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Although the christening of the discipline is a relatively recent undertaking, fluid mechanics goes
back to the time of archaic Homo sapiens. The art of fluids in motion was born when quite
empirically, unceremoniously and without a hint of what either a fluid or mechanics is, the
resourceful inhabitants of the planet Earth discovered that a streamlined object travels farther as
compared to a blunt one. Great changes took place during the first half of this century in both the
teaching and research of the discipline, and it appears that the subject is set for another upheaval as
we approach the third millennium. This paper discusses those past and future evolutions of fluid
mechanics.

IN THE BEGINNING

The farther backward you can look, the farther
forward you are likely to see. (Sir Winston Leonard

Spencer Churchill, 1874±1965)

THIS PAPER is certainly not intended to be a
history of the subject, but a few important mile-
stones are recalled in this and the next five sections.
The purpose of the exercise is to submit that the
discipline of fluid mechanics, as taught in engin-
eering schools and practiced in industry, is perhaps
ripe for a major overhaul equal in significance to
the changes that took place early in the twentieth
century. The different eras to be discussed are seen
from the perspective of the history of the universe
time line depicted in Fig. 1.

The art of fluid mechanics arguably has its roots
in prehistoric times when streamlined spears,
sickle-shaped boomerangs and fin-stabilized
arrows evolved empirically [1] by the sheer perse-
verance of archaic Homo sapiens who knew noth-
ing about air resistance or aerodynamic principles.
Three aerodynamically correct wooden spears
were recently excavated in an open-pit coal mine
near Hanover, Germany [2]. Archeologists dated
the carving of those complete spears to about
400,000 years ago [3] which strongly suggests
early Stone Age ancestors possessing resourceful-
ness and skills once thought to be characteristics
that came only with fully-modern Homo sapiens.

Modern man also unknowingly yet artfully
applied fluid flow principles to achieve certain
technological goals. Relatively soon after the
dawn of civilization and the establishment of an
agriculture way of life 8000 years ago, complex
systems of irrigation were built along inhabited
river valleys to control the water flow, thus freeing

man from the vagaries of the weather. Some
resourceful albeit mischievous citizens of the
Roman Empire discovered that adding the right
kind of diffuser to the calibrated convergent nozzle
ordinarily installed at home outlets of the public
water main significantly increased the charge of
potable water over that granted by the Emperor.
For centuries, farmers knew the value of wind-
breaks to keep top soil in place and to protect
fragile crops.

ARCHIMEDES TO LEONARDO

Mechanics is the paradise of the mathematical
sciences because by means of it one comes to
the fruits of mathematics. (Leonardo da Vinci,

1452±1519)

The Greek mathematician Archimedes (287±212
BC) provided an exact solution to the fluid-at-rest
problem and expressions for the buoyant force on
various bodies, long before calculus or the modern
laws of mechanics were known. The science of
hydrostatics was developed at about the same
time the Romans were building their water-
supply systems. A few centuries of scientific
drought followed, only to be re-irrigated by the
Renaissance's deluge of art and science. Leonardo
da Vinci (1452±1519) correctly deduced the conser-
vation of mass equation for incompressible, one-
dimensional flows.

Leonardo also pioneered the flow visualization
genre close to 500 years ago. Much of Leonardo's
notebooks of engineering and scientific observa-
tions were translated into English in a magnificent
two-volume book by MacCurdy [4]. Succulent
descriptions of the smooth and eddying motions
of water alone occupy 121 pages. In there, one can
easily discern the Renaissance genius's prophecy of* Accepted 10 March 1998.
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some of the flow physics to be discovered centuries
after his time. Particularly relevant to the modern
notion of coherent structures, the words eddies and
eddying motions percolate throughout Leonardo's
treatise on liquid flows.

Figure 2 is perhaps the world first use of
visualization as a scientific tool to study a turbu-
lent flow. Around 1500, Leonardo sketched a free
water jet issuing from a square hole into a pool. He
wrote `Observe the motion of the surface of the
water, which resembles that of hair, which has two
motions, of which one is caused by the weight of
the hair, the other by the direction of the curls;
thus the water has eddying motions, one part of
which is due to the principal current, the other to
the random and reverse motion.' Reflecting on this
passage, Lumley [5] speculates that Leonardo da
Vinci might have prefigured the now famous
Reynolds turbulence decomposition nearly 400

years prior to Osborne Reynolds' own flow
visualization and analysis!

In describing the swirling water motion behind
a bluff body, da Vinci provided the earliest
reference to the importance of vortices in fluid
motion: `So moving water strives to maintain the
course pursuant to the power which occasions it
and, if it finds an obstacle in its path, completes
the span of the course it has commenced by a
circular and revolving movement.' Leonardo
accurately sketched the pair of quasi-stationary,
counter-rotating vortices in the midst of the
random wake.

Finally, da Vinci's words `. . . the small eddies
are almost numberless, and large things are rotated
only by large eddies and not by small ones, and
small things are turned by both small eddies and
large,' presage Richardson's cascade, coherent
structures and large-eddy simulations, at least.

Fig. 1. History of the universe time line. All dates are approximate, and the time scale is highly nonlinear.
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THE FUNDAMENTAL EQUATIONS

Now I think hydrodynamics is to be the root of all
physical science, and is at present second to none in
the beauty of its mathematics. (William Thomson

(Lord Kelvin), 1824±1907)

Little more than a century and half after the
incomparable Newton's Principia Mathematica
was published in 1687, the first principles of
viscous fluid flows were affirmed in the form of
the Navier-Stokes equations, with major contribu-
tions by Navier in 1823, Cauchy in 1828, Poisson
in 1829, Saint Venant in 1843, and Stokes in 1845.
With very few exceptions, the Navier-Stokes equa-
tions provide an excellent model for both laminar
and turbulent flows. The anticipated paradigm
shift in fluid mechanics discussed in this paper
centers around the ability today as well as tomor-
row of computers to numerically integrate those
equations. We therefore recall in this section the
equations of fluid motion in their entirety.

Each of the fundamental laws of fluid
mechanics, conservation of mass, momentum and
energy, are listed first in their raw form, i.e.
assuming only that the speeds involved are non-
relativistic and that the fluid is a continuum. The
latter assumption implies that the derivatives of all
the dependent variables exist in some reasonable
sense. In other words, local properties such as
density and velocity are defined as averages over
elements large compared with the microscopic
structure of the fluid but small enough in com-
parison with the scale of the macroscopic
phenomena to permit the use of differential
calculus to describe them. The resulting equations

therefore cover a very broad range of situations,
the exception being flows with spatial scales which
are not much larger than the mean distance
between the fluid molecules, as for example in
the case of rarefied gas dynamics, shock waves
that are thin relative to the mean free path, or
flows in micro- and nano-devices. Thus at every
point in space-time and in Cartesian tensor
notations, the three conservation laws read:
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where � is the fluid density, uk is an instantaneous
velocity component �u; v;w�, Pki is the second-
order stress tensor (surface force per unit area), gi

is the body force per unit mass, e is internal energy
per unit mass, and qk is the sum of heat flux
vectors due to conduction and radiation. The
independent variables are time t and the three
spatial x1, x2 and x3, or �x; y; z�. Finally, the
Einstein's summation convention applies to all
repeated indices.

CLOSING THE EQUATIONS

You are not educated until you know the Second
Law of Thermodynamics. (Charles Percy (Baron)

Snow, 1905±1980)

Fig. 2. Leonardo da Vinci's sketch of water exiting from a square hole into a pool; circa 1500.
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Equations (1), (2) and (3) constitute five dif-
ferential equations for the 17 unknowns �, ui,P

ki, e and qk. Absent any body couples, the
stress tensor is symmetric having only six inde-
pendent components, which reduces the number of
unknowns to 14. To close the conservation
equations, relation between the stress tensor and
deformation rate, relation between the heat flux
vector and the temperature field, and appropriate
equations of state, relating the different thermo-
dynamic properties, are needed. For a Newtonian,
isotropic, Fourier, ideal gas, for example, these
relations read:
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where p is the thermodynamic pressure, � and �
are the first and second coefficients of viscosity,
respectively, �ki is the unit second-order tensor
(Kronecker delta), � is the thermal conductivity,
T is the temperature field, cv is the specific heat at
constant volume, and R is the gas constant.
(Newtonian implies a linear relation between the
stress tensor and the symmetric part of the defor-
mation tensor (rate of strain tensor). The isotropy
assumption reduces the 81 constants of propor-
tionality in that linear relation to two constants.
Fourier fluid is that for which the conduction part
of the heat flux vector is linearly related to the
temperature gradient, and again isotropy implies
that the constant of proportionality in this relation
is a single scalar.)

The Stokes' hypothesis relates the first and
second coefficients of viscosity, �� 2

3
� � 0,

although the validity of this assumption has occa-
sionally been questioned [6]. With the above
constitutive relations and neglecting radiative
heat transfer, equations (1), (2) and (3) respectively
read:
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The three components of the vector equation (8)

are the Navier-Stokes equations expressing the
conservation of momentum for a Newtonian
fluid. In the thermal energy equation (9), � is the

always positive (as required by the Second Law of
Thermodynamics) dissipation function expressing
the irreversible conversion of mechanical energy to
internal energy as a result of the deformation of a
fluid element. The second term on the right-hand
side of (9) is the reversible work done (per unit
time) by the pressure as the volume of a fluid
material element changes. For a Newtonian,
isotropic fluid, the viscous dissipation rate is
given by
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There are now six unknowns, �, ui, p and T , and
the five coupled equations (7), (8) and (9) plus the
equation of state relating pressure, density and
temperature. These six equations together with
sufficient number of initial and boundary condi-
tions constitute a well-posed, albeit formidable,
problem. The system of equations (7)±(9) is an
excellent model for the laminar or turbulent flow
of most fluids such as air and water under most
circumstances, including high-speed gas flows for
which the shock waves are thick relative to the
mean free path of the molecules.

Considerable simplification is achieved if the
flow is assumed incompressible, usually a reason-
able assumption provided that the characteristic
flow speed is less than 0.3 of the speed of sound.
The incompressibility assumption is readily satis-
fied for almost all liquid flows and many gas flows.
In such cases, the density is assumed either a
constant or a given function of temperature (or
species concentration). The governing equations
for such flow are:
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These are five equations for the five dependent
variables ui, p and T . Note that the left-hand side
of equation (13) has the specific heat at constant
pressure cp and not cv. This is the correct incom-
pressible-flow limitÐof a compressible fluidÐas
discussed in detail in Section 10.9 of Panton's book
[7]; a subtle point perhaps but one that is
frequently missed in textbooks. The system of
equations (11)±(13) is coupled if either the viscosity
or density depends on temperature, otherwise the
energy equation is uncoupled from the continuity
and momentum equations and can therefore be
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solved after the velocity and pressure fields are
determined from solving (11) and (12).

PRANDTL'S BREAKTHROUGH

There is no greater impediment to progress in the
sciences than the desire to see it take place too
quickly. (George Christoph Lichtenberg, 1742±

1799)

Even with the simplification accorded by the
incompressibility assumption, the above system
of equations is formidable and has no general
solution. Usual further simplificationsÐapplicable
only to laminar flowsÐinclude geometries for
which the nonlinear terms in the (instantaneous)
momentum equation are identically zero, low-
Reynolds-number creeping flows for which the
nonlinear terms are approximately zero, and
high-Reynolds-number inviscid flows for which
the continuity and momentum equations can be
shown to metamorphose into the linear Laplace
equation. The latter assumption spawned the great
advances in perfect flow theory that took place
during the second half of the nineteenth century.
However, neglecting viscosity gives the totally
erroneous result of zero drag for moving bodies
and zero pressure drop in pipes. Moreover, none
of those simplifications apply to the rotational,
(instantaneously) time-dependent and three-
dimensional turbulent flows.

Not surprisingly, hydraulic engineers of the time
showed little interest in the elegant theories of
hydrodynamics and relied instead on their own
collection of totally empirical equations, charts
and tables to compute drag, pressure losses and
other practically important quantities. Consistent
with this pragmatic approach, engineering students
then and for many decades to follow were taught
the art of hydraulics. The science of hydro-
dynamics was relegated, if at all, to mathematics
and physics curricula.

In lamenting the status of fluid mechanics at
the dawn of the twentieth century, the British
chemist and Nobel laureate Sir Cyril Norman
Hinshelwood (1897±1967) jested that fluid dyna-
mists were divided into hydraulic engineers who
observed things that could not be explained and
mathematicians who explained things that could
not be observed.

In an epoch-making presentation to the third
International Congress of Mathematicians held at
Heidelberg, the German engineer Ludwig Prandtl
resolved, to a large extent, the above dilemma. In
1904, Prandtl [8] introduced the concept of a fluid
boundary layer, adjacent to a moving body, where
viscous forces are important and outside of which
the flow is more or less inviscid. At sufficiently
high Reynolds number, the boundary layer is thin
relative to the longitudinal length scale and, as a
result, velocity derivatives in the streamwise direc-
tion are small compared to normal derivatives.

That single simplification made it possible for the
first time to obtain viscous flow solutions even in
the presence of nonlinear terms, at least in the case
of laminar flow. Both the momentum and energy
equations are parabolic under such circumstances,
and are therefore amenable to similarity solutions
and marching numerical techniques. From that
moment on, viscous flow theory was in vogue for
both scientists and engineers. Practical quantities
such as skin-friction drag could be computed from
first principles even for non-creeping flows.
Experiments in wind tunnels and their cousins
provided valuable data for problems too complex
to submit to analysis.

THE SWITCH FROM ART TO SCIENCE

There is always an easy solution to every human
problemÐneat, plausible and wrong. (Henry Louis

Mencken, 1880±1956)

It took a number of years for the boundary layer
theory mentioned in the last section to travel
outside the small circle of Prandtl and his students
at GoÈttingen. Prandtl's paper, written in German
naturally, contained a wealth of information: the
concept of boundary layer, the resulting approxi-
mations, the mechanism of separation, and flow
control strategies to delay flow separation. Yet, the
manuscript was limited by the Congress organizers
to 8 pagesÐdifficult reading indeed. The pace, for
researchers at least, picked up just prior to and
certainly after World War II. But engineering
schools for the most part continued to teach
hydraulics, with scant attention to the Navier-
Stokes equations. Only when those schools,
particularly in the United States, decided that a
quantum shift from engineering technology to
engineering science education was in order, did
fluid mechanics replace hydraulics in under-
graduate engineering curricula.

The key impetus for that switch was an impor-
tant report, the Grinter Report, prepared by a
committee of the American Society of Engineering
Education set to evaluate the future of engineering
education in general. In May 1952, ASEE
President S. C. Hollister charged that committee
`to recommend the pattern or patterns that engi-
neering education should take in order to keep
pace with the rapid developments in science and
technology, and to educate men [sic] who will be
competent to serve the needs of and provide the
leadership for the engineering profession over the
next quarter-century'.

The Grinter Report [9], published in September
1955 and named after Linton E. Grinter who
chaired the ASEE Committee on Evaluation of
Engineering Education, is considered a major
work in the development of undergraduate engi-
neering curricula that is used today in the United
States. The report outlines specific objectives for
both the technical and humanities areas of study

Fluid Mechanics from the Beginning to the Third Millennium 181



necessary for future engineers and was the first
time in the development of engineering education
that the curricula was divided into four segments:

1. humanities and social sciences;
2. mathematics and basic sciences;
3. engineering science;
4. engineering specialty subjects and electives.

According to Weese and Wolf [10], the Grinter
Report lay fallow until it was punctuated by the
launching of the Soviet satellite Sputnik in October
1957. The cold war and the space race opened
engineering education to the reformations recom-
mended by that report, most importantly the
switch to a curriculum based on the fundamentals
of engineering science. Readers interested in the
pedagogic change from engineering technology to
engineering science may consult references [11±15].

So, fluid mechanics as taught today centers
around first principles and the art of rational
approximations: integral methods, inviscid flow,
boundary-layer approximation, asymptotic analy-
sis, etc. The wind tunnel continues to validate as
well as complements the analytical results. But the
digital computer may change all that. Today the
full equations can be numerically integrated for
almost any laminar flow. Turbulent flows are a
different beast of course. Only trivial geometries
and very modest Reynolds numbers can be tackled
via direct numerical simulations. Few decades
from now, however, turbulent flows may be
approached as readily as their laminar counter-
parts. This and the potential for a paradigm shift
in fluid mechanics education and practice are
argued in the following section.

THE COMPUTER

However far modern science and technics have fallen
short of their inherent possibilities, they have taught
mankind at least one lesson: Nothing is impossible.

(Lewis Mumford, 1895±1990)

We consider in this section the future of some of
the physical sciences which are developed enough
for problems to be well-posed mathematically even
though, due to their complexity, analytical solu-
tions are not possible. Such problems are typically
approached through a combination of physical
and numerical experiments, the latter increasing
in scope and range as more computing power
becomes available. Will they take over the
former? Many areas in mechanics, and in particu-
lar fluid mechanics, appear to be at this stage. In a
letter addressed to George G. Stokes dated 20
December 1857, William Thomson wrote `Now I
think hydrodynamics is to be the root of all
physical science, and is at present second to none
in the beauty of its mathematics.' Since we do not
disagree with Lord Kelvin's assessment of the
importance of fluid dynamics and since the present

paper concerns the future of this particular area,
we focus on this subject as a quintessential example
for the rest of this section. However, the arguments
presented apply equally to many other disciplines:
heat transfer, structural mechanics, etc.

As a teaching and research discipline, will fluid
mechanics be around during the twenty-first
century and beyond? During the last century,
theoretical hydrodynamics flourished but was
totally disjoint from the empirical science of
hydraulics. The twentieth century witnessed the
development of boundary layer theory and the
merging of hydraulics and hydrodynamics into a
unified science. What will become of fluid
mechanics research and teaching during the next
century? As we approach the third millennium the
art and science of fluid mechanics might be set for
dramatic changes. In no small part, rapidly advan-
cing computer technology would be responsible for
those changes.

Leaving aside for a moment less conventional,
albeit just as important, problems in fluid
mechanics such as those involving non-Newtonian
fluids, multiphase flows, hypersonic flows and
chemically reacting flows, in principle practically
any laminar flow problem can presently be solved,
at least numerically. Turbulence, in contrast,
remains largely an enigma, analytically unap-
proachable yet practically very important. For a
turbulent flow, the dependent variables are
random functions of space and time, and no
straightforward method exists for analytically
obtaining stochastic solutions to the governing
nonlinear, partial differential equations. The
statistical approach to solving the Navier-Stokes
equations always leads to more unknowns than
equations (the closure problem), and solutions
based on first principles are again not possible.
The heuristic modeling used to close the Reynolds-
averaged equations has to be validated case-by-
case, and does not therefore offer much of an
advantage over the old-fashioned empirical
approach.

Turbulence, therefore, is a conundrum that
appears to yield its secrets only to physical and
numerical experiments, provided that the wide
band of relevant scales is fully resolvedÐa far-
from-trivial task at high Reynolds numbers [16].
Direct numerical simulations (DNS) of the canon-
ical turbulent boundary layer have so far been
carried out, at great cost despite a bit of improvis-
ing, up to a very modest momentum-thickness
Reynolds number of 1410 [17].

In a turbulent flow, the ratio of the large eddies
(at which the energy maintaining the flow is
input) to the Kolmogorov micro-scale (the flow
smallest length-scale) is proportional to Re�3=4�
[18]. Each excited eddy requires at least one grid
point to describe it. Therefore, to adequately
resolve, via DNS, a three-dimensional flow, the
required number of modes would be proportional
to Re�3=4�3 . In order to describe the motion of small
eddies as they are swept around by large ones, the
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time step must not be larger than the ratio of the
Kolmogorov length-scale to the characteristic rms
velocity. The large eddies, on the other hand,
evolve on a time-scale proportional to their size
divided by their root-mean-square velocity. Thus,
the number of time steps required is again propor-
tional to Re�3=4�. Finally, the computational work
requirement is the number of modes � the number
of time steps, which scales with Re3, i.e. an order of
magnitude increase in computer power is needed as
the Reynolds number is doubled [19]. Since the
computational resource required varies as the cube
of the Reynolds number, it may not be possible to
simulate very high Reynolds number turbulent
flows any time soon.

Despite the bleak assessment above, one
wonders whether gigantic computers combined
with appropriate software will be available
during the twenty-first century to routinely solve,
using DNS, practical turbulent flow problems?
The black box would prompt its operator for the
geometry and flow conditions, and would then spit
out a numerical solution to the specific engineering
problem. Nobody, except the software developers,
needs to know the details of what is going on inside
the black box, not even which equations are being
solved. This situation is not unlike using a present-
day word processor or even hand calculator. A
generation of users of the Navier-Stokes com-
puters would quickly lose the aptitude, and the
desire, to perform simple analysis based on physi-
cal considerations, much the same as the inability
of some of today's users of hand calculators to
manually carry out long divisions. The need for
rational approximations, so prevalent today in
fluid mechanics teaching and practice, would
gradually wither.

Future computers
During the late 1990s, the supercomputer power

approached the teraflop, i.e. 1012 floating-point
operations per second. This is about right to
compute a flow with a characteristic Reynolds
number of 108, sufficient to simulate the flow
around an airfoil via DNS, around a wing via
large-eddy simulation, or around an entire
commercial aircraft via Reynolds-averaged calcu-
lation. An exaflop (1018 flops) computer is needed
to carry out direct numerical simulation of the
complete airplane [19].

Silicon-based computer powers have witnessed
spectacular recent advances, something like a
factor of 10 000 improvement in speed and capa-
city during the past 20 years. (Although loosely
related, this is consistent with the law named after
the co-founder of Intel Corporation, Gordon
Moore, who in 1965 predicted that the transistor
density on a semiconductor chip would double
and its price would halve roughly every 18
months. Incidentally, Moore's Law has been
bettered in 1997.) If one is to extrapolate those
recent advances to the next fifty years or so,
using direct numerical simulations to solve the

turbulence problem for realistic geometries and
field Reynolds numbers may begin to approach
feasibility. Unfortunately, however, silicon micro-
chips are rapidly approaching their physical limits
with little room for further growth.

Fortunately this kind of linear thinking may be
misleading. Revolutionary computing machines
that bear little resemblance to today's silicon-
based computers may be developed in the future.
A recent article in Science [20] discusses five such
futuristic computing concepts: quantum dots,
quantum computers, holographic association,
optical computers, and DNA computers. We
focus on the last possibility: the so-called DNA
(deoxyribonucleic acid) computing systems, a
novel concept introduced and actually demon-
strated late in 1994 by Adleman [21], who in turn
was inspired by the original Feynman's [22] vision
of building even smaller sub-microscopic com-
puters. The idea is already attracting considerable
attention from computer scientists as well as
microbiologists. In such massively parallel
machines, the four basic chemical units of DNA
(adenine, thymine, guanine and cytosine, desig-
nated A, T, G and C, respectively) would be used
as computing symbols, and the system would
utilize the genetic material for information storage
and computations.

Computer theorists argue that a problem could
be set up by synthesizing DNA molecules with a
particular sequence that represents numerical
information, and by letting the molecules react in
a test tube, producing new molecules whose
sequence is the answer to the problem. Thus, the
same genetic machinery that generates living
organisms could be used to solve previously unap-
proachable mathematical puzzles. Crude estimates
indicate that a mere 500 gm of DNA molecules (a
human body contains about 300 gm of DNA)
suspended in 1000 liters of fluid would have the
equivalent memory to all the electronic computers
ever made! In such `primordial, reacting soup',
four months of manipulating the DNA molecules
would yield an answer to a problem that would
have required more operations than all those ever
performed on all the conventional computers ever
built.

In principle, a super-supercomputer that could
integrate the equations of motion for a mainstream
turbulence problem could also do the same,
perhaps with some additional effort, for the
myriad of other important fluid problems. Astro-
physical flows, multiphase flows, non-Newtonian
fluids, hypersonic problems involving dissociation
and rarefied gas effects, combustion problems,
etc., whether they involve laminar or turbulent
flow, are all extremely difficult to formulate and
integrate; but once properly modeled the number
crunchers would give the needed answers.

If the above or similar vision materializes, the
question is then what will become of fluid
mechanics as a subject to be taught to engineering
and science majors and as a distinct research
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discipline. True, engineers will always need to
know some basics of fluid engineering in order to
interpret the computational results and to design
useful products, but would we still need to teach
the Navier-Stokes equations and the handful of
special problems that can be solved analytically?
Or would the discipline exist in a form totally
unrecognizable to us today? Certainly the millions
of word processor users of today do not need to be
taught how to write the essential software; only a
few are commissioned to carry out that hard task.
Would fluid mechanics journals be even necessary?
To some with vested interests, the present author
included, the disappearance of fluid mechanics as a
discipline would be unfortunate; but to others its
replacement by an operational black box would be
just what is needed. Our own hope is that practical
needs as well as human curiosity keep the field on
the forefront of engineering education as well as
basic and applied research for many decades (or
centuries) to come. Our descendants might even-
tually be able to compute any flow, but they must
also be able to do something meaningful with the
results.

THE FUTURE

As for the future, your task is not to foresee, but to
enable it. (Antoine de Saint-ExupeÂry, 1900±1944,

in The Wisdom of the Sands)

As argued in the previous section, the computer of
the future may be able to numerically integrate any
problem in fluid mechanics that one is likely to
encounter. There may be little need for the myriad
of rational approximations so prevalent in today's
fluid mechanics and other engineering curricula.

Gradually but surely, engineering students will
have to rely more on prepackaged software and
less on analysis to solve the numerous challenging
problems they may encounter on the campus or in
real life. Therefore, if one day computers could
solve everything, a paradigm shift in teaching fluid
mechanics and perhaps even all of engineering
science might be inevitable. This is not something
the present author wishes, for as Galileo Galilei
has said, `Thinking is one of the greatest joys of
humankind'. And that is certainly a trait which
would wither with the ever more powerful
computers.

So, where do we go from here? I leave you now
with the words of the mathematician Charles
Lutwidge Dodgson (1832±1898) who created the
two memorable stories about `Alice' merely to
amuse the young daughter of an acquaintance,
and whose nom de plume was Lewis Carroll.

`Cheshire Puss,' she began, rather timidly, as she
did not at all know whether it would like the name:
however, it only grinned a little wider. `Come, it's
pleased so far,' thought Alice, and she went on,
`Would you tell me, please, which way I ought to
walk from here?'.
`That depends a good deal on where you want to
get to,' said the Cat.
`I don't much care whereÐÐ' said Alice.
`Then it doesn't matter which way you walk,' said
the Cat.
`ÐÐso long as I get somewhere,' Alice added as
an explanation.
`Oh, you're sure to do that,' said the Cat, `if you
only walk long enough.'

(From Lewis Carroll's
Alice's Adventures in Wonderland, 1865)
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