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In this study the following problem is addressed: a uniform column is subjected to a compressive
load; an additional support is placed to increase the buckling load. The following question is posed:
where to place the support location so as to maximize and evaluate the resulting buckling load? It
turns out that this question can be effectively dealt with in the standard courses of Strength of
Materials, Mechanics of Solids, or Mechanics of Materials, since all the necessary tools needed are
presently uniformly taught in these existing courses. Including this interesting case into the
curriculum may enhance students’ grasp of the subject, sharpen their mind, and trigger an
additional interest in the exciting subject of theoretical and applied mechanics. Topics covered in
sections 1-3 can be taught in one or two 50-minute lectures, whereas the exposition of the entire
material may take between two to three 50-minute lectures, depending on the interest of students.

SUMMARY OF EDUCATIONAL ASPECTS
OF THE PAPER

1. The paper discusses materials for a course in
Strength of Materials and Mechanics of Solids.

2. Students of second-year Mechanical Engineer-
ing, Ocean Engineering, Civil Engineering and
Aerospace Engineering are taught this course.

3. The mode of presentation is by lecture and is
run as a regular course.

4. Hours required to cover the material is 4 to 5
with 2 to 3 revision hours.

5. The novel aspects presented in this paper hope-
fully help to sharpen the minds of the students
and increase interest in applied mechanics.

6. The standard text recommended for the course
is Hibbeler, Mechanics of Materials [2].

1. INTRODUCTION

NATURALLY THERE IS a big gap between
the exposition of the topic of buckling in the
undergraduate textbooks devoted to Mechanics
of Solids, Strength of Materials or Mechanics of
Materials [1-5] and more specialized monographs,
suitable for the elective or graduate courses [6-10].
The undergraduate textbooks invariably report
buckling of uniform columns with various bound-
ary conditions, whereas the advanced texts include
numerous results of uniform or non-uniform
columns, plates and shells, pertinent to engineering
practice. Among other topics, specialized books
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report results on optimization of columns, plates
and shells under buckling conditions [11, 12]. Tt
appeared to the authors, that the motivation of
the students can be enhanced, if some model
problems can be included on more advanced
topics in the undergraduate courses. This would
provide students with some ‘raisins to look for’. As
Budiansky and Hutchinson [13] note, ‘Everyone
loves a buckling problem’. We propose some
problems the solutions to which hopefully will
enlarge the number of ‘buckling lovers,’ to include
more undergraduate students. Maybe even every
undergraduate textbook should include a section
on ‘Some Interesting Problems’ providing, gastro-
nomically speaking, the dessert after the main
serving of essential material is taught. We deal
here with the problem of locating the intermediate
support in a uniform column with ideal boundary
conditions so as to maximize the buckling load.
The analysis is conducted via the straightforward
optimization. It turns out that with the knowledge
acquired by the undergraduate students in the
standard course, some interesting problems can
be solved, even those with seemingly un-intuitive
solutions.

Note that the beams and columns with intermedi-
ate supports have been dealt with by Olhoff and
Taylor [14], Rozvany and Mroz [15], Wang, et al.
[16-19], Liu, et al. [20, 21], and Hou [22] in various
optimization contexts. The above studies used
Bernoulli-Euler theory. Ari-Gur and Elishakoff
[23] studied the effect of shear deformation on
buckling of columns with intermediate support.
Here we deal with the instructional side of this
problem for uniform columns with different
boundary conditions.
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2. UNIFORM COLUMN SIMPLY-
SUPPORTED AT BOTH ENDS, WITH AN
INTERMEDIATE SUPPORT

The buckling of a uniform column is governed
by the following differential equation:

d*w d’w

Er= " pS o
dx4Jr dx?

0 (1)

where w(x) is the transverse displacement,
x = axial coordinate, £ = modulus of elasticity,
I = moment of inertia, P = compressive loading.
We divide equation (1) by flexural stiffness E7, and
denote:

P

=% (2)

to obtain:

4 2

dw 2 dw =0 (3)
dx* dx?
At the cross-section x = a, an additional support is
placed (Fig. 1a). Thus, two regions are created.
For the purpose of identification the displacement
in the first region is denoted by w; (x), whereas the
displacement in the second region (a < x < L), is
denoted by w,(x). Thus, instead of equation (3) we
have the following two equations:

d4W1 2 d2W1

0, for0<x<a (4

dx* dx?
d*w, ) d*w,
e e =0, fora<x<L (5

The boundary conditions read:

wi(0) = w{'(0) =0 (6)
wa(L) =wy (L) =0 (7)
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Fig. 1. (a) Uniform column, simply supported at its ends
with an intermediate support. (b) Optimal location of an
intermediate support is in column’s middle.

The continuity conditions read:

wi(a) =wy(a) =0 (8)
wi(a) = wi(a) ©)
wi' (a) = wi(a) (10)

Equation (9) signifies the continuity of the slopes,
whereas equation (10) indicates the continuity of
bending moments.

The general solution wy(x) in the first region is:

wi(x) = Ay sinkx + Ay coskx + Asx + Ag  (11)
Satisfying the conditions of equation (6) and the

first of the conditions in equation (8) we get:

wi(x) = 4; (sinkx —g sin ka) (12)

The general solution w;(x) in the second region is:
wa(x) = By sinkx + Bycoskx + Byx+ By (13)

where 3;’s are the constants of integration. After
satisfaction of the conditions in equation (7) and
the second condition, equation (8), equation (13)
reduces to:

wa(x) = By {sink(L —X) - ﬁ —~ sink(L ~ a)

(14)

Equation (9) results in:

A (k coska — s ka)

a
sink(L —a
+ By [kcosk(L —a) — # =0

(15)

Equation (10) yields:
Aysinka — By sink(L —a) =0 (16)

Non-triviality of 4; and B yields the transcen-
dental equation:

sin ka {k cosk(L—a)— %}

+sink(L —a) (kcos ka — é sin ka) =0

(17)
Introducing non-dimensional quantities:
u:%, a=kL, (18)

and using trigonometric identities we arrive at the
following characteristic equation:

%[cosa —cosa(u—1)]=0 (19)

2aesin o +



206 J. Neuringer and 1. Elishakoff

Now we turn to determining a location a = a* of
the intermediate support, such that the buckling
load will attain a maximum at ¢ = a* corresponds
to u=a*/L =u*. We first note that one of the
arguments on the left hand side of equation (19),
denoted by f:

f(a(u),u) = 2asina

+

— [cosa —cosa2u — 1)] (20)
namely a(u), is an implicit function of u. We wish
to determine the derivative da/du and set it equal
to zero. We proceed as follows. Differentiating
equation (19) with respect to u, we get:

of da  of
5 dn T =0 (21)

a )@ o

On the assumption that 9f /0« differs from zero,
we see that the condition:

Thus,

da
—=0 23
» (23)
is equivalent to:
of
—=0 24
ey (24)
The latter equation yields:
1-2
- 41/!2 [cosa — cos a(2u — 1)]
(u—u?)
+m5ina(2u— 1)=0 (25)

We are interested in the smallest non-zero solution
for a of the coupled set of equations (19) and (25),
and call it «; the corresponding value of u is
called u,.

Let us examine equation (25). It is satisfied by
u*=a*/L =1/2 independent of the value of a.
Hence, by putting ¥ = u* = 1/2 into equation (19)
we get:

sin % (a cos % —2sin %) =0 (26)

Equation (26) yields two equations. Either:

sin % =0 with a = 2 (27)

or,
tan £ =< with o ~ 8.986 (28)
2 2
The smaller value is « = 2m, resulting in the
buckling load:

, EI 4x’El
o — =
cr L2 L2

Py = (29)

We conclude that the best location for the
intermediate support, if the column is simply
supported at both ends is the middle cross section
(Fig. 1b), with the buckling load given in equation
(29). Let us consider a limiting case.

3. BUCKLING LOAD OF A SIMPLY-
SUPPORTED COLUMN WITH
INTERMEDIATE SUPPORT’S LOCATION
APPROACHING ZERO

Taking into account the expressions for the
transverse displacement w;(x) and wy(x) given in
equations (12) and (14), respectively, we obtain the
following formulas for the slopes at the intermediate
support location:

wi(a) = A, (k coska — smaka> (30)

wi(a) = B {kcos k(L —a)— yé !

sink(L — a)}
(31)

Now, when a approaches zero (Fig. 2a), we get:
. , . 1.

lim wi(a) = 4, lim | k cos ka — —sinka

a—0 a—0 a

1
= A (k lim0 coska — lim - sin ka)

a—0 a

=Ai(k—k)=0 (32)

Since condition (9) requires w{ (a) = wj(a) for all a,
we thus also require that:

lirno wi(a) =0 (33)

le S|
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Fig. 2. (a) A simply-supported column with intermediate

support’s location approaching zero. (b) Within the Bernoulli-

Euler theory, when an intermediate support approaches the

left end, the boundary condition there tends to that of the
clamped end.
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Thus,

lim wj(a)
a—0

1
= B lin%) {kcosk(L —a)— I sink(L — a)
1
=B (k coskL — Zsin kL) =0 (34)
or,
tankL = kL (35)

which is the characteristic equation of the column
that is clamped at the left end and simply
supported at the right end.

Thus, within the Bernoulli-Euler theory, when
the intermediate support approaches the left end,
the boundary condition at the left support tends to
that of the clamped end (Fig. 2b). Note that to
the students who will be surprised with this con-
clusion, the lecturer should explain that within
the more refined Timoshenko beam theory this
‘phenomenon’ does not take place: when two
supports tend to each other, they again make the
simply support condition, as expected. We observe
that a more difficult theory leads to the result that
can be ‘seen’ immediately, whereas the simplified
theory of Bernoulli-Euler leads to a less ‘digestible’
result. This problem is addressed by Ari-Gur and
Elishakoff [23].

4. UNIFORM COLUMN CLAMPED AT
BOTH ENDS, WITH AN INTERMEDIATE
SUPPORT

Consider now a uniform column that is
clamped at both ends and is supported by an
additional support at the location x = a (Fig. 3a).
We again have two regions, with attendant govern-
ing differential equations as per equations (4) and

o).

A
M@P (a)
ey
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€ L
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(b)
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Fig. 3. (a) Uniform column clamped at its ends with an

intermediate support. (b) Optimal location of an intermediate
support is in column’s middle.

N

The boundary conditions read, in the new
circumstances:

wi(0) = w((0) =0 (36)
wa(L) =wy(L) =0 (37)
whereas the continuity conditions remain

unchanged, and are given by equations (8-10). In
the first region the solution that satisfies the
boundary conditions and the first of the equation
(8) reads (see Appendix A):

wi(x) = A[—sink(x — a) — sinka — kacos kx
+ kxcoska + sinkx — k(x — a)] (38)

In the second region the transverse displacement
becomes (see Appendix B):

wa(x) = C{k(L — a) cosk(x — L) + sink(x — L)
—sink(x —a) +sink(L — a)
—kLcosk(L —a) + ak
+ [kcosk(L — a) — k]x} (39)

where 4 and C are arbitrary constants. The two
remaining continuity conditions in equations (9)
and (10) yield:

A(2k coska + k*asin ka — 2k)
+ C[K*(L — a)sink(a — L)
—2kcosk(a—L)+2k] =0 (40)
(K*acos ka — k* sin ka) A
+ [K*(L — a) cosk(a — L)
+k*sink(a — L)]C =0 (41)

Setting the determinant of the system (40) and (41)
equal to zero results in the characteristic equation:

(2coska + kasinka — 2)
x [k(L —a)cosk(a— L)+ sink(a — L))
+ (sinka — kacos ka)
X [k(L —a)sink(a— L)
—2cosk(a—L)+2]=0 (42)

Using again the notations as per equation (18)
transforms the characteristic equation into:

(2cosau+ ausinau — 2)
X [a(1 —u)cosa(l —u) —sina(l — u)]
+ (sin au — aucos awu)
X [—a(l —u)sina(l — u)

—2cosa(l —u)+2]=0 (43)
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Using trigonometric identities simplifies this
equation into:

f(a(u),u) = [0*u(l —u) — 2] sina
+ acosa + acosaucos ol — u)
—2a(l —u)cosa(l —u)
+2sina(l —u) + 2sinau
—2aucosau =0 (44)

Setting the partial derivative of the left-hand side
of equation (44) with respect to u equal to zero
yields:

(1 = 2u)a’ sina + o’ sina(1 — 2u)
—2a*(1 — u)sin (1 — u)
+2c’usinau = 0 (45)

It is immediately recognized that this equation is
satisfied by u* = 1/2. Substituting " = 1/2 into
the equation (44) we obtain:

o=4r (46)

That is, exactly as in the column that is simply
supported at both ends, the location of the inter-
mediate support that maximizes the buckling load
is in the middle of the column (Fig. 3b). The
appropriate buckling load equals:

1672EI

Pcr: 12

(47)

Can we draw a general conclusion from consid-
ering these two problems together? It appears that
this question should be addressed in the classroom.
Some students may suggest that due to the uni-
formity of the column and the symmetry of the
boundary conditions with respect to the middle
cross-section, either the maximum or the minimum
buckling load should occur when the intermediate
support is placed in the middle cross-section. At
this point the lecturer may point out that in the
case of the column without intermediate support
that is simply supported at its ends, the buckling
load equals P, = 7w EI/L?, whereas placement of
the support in the middle cross-section changes the
buckling load to P, = 47?EI/L?, i.e. increases it
four-fold. This suggests that students’ anticipa-
tion that the placement of the additional support
in the middle cross-section makes for the extremes
of buckling load is correct. The calculation
above, however, shows us that this extremum is
a maximum.

The lecturer may ask the students to provide
analogous reasoning for the column that is
clamped at the ends. At this juncture the lecturer
may ask if the following theorem would be correct:
‘In order to maximize the buckling load of a
uniform column, an intermediate support has to
be placed in the middle cross section.” We hope
that some students will refute this statement

claiming that (1) we have not checked all possible
boundary conditions, (2) that presumably for this
theorem to be correct one should mention the
symmetry in boundary conditions and change the
statement into: ‘In order to maximize the buckling
load of a uniform column with symmetric bound-
ary conditions (i.e. identical boundary conditions)
at its ends, an intermediate support should be
placed in the middle cross section.’

If the class is sufficiently strong, the lecturer may
proceed to discuss additional cases, which will
reveal that there are more fundamental considera-
tions pertinent to the buckling of a column with
intermediate support, than those associated with
the symmetry. The lack of symmetry in the bound-
ary conditions of the column simply supported at
one end and clamped at the other should appear
sufficient to decide that the intermediate support
should be placed elsewhere (not in the middle
cross-section) in order to maximize the buckling
load.

We also observe that the location of the addi-
tional support that makes the buckling load maxi-
mum corresponds to the location of the node in the
second buckling node of the columns considered in
the above two cases. The interest of the second
author in this problem arose when he attended the
International Conference on Vibration Engineer-
ing in Beijing, People’s Republic of China, in 1994,
and sat next to Prof. H. C. Hu. The presentation of
Ref. 20 was made by Dr. Z. S. Liu. During the
presentation, which dealt with the vibration prob-
lem of the beam, Dr. Liu formulated the following
theorem:

The location of the additional support to maximize
the natural frequency of the beam coincides with that
of the node of the second vibration mode of the beam
without additional support.

The second author asked Professor Hu if one
could foresee this interesting theorem. The reply
was affirmative: ‘Yes, I have dreamt it!’

One may therefore make a conjecture that for
the column an analogous theorem would hold:

The location of the additional support to maximize
the buckling load of the column coincides with that of
the node of the second buckling mode of the column
without support.

Let us check if this conjecture is satisfied for the
column that is simply supported at one end and
clamped at the other, with an intermediate support.

5. UNIFORM COLUMN SIMPLY
SUPPORTED AT ONE END AND CLAMPED
AT THE OTHER END, WITH
INTERMEDIATE SUPPORT

The boundary conditions read (Fig. 4a):
wi(0) =w{ =wi(a) =0 (48)
wa(L) = w3y(L) = wa(a) =0 (49)
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In the first region 0 < x < g, we have:
wi(x) =4 (sin kx — g sin ka) (50)

In region 2, a < x < L, we adopt the solution used
for the column that is clamped at both ends:

wa(x) = Clwy sinkx + wy cos kx + wix + wy]  (51)
where

w) = (L —a)ksinkL 4 coskL — cos ka

wy = (L —a)kcoskL + sinka — sinkL

w3y = klcosk(L —a) — 1] 52)
wq =sink(L —a) — kLcosk(L —a) + ak
The continuity of bending moment:
wi (@) = wj(a) (53)

leads to:
—Asinka + C(w; sinka + wycoska) =0  (54)
The imposition of the continuity of the slope:
wi(a) = wi(a) (55)

results in:

A <k coska — S ka)

a
— C(kw) coska — kwysinka +w3) =0 (56)

Requirement of non-triviality of 4> + C? in equa-
tions (54) and (56) results in the characteristic
equation:

sin ka(kw; cos ka — kw, sin ka + ws)

- (k coska — s ka>

a

X (wy sinka + wy coska) =0 (57)

L’W_E
(a)

\I
L-a |

(b)
-]
a,, =0.3595 L

Fig. 4. (a) Uniform column simply supported at one end and
clamped at the other end, with intermediate support. (b)
Optimal placement of an intermediate support is the location
of the node in the second bucking mode of a simply supported-
clamped column without an intermediate support.

which reduces to:
—akwy + aws sin ka + wy sin® o 4+ wy sina cos v = 0
(58)

Substituting the expressions for w; we get:
f(a(u),u) = (sin qucos au — au)

X (acosa — aucos a + sin au — sin «)

+ ausin au(cos a.cos au + sin acsin oau — 1)

+ sin® oau(a sin @ — ausin o

+cosa —cosau) =0 (59)

Before proceeding with the analysis of this
equation we first concentrate on investigating the
limiting behavior when a — 0. Let us consider an
expression for the slope in the second region, in the
cross-section x = a:

wi(a) = C(kw; coska — kw, sinka + ws)
= C{kcoska[(L — a)ksinkL + cos kL — cos ka]
— kwy sinka + k[cosk(L — a) — 1]} (60)
In the limit, when a approaches zero, we get:

Lik*sinkL + kcoskL — k + kcoskL —k =0

(61)
or,
LksinkL +2coskL —2=0 (62)
Using trigonometric identities:
sinkL = 2sink7L cos %
(63)
.o kL
2coskL —2 = —4sin >
we get,
. kL kL .o kL
2Lk sin — cos —-— 4 sin - = 0 (64)
or, simply,
kL kL
tan — = — 65
an — 3 (65)

which in the characteristic equation for the
clamped-clamped column. Thus, when a tends to
zero, the simply supported end at x =0 and the
intermediate support at x =a, tend to act in
concert as a clamped end.

We return now to the characteristic equation
(59). Recalling the notation of non-dimensional
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quantities u and «, as per equation (18), the
characteristic equation is re-written as:

f(a(u),u) = (u—u?)acos a+2ausin au — ausin
+ sin au cos au(sin @ — arcos a)
— (asina +cosa)sin*au=0  (66)

Let us check now the assertion, that the buckling
load attains a maximum when the additional
support is located at the node of the second
buckling node. The characteristic equation for
the buckling load of the column simply supported
at one end and clamped at the other, and lacking
an intermediate support, reads:

tana = « (67)
The second root of this equation is:
a=17.77252 (68)

Substituting equation (67) into equation (66 ), we
get:

(asin & 4 cos a) sin® o — 2ausin au
2.2 _
+a’u"cosa =0 (69)

Solving quadratic equation (69) with respect to
sin au, results in:

sin au =

_ 20m + \/4a2u® — 4a2u? cos a(arsin o + cos o)
N 2(asina + cos )

(70)

Due to equation (67) sin & = a cos a, equation (70)
reduces to:
au

mou=—5———— 71
st au (a?+1)cosa 1)

Substitution of the numerical value given in
equation (68) yields:

sin 7.725u = 0.9917u (72)
The solution of equation (72) reads:
a=0.3595L (73)

which is the location of the node in the second
buckling mode of the simply supported-clamped
column without an intermediate support (Fig. 4b).

Having arrived at this result one can try to
combine three cases of uniform columns con-
sidered above, namely (1) the column simply
supported at its two ends, (2) the column clamped
at its both ends, (3) the column simply supported
at one end and clamped at the other. In the first
two cases the maximum buckling load occurred if
the additional support was placed in the middle
cross-section of the column. This is a cross-section

with respect to which the column exhibits sym-
metry. Yet, this location is also the node of the
second buckling mode of the column without the
intermediate support. Thus, all three cases appear
to support the assertion that the buckling load
takes a maximum value when the additional
support is placed at the node of the second buck-
ling mode of the column without the intermediate
support. Yet, it appears still premature to claim
that we have hit upon a right conclusion until the
two remaining boundary condition cases are
examined. These are the columns involving free
ends.

6. UNIFORM COLUMN SIMPLY
SUPPORTED AT ONE END AND FREE AT
THE OTHER END, WITH INTERMEDIATE

SUPPORT

The expression for the displacement in the first
region, satisfying the conditions (Fig. 5a)

wi(0) = wi(0) = wi(a) =0 (74)
reads:

wi(x) = 4 (sin kx — gsin ka) (75)

The displacement in the second region,
satisfying the conditions:

wy(a) = w) (L) = w" (L) + kK*w'(L) =0  (76)
is:
wa(x) = C[sink(x — L) —sink(a— L)]  (77)

Now, let us calculate the derivatives:
1 .
wi(x) =4 (k cos kx — _ sin ka)

wi(x) = —Ak* sin kx (78)
wy(x) = Ckcosk(x — L)
wl(x) = —Ck*sink(x — L)

ZS o (a)

T —— )

Fig. 5. (a) Uniform column simply supported at one end and

free at the other, with intermediate support. (b) In order to

maximize the buckling load one should place an additional
support at column’s free end.
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Imposing the continuity conditions (9) and (10)
yields:
1 .
A (kcoska - s1nka) — Ckcosk(a—L)=0
(79)
—Ak?sinka + Ck*sink(a — L) = 0
(80)

The following characteristic equation is obtained,
from equations (79) and (80):

(ak cos ka — sinka) sink(L — a)

+ aksinkacosk(L —a) =0 (81)
or with the familiar non-dimensional variables
u=a/L, o« = kL, we get:
f(a(u),u) = (sinau — aucos au) sina(u — 1)

+ ausinaucosa(u—1)=0 (82)

Using the sum angle formula of trigonometry,
equation (82) is reduced to:

Sf(a(u),u) = ausina + sinausina(u — 1) =0

(83)

Calculating the derivative of the left-side of
equation (83) with respect to u, yields,
asina + acosausina(u — 1)
+ asinaucosa(u—1)=0 (84)
or
sina = sina(l — 2u) (85)
Solving for u in the latter equation we conclude
that:
a(l = 2u) = a+27m (86)

where m is zero or an integer:

m=0,+1,42,... (87)
Thus
mm

Substituting this value into the characteristic
equation (83):
+mmsin « + sin(mm) sin a(j:@ - 1) =0 (89)
a
or
sina =0 (90)

The smallest non-trivial solution of equation (90)
is:

a=m 91)

Bearing in mind equation (88), we get:
u==+m (92)

where m is zero or an integer. On the other hand
we observe, that through the definition of u in
equation (18), it must lie in the closed interval [0,
1]. There are two solutions of equation (92) con-
sistent with this requirement: ¥ = 0 corresponds to
m=0, and u =1 corresponding to m = 1. The
condition u = 0 corresponds to the buckling load
of the clamped-free column without an inter-
mediate support with buckling load:

w2 EI
412
The condition u = 1 corresponds to the buckling

load of the column that is simply supported at its
both ends, namely,

P, = (93)

T El
P, = 7 (94)
Thus, in order to maximize the buckling load of a
simply supported-free column, one should place an
additional support at column’s free end (Fig. 5b).
Does the end of the free column correspond to
the node of the second buckling mode of the
simply supported free column without an addi-
tional support? In order to answer this question
let us derive an expression for the buckling mode
of such a column. The general solution for the
displacement of the uniform column reads:

w(x) = By sinkx + Bycoskx + Bsx + By (95)

Satisfying the boundary condition w”(0) =0 we
conclude that B, =0. The condition w(0) =0
leads to B4 = 0. Thus the displacement becomes:

w(x) = By sinkx + B3 x (96)
Requirement w”(L) = 0 results in:
By k*sinkL =0 (97)
From (97), since By # 0, we require:

k=" m=0,+1,42,... (98)

Using (96), the condition w” (L) + k*w'(L) =0,
yields:

B1k*(— coskL + coskL) + B3 k* = 0

Hence, B3 = 0. Thus, the normal modes are given
by:

Wyn(x) = B sin ? x (99)

which is the same as those of the column that is
simply supported at both ends without inter-
mediate support. The node of the second buck-
ling mode (m = 2) occurs at L/2. Since we have
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demonstrated that the additional support which
maximizes the buckling load should be placed at
x = L, we conclude that the conjecture that the
buckling load assumes a maximum value when
the additional support is placed at the node of the
second buckling mode of the column without
intermediate support, is violated in the simple
support-free case. Let us check the remaining
case to be able to reach the final conclusions.

7. UNIFORM COLUMN CLAMPED AT ONE
END AND FREE AT THE OTHER END,
WITH INTERMEDIATE SUPPORT

In the first region the column’s displacement
satisfying the boundary conditions (Fig. 6a):

w1(0) = wi(0) = wi(a) =0 (100)
reads
wi(x) = A[(coskx — 1)(sinka — ka)
— (coska — 1)(sin kx — kx)] (101)

In the second region the solution satisfying the
conditions:

wy (L) = wy"(L) + kK*w(L) = wa(a) =0 (102)
reads
wa(x) = C[sink(x — L) —sink(a — L)]  (103)

Satisfying the continuity conditions wi(a) =
wh(a); wi'(a) = wj(a) yields:

A[(— sin ka)(sin ka — ka) — (cos ka — 1)?]
—Ccosk(a—L)=0 (104)
A[(—coska)(sin ka — ka) + (cos ka — 1) sin ka|
+ Csink(a—L)=0 (105)

g—n;P*P (a)
|<—a + L-a

-~

M—P (b)
e

Fig. 6. (a) Uniform column clamped at one end and free at the

other end, with intermediate support. (b) In order to maximize

the buckling load, one should place an additional support at
column’s free end.

Requiring non-triviality of 4> + C? we arrive at
the characteristic equation:

sin k(a — L)[— sin ka(sin ka — ka) — (coska — 1)?]
+ cosk(a — L)[— coska(sin ka — ka)
+ sinka(coska —1)] =0 (106)

Using some trigonometric identities and
introducing non-dimensional quantities « and u,
as per equation (18), equation (106) is reduced
to:

f(a(u),u) = (=2 + cosau)sina(u — 1)
—sina+ aucosa =0 (107)

Taking a partial derivative of the left-hand side
of equation (107) with respect to u yields:

—sinausino(u — 1) + (=2 + cos ku) cos k(u — 1)
+cosa=0 (108)
Let us set temporarily:
y=a(u—1) (109)
so that equation (108) can be re-written as follows:
—sin(y 4 a)siny + [-2 + cos(y + «)] cos y
+cosa=0 (110)

Expanding, using the trigonometric formulas for
functions of sums and differences of two angles
and collating like terms results in a quadratic
equation for cosy:

cos® y —2cosacosy +cos’ a =0 (111)
which could be rewritten as:
(cosy —cosa)® =0 (112)
or, simply,
COSy = COS (113)
Hence, on the one hand,
y=a+2mr, m=0,+1,+2,... (114)

and on the other, in accordance to the definition in
equation (109):

y=alu-1) (115)

Equating right sides of equations (114) and (115)
we arrive at:

u=2(1+?) (116)

Since we require:
0<u<l (117)

we immediately observe from equation (116) that u
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exceeds unity for all non-negative values of m. Let
us, therefore, concentrate on the negative values of
m. From equation (116):

au =2« + 2mm (118)

We substitute this expression into the characteristic
equation (107):

—3sina + cos2asina + (2a + 2mn) cosa = 0
(119)

The solution of this equation is:
a=|m|n (120)

Note that, the absolute value in equation (120)
appears since the values of m under consideration
are negative. Substituting this value into equation
(118) we obtain u = 0.

We conclude from the above analysis that there
is no relative maximum or minimum in the open
interval x € (0, 1). However, since the function f,
identified with the left side of equation (107) is
continuous on a closed interval [0,1], it must
obtain both a maximum value and a minimum
value on [0,1]. A simple check shows that the
minimum occurs when # =0 and the maximum
is attained when u = 1.

Substituting this value into equation (107), we
obtain:

—sina+acosa =0 (121)
or

tana = « (122)

which is the equation associated with the clamped-
simply supported column.

Carrying out the corresponding calculation as
was done in the simply supported free case with-
out additional support, the modes for the clamped-
free case without additional support are given
by:

W(x) = By {1 — cos {(Zmz_l) 7 ﬂ } (123)

It is seen that there are no nodes in the second
buckling mode (m = 2) in the interval (0, L) note
that the third buckling mode (m = 3) has a node at
x=4L/5.

8. CONCLUSION

As is clearly seen in the two last cases the
conjecture made by us that the buckling load
takes a maximum value when the additional
support is placed at the node of the second buck-
ling mode of the column without the intermediate
support, does not hold. In the last two cases the
additional support must be placed at the free end
of the column. Is it possible to put all obtained
results as a single statement? The answer is affir-
mative. In order to maximize the buckling load of
a uniform column by introducing a single support,
it must be placed at the location where the first
buckling mode of the column without inter-
mediate support achieves a maximum. Indeed, if
the displacement at both ends of the column
vanishes, then the additional support must be
placed at the location where the node of the
second buckling mode of the column with the
intermediate support removed is located. But this
is also a location of the maximum displacement of
the first buckling mode.

When one of the ends of the column is free, the
additional support must be placed at the free end
of the column. This is also a location of the
maximum value attained by the first buckling
mode of the column without support.

Thus all the cases fall in the same, unified
category:

In order to maximize the buckling load of a uniform
column with classical boundary conditions at the
ends, one first should locate the cross-section where
the first buckling mode attains a maximum value; one
then should place the additional support in that
location.

In the actual course the conducted discussions
on this topic were lively. We hope that analogous
interest arise in many classes, when teaching the
strength of materials course. The course should not
be reduced to listing of results concisely and
quickly covering them; material will be better
digested if students participate in the discussions
and are partially elevated to the status of co-
uncoverers, maybe of even small exciting points.
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APPENDIX A

Derivation of equation (38)
The general solution for w;(x) is given by equation (11). The condition w(0) = 0 yields 44 = —4,. We
calculate the slope:

wi(x) = A1k coskx — Arksinkx + A

The condition wj(0) = 0 results in:

Ay =—A1k

Thus, expression for the displacement becomes:

wi(x) = Aj(sinkx — kx) + Ax(coskx — 1)

Imposition of the condition w(a) = 0 yields:

or

Ay (sinka — ka) + Ax(coska —1) =0

sinka — ka

Ay =—A4
2 M coska — 1

Substituting for A, results in:

wi(x) = A[(coska — 1)(kx — sinkx) + (coskx — 1)(sinka — ka)]

with 4 being a new constant:

A= A/(coska—1)

(A1)
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Multiplying out in equation (A6) and using the identity:

(sin kx)(cos ka) — (cos kx)(sin ka) = sink(x — a) (A8)
we obtain:
wi(x) = A[—sink(x — a) — sinka — kacos kx + kx cos ka + sinkx — k(x — a)] (A9)
APPENDIX B

Derivation of equation (39)
The general solution for wy(x) is given by equation (13). The imposition of the condition w,(L) =0
yields:

By sinkL + BycoskL + Bs3L+ By =0 (B1)
Now, the expression for the slope reads:
wy(x) = Bik coskx — Byksinkx + Bs (B2)
The condition wj(L) = 0 results in:
BikcoskL — ByksinkL + B3 =0 (B3)
The condition wy(a) = 0 yields:
Bysinka + Bycoska+ Bsa+ By =0 (B4)
We have from equations (B2), (B3) and (B4):
BrcoskL + B3 L + By = —B;sinkL
—ByksinkL + By + B4+ 0 = —BikcoskL (BS)
Bycoska+ Bsa+ By = —Bjsinka
Solving these equations using Cramer’s rule, we get:
By = Bz /)
B3 = Biys/ ¢ (B6)
By = Bipa/ o1
where
coskL L 1
pr=|—ksinkL 1 0
coska a 1

—sinkL L 1
0

—

@y = | —kcoskL
—sinka a 1

(B7)
coskL —sinkL 1
p3 = | —ksinkL —kcoskL 0

coska —sinka 1

coskL L —sinkL
py=|—ksinkL 1 —kcoskL

coska a —sinka
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Substituting for B,, Bs and B, in terms of B; (equation B6), simplifying and introducing a new constant we
obtain equation (39). As a check, by directly substituting the appropriate values for x in equation (39) it is
immediately verified that equation (39) satisfies the conditions w;(L) = wj(L) = wa(a) = 0.
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