shaft at the

masses and bearings in relation to the deflection
at mass m2 (eigenvectors). Draw sketches of the
shaft appearance.

Question 3.
Make a more accurate analysis by representing

the shaft as a (higher) number of point masses on
an otherwise mass-less shaft. Calculate the four
lowest ordinary critical angular speeds with
respect to bending deformation of the shaft, with
an estimated error below one percent. Use for
example Mathcad as a calculation tool.

Comments on the rotor dynamics assignment
After some work with the laws of dynamics

and solid mechanics, Question 1 gives rise to a
homogenous system of equations, equation (1):

�11m1 ÿ 1

!2
�12 m2

�21 m1 �22 m2 ÿ 1

!2

2664
3775 y1

y2

� �
� 0

0

� �
�1�

where �ij � flexibility numbers of the system
(inverted stiffness); mi � point masses; w �
angular frequency of the shaft; yi � deflections at
point masses; i � 1 . . . 2.

The eigenvalues of this matrix is easily deter-
mined by pen, paper and pocket-calculator. This
method is however recommended to be comple-
mented by Mathcad. Although not necessary it
gives a good opportunity to check the results, both
ways, and to get familiar with the software for a
relatively simple problem. Mathcad may also be

Fig. 1. Assignment in machine elements course: rotor supported by two bearings.
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used for example in calculation of the alpha-
values.

Question 2 gives a visualization of the physical
meaning of eigenvalues and eigenvectors. To
achieve the accuracy required in Question 3 the
size of the matrix widely exceeds what is possible to
deal with by pen and paper. To solve this question
some kind of computer aid is necessary. The
Mathcad features of matrix handling fits perfectly
for this task.

s � 1

!2
�2�

A �

�11 m1 �12 m2 � � � �1n mn

�21 m1 �22 m2 � � � �2n mn

..

. ..
. . .

. ..
.

�n1 m1 �n2 m2 � � � ann mn

266664
377775 �3�

Y �

y1

y2

..

.

yn

0BBBB@
1CCCCA �4�

where n is the number point masses, and with I as
the unity matrix, the eigenvalue problem can be
described as:

�Aÿ sI �Y � 0 �5�
The Mathcad solution then becomes:

s :� eigenvals�A� �6�
and the critical angular frequencies are obtained
from equation (2). The number of point masses is
doubled until the difference between two successive
iterations is negligible.

PROBLEMS IN THE STRUCTURAL
DYNAMICS COURSE

In parallel with the lectures in the Structural
Dynamics Course, the students have to analyze

dynamic characteristics such as natural fre-
quencies and mode shapes of some simple struc-
tures considering damping and realistic boundary
conditions. The problems are presented as real
mechanical models so the answer has to be found
with experimental testing. The reports must consist
of three parts:

� theoretical modeling
� computer based simulation
� experimental verification.

Two of the problems are described below,
followed by a brief example of the solution given
by the students.

Problem 1.
A circular solid shaft is connected with a solid

metal sphere and is connected to a plate accord-
ing to Fig. 2. Describe the dynamic behavior of
the system if the plate is secured to a rigid
surface. The material in the model is plain
carbon steel.

Solution example.
Since the system has one dominant natural

frequency the system is modeled as a damped
SDOF system with lumped parameters. The
approach with the generalized parameter model,
Craig [1], can be used:

m�� � c _� � �k ÿ kg�� � 0 �7�
where � is a function of location and time t. The
general assumed-modes form in equation (8) is
used to solve the differential equation (7):

��x; t� �  �x���t� �8�
As the assumed-mode shape function the static
deflection under a tip force is used:

 �x� � x2

2L2
ÿ x3

6L3
�9�

Fig. 2. A solid metal sphere connected to a circular solid shaft.
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The generalized parameters can then be calculated
as follows:

m �
�L

0

�A 2�x� dx�ms 
2�L�

c � ccr �

k �
�L

0

EI� 00�2 dx

kg �
�L

0

ms� 0�2 dx

�10�

where ccr is the critical damping coefficient. The
natural frequency is calculated from:

fn � 1

2�

�����������������
�k ÿ kg�

m

r
�11�

The calculation of the integrals and derivatives are
performed using Mathcad.

To calculate the response of the system, the
damping characteristics have to be determined
experimentally. The viscous damping coefficient �
is estimated using the half amplitude method. An
impact excitation is performed on the model while
recording the response from the laser vibrometer
into a PC measuring system, HP 3565. The
response curves are imported to Mathcad and
analyzed.

To calculate the response from an impact excita-
tion the Laplace transform capabilities in Mathcad
are used. Unfortunately Mathcad can't transform
a symbolic differential function, but this is the
easier part.

m�� � c _� � �k ÿ kg�� � p�t�ÿÿÿÿÿÿÿ!Laplace
ms2V � csV

� �k ÿ kg�V � P�s� �12�
where p�t� is the excitation force. The transfer
function of the system becomes:

H�s� � 1

ms2 � cs� �k ÿ kg� �13�

since the excitation can be approximated with a
Diraq pulse this is also the response:

V�s� � H�s�P�s� � 1

ms2 � cs� �k ÿ kg� �14�

The corresponding time response is calculated,
using the inverse Laplace transform function, to
be:

��t� � 2eÿ�c=2m�t
sin

���������������������������������
4m�k ÿ kg� ÿ c2

p
2m

t

" #
���������������������������������
4m�k ÿ kg� ÿ c2

p �15�

Diagrams of both the measured and the calculated
response are then presented and the correlation
between them discussed.

Problem 2.
A solid beam made of plain carbon steel is to be

analyzed, see Fig. 3. The dimensions and boundary
conditions appears from the experimental model
according to the figure. Determine the following:

� Natural frequencies and corresponding mode
shapes.

� What should the dimension of the cross-section
be if the first natural frequency in the width-
direction should be half of the natural frequency
in the height-direction?

Solution example.
The same method as in Problem 1 is often used

to calculate the first natural frequency and the
deformation shape for this mode. Since this
system doesn't have one clearly dominant natural
frequency as in Problem 1 the system has to be
analyzed as a MDOF system. The system is
analyzed as free undamped vibration of an uni-
form cantilever beam. The equation of motion
becomes, Craig [1]:

�EI� 00�00 � �A�� � 0 �16�
Assuming a harmonic motion given by the
equation:

��x; t� �  �x� cos �!tÿ �� �17�
and substitute this into equation (16) gives us the
eigenvalue equation:

d4 

dx4
ÿ �4 � 0 �18�

where

�4 � ��A!2�
EI

�19�

the general solution is given by:

 �x� � C1 sinh ��x� � C2 cosh ��x�
� C3 sin ��x� � C4 cos ��x� �20�

The boundary conditions are:

 �0� � 0;
d 

dx
�0� � 0;

d2 

dx2
�L� � 0;

d3 

dx3
�L� � 0

�21�

Fig. 3. A solid beam made of plain carbon steel.
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(a)

Fig. 4. Example of Mathcad calculation.
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After some work this leads to:
0 1 0 1

� 0 � 0

�2 sinh ��L� �2 cosh ��L� ÿ�2 sin ��L� ÿ�2 cos ��L�
�3 cosh ��L� �3 sinh ��L� ÿ�3 cos ��L� �3 sin ��L�

26664
37775

�

C1

C2

C3

C4

26664
37775 �

0

0

0

0

26664
37775 �22�

for the non-trivial solution we found the charac-
teristic equation:

cos ��L� cosh ��L� � 1 � 0 �23�
whose roots are the eigenvalues �r L. Values of �r L

can be found in the textbook which leads to
equation (24) for the natural frequencies:

!r � ��r L�2
L2

EI

�A

� �1=2

�24�

The normalized mode shapes can after some work
be calculated by the equation:

 r�x� � cosh ��r x� ÿ cos ��r x�
ÿ kr�sinh ��rx� ÿ sin ��r x�� �25�

where

kr � cosh ��r L� � cos ��r L�
sinh ��r L� � sin ��r L� �26�

(b)

Fig. 4. (Continued).
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The resulting mode shapes are then plotted in
Mathcad and compared with the simulated results
from I-DEAS Simulation. As an example, a
sample calculation is presented in Fig. 4 showing
how the assignment is performed in Mathcad.

CONCLUSIONS

After introducing the mathematical software
Mathcad in our courses we notice an improved
interest for mathematics as well as mechanics
among the students. The fear of approaching
problems leading to advanced mathematics has
clearly decreased. This type of mathematical soft-
ware gives the opportunity to go further in the
study of dynamics than otherwise possible. The

problems described gives the students a feeling of
how to correlate simulated and measured results
with an analytical model. The awareness of the
differences between defining the boundary condi-
tions theoretically and the possibilities to actually
fasten structures in practice is very important.
Also, presenting problems without written answers
makes the students, after some time, confident in
their way of working and their own results. They
get a good training in critically analyzing their
results, which is what reality is about. The poor
possibilities of working with, for example, loops
and conditions as well as the lack of symbolic
Laplace transforms in Mathcad has been experi-
enced as disadvantageous. We are happy to con-
clude that some of these and other drawbacks are
eliminated in the latest update of the software.
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