Int. J. Engng Ed. Vol. 14, No. 4, p. 300-304, 1998
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 1998 TEMPUS Publications.

Laboratory Design Projects for Secondary
School Students™

BILL MONAGHAN

Department of Applied Sciences, College of Staten Island, City University of New York, Staten Island,
NY 10314, USA. E-mail: monaghan@postbox.csi.cuny.edu

There are many ways to disseminate the principles and practices of engineering to prospective
college students. One approach is to develop programs that actively engage secondary school
students in a laboratory design experience. This paper reports on such an effort. The design and
implementation of a microprocessor-based chip tester is shown to be an effective way to introduce
these students to engineering. The hardware interface, the testbed, is designed and tested manually.
1t is then connected to the system bus of a single-board 8086-based computer. The testbed easily
accommodates various chips for the unit under test (UUT). The driving software uses an
exhaustive strategy. A suite of test vectors exercises the UUT for all input combinations. A
table lookup compares the actual responses to the correct ones. The UUT receives either a PASS or
FAIL designation. A 7400 series chip tester and a universal shift register tester are realized.
Participants’ reactions to the experience are reported and used as a measure of the project’s

success. Future extensions and a more formal assessment procedure are presented.

OVERVIEW

FOR SEVERAL summers the Science Discovery
Center at the College of Staten Island, City
University of New York, has been supporting a
program to make the engineering experience avail-
able to schools. This program is sponsored by the
New York State Education Department under a
Dwight D. Eisenhower Title II Project; it also
receives funding from the National Science
Foundation and the National Institute of Health.
Selected high school students have the opportunity
to do a project in various disciplines under the
guidance of the faculty. The program meets six
hours a day, four days a week for four weeks. The
participants give a poster presentation to the
community at large on the final day. The challenge
was to identify interesting design projects for the
participants.

Based upon experience gained in teaching a
microcomputer SDK-86 based interfacing course,
a hardware/software design project was chosen.
The SDK-86 allows easy access to the system
bus. The necessary lines are cabled to a solderless
breadboard design station. The presence of
switches, pulsers and LEDs on the design station
enables one to do manual validation of the hard-
ware interface. These features facilitate rapid
prototyping of the hardware interface. All input
and output devices are treated as 10 ports. The
SDK-86 has on-board serial communication
capability with an RS-232C port. Software can
be developed on a PC and downloaded to the
SDK computer. This feature allows rapid proto-
typing of the software component of the project.

* Accepted 2 March 1998.

300

The question still remained: “What is a viable
design project?’.

Boolean algebra—7400 series ics

Since the Boolean AND, OR and NAND func-
tions were known to all the participants, it was
natural to introduce their hardware counterparts:
the quad two-input 7408 AND, 7432 OR, and 7400
NAND chips. The design station facilitates the
manual testing of each chip for ‘goodness’. A test
vector suite exhaustively exercises the unit under
test (UUT). The response vector is compared to
the ‘true’ response vector, resulting in either a
PASS/FAIL designation for the UUT. Since the
above three chips are pin-compatible, each can be
tested by simply using the appropriate true
response vector.

SAGE: smart automated gate evaluator

The use of Automated Testing Equipment
(ATE) is pervasive within the integrated circuit
chip industry. The goal of the project is to auto-
mate the testing procedure; that is, design and
implement a multichip chip tester for the three
chips. SAGE, the realization of the above, has
been reported in the literature [1] and will be
briefly summarized.

SAGE: hardware considerations

A major component of the interface is the
decoder for port addresses. A 74154 decoder is
used in the implementation. This decoder has two
enable pins, E1*¥ and E2*, and will decode four
address lines. Its wiring is shown in Fig. 1. The
output port addresses are asserted low. For the
decoder to be enabled, the M/IO* input must be
low. The port addresses are therefore in ‘10 space’.

Laboratory Design Projects for Secondary School Students 301

PORT ADDRESS

A15 p 0
b 4
mio¥ ————o°| E2¥
A4 o| A3
A3 —o| A2
—o| A1
":\21 o| AO L 30

Fig. 1. 74154 decoder.

The M/IO* signal is low when the software is
executing either an IN or OUT instruction.

Simultaneously, both A15 and A0 must be low.
The SDK-86 board has several 10 ports. The
addresses for all on-board ports have Al5 high.
A low in the SAGE design will avoid any possible
conflicts with these ports. The reason for A0 being
low is more subtle. If A0 is low, all decoded
addresses will be even. The 8086 processor is
designed to sample the low portion of the data
bus, DO to D7, for the transfer of 8 bits of
information when the port address is even.

One final comment is in order. The design for
port address decoding is non-absolute. Many
possible port addresses will appear equivalent to
the decoder. The decision to accept this outcome

AO . o
. >o———c E1 o
A15

muao*r ____ o| E2*

A4 - A1 :I]>A3'A0
(o]

was predicated on the need for simplicity within
the existing time constraints. The ramifications of
non-absolute decoding were thoroughly discussed
and compared to a full absolute decoding
implementation.

In the SAGE implementation, the port address 0
is chosen for both input and output. Two 7475
level-sensitive latches are used to capture the test
vector. A 74125 tri-state ‘electronic switch’ isolates
the results from the data bus. The UUT can be any
of the pin-compatible chips. The completed SAGE
hardware is given in Fig. 2.

SAGE: software considerations

The software is relatively straightforward. All
chips are exercised with the same test vector,
11100100. A stored table of correct responses is
constructed and used to compare the outputs of
the UUT. Each table entry is one byte wide (8 bits)
and contains the appropriate correct responses
for the chip. For illustrative purposes consider
the OR entry in the table: 01101110. The rightmost
four bits, low nibble, is the correct response to
11100100. Three 2-bit right circular rotations of
the test vector will generate all the remaining
vectors needed for an exhaustive testing of a
given UUT. Three 1-bit right circular rotations
of the appropriate correct response vector will
move the correct responses into the low nibble.

The IN and OUT instructions are the crucial
components of the software. These instructions

0 PORT ADDRESS

74154
D3-DO [4)
Dy < g
WR* _l
D7- D4
! [4] (41
I 1 I 1 ,
E2 E1 g1 E2 TRI-STATE
LATCH LATCH
7475 7475 74125
(4]
———_> U (4] _/()
(4] U
> Y
RD*

Fig. 2. SAGE realization.

302 B. Monaghan

require that the address of an input or output port
be placed in the DX register of the microprocessor
prior to their execution. A typical sequence for an
input is:

MOV DX, 0
IN AL,DX

The DX register is 16 bits wide while AL is 8
bits. The semantics of IN can be stated as follows:

1. The content of DX is placed on the address
lines A15 ... A0 and sent to the system bus.

2. A control signal M/IO* is asserted low and sent
to the system bus.

3. The read control signal RD* is asserted low and
sent to the system bus.

4. The microprocessor waits for signal stabiliza-
tion and then samples the data bus.

Since the outputs of the tri-state device in Fig. 2
are connected to the data bus, the above sequence
will read these outputs into the AL register. Thus
the outputs of the UUT are read and compared to
the correct response vector.

The output sequence is quite similar to the input.
Steps 1 and 2 are unchanged. Steps 3 and 4
become:

3. The microprocessor places the content of the
AL register on the data bus.

4. After all signals stabilize, the processor issues
the WR* signal.

This procedure will load the external 7475

latches with the contents of AL and this test
vector is used as input to the UUT.

USReT: universal shift register tester

A more challenging project is available for those
participants who successfully complete SAGE.
USReT calls for the design and implementation
of a Universal Shift Register Tester. The 74194 is a
4-bit bidirectional Universal Shift Register (USR).
Two of them can easily be cascaded to form a 8-bit
register. The chip has an asynchronous master
reset input, MR*. The operating mode of the
register is determined by two inputs, S1 and SO,
and is given by the following table:

S1 SO Operating Mode
0 0 Hold

0 1 Shift right

1 0 Shift left

1 1 Parallel load

A clock pulse input (active rising edge) performs
the chosen operation. DSR and DSL inputs are
used in shift operations. The parallel load inputs
are designated QO to Q8, QO being the leftmost bit.
Since USReT is realized after successful com-
pletion of SAGE, the SAGE interface is modi-
fied as shown in Fig. 3. Particular attention should
be given to the various port addresses. Output port
address 2 is used to perform a master reset of
the USR and output address 4 clocks the USR.

A0 .
‘j)o,_c E1 .
A15 ——
s WR* RD*
A4 - A1 :> A3-A0
74164
" VAR
WR* DSL QO
Ccp
[1 | MR*
E2 El g1 E2 TRI-STATE
LATCH LATCH o1 % S0 18] 18]
7476 7476 L s1
X (8] 74128
(4] 4] DSR Q7 LEDs | y5)
D7 - D4 D3 - DO [8] v
74194
DATA BUS

Fig. 3. USReT/ATE interface.

Laboratory Design Projects for Secondary School Students 303

Output address 6 controls the 7475 latches and
input port address 0 reads the USR.

USReT/ATE interface

The current design utilizes the 7475 latch as a
mode register. The D;Dy bits written to this
register determine the operating mode of the
USR. As an example, the following instructions
will place the USR in parallel load mode:

MOV AL,3
MOV DX, 6
OUT DX, AL

If the following instructions are now executed, the
USR will latch the 2EH datum:

MOV AL, 2EH
MOV DX, 4
OUT DX, AL

At any time the latched contents of the USR may
be read by executing:

MOV DX,0
IN AL,DX

In a similar fashion a master reset of the USR is
accomplished by executing:

MOV DX,2
OUT DX,AL

A HOLD operation is achieved by writing a 0 to
the mode register. The sequence of a read, a write
followed by another read of the USR will not show
any change in its stored value. Writinga 1 ora 2 to
the mode register will configure the USR for shift
operations. DSR and DSL are typically indepen-
dent inputs to the USR; tying Q0 to DSL and Q7
to DSR produces circular shift operations. This is
a useful arrangement for testing purposes. Similar
to the SAGE interface, this hardware can also be
developed and tested in manual mode.

USReT software considerations: parallel load
testing exhaustive technique

A 3H is written to the mode register. A loop is
then executed that performs a write to the USR, a
read and then a compare between a copy of the
written value and the read value for values between
0 and OFFH inclusive. Any discrepancy indicates a
faulty USR. By introducing timing loops in the
software and connecting the outputs of the USR
to LEDs, the progression of the tests can be
monitored. Stuck-at-1 faults are easily emulated
by disconnecting the appropriate lead. This
exhaustive technique loops 256 times, a strategy
not effective for memory cell testing of millions of
8-bit locations. This realization leads into a
discussion and implementation of a time-efficient
algorithm for parallel load operations.

USReT software considerations. parallel load
testing walking 0/1 technique

A common testing strategy is to write a field of
zeroes and then walk a 1 through this field. The
sequence of test values written to the USR is as
follows:

00000000, 00000001, 00000010, 00000100
00001000, 00010000, 00100000, 01000000, 10000000.

Testing is performed for each value. A 0 is then
walked through a field of ones. This version of
testing, while not complete, is performed using 18
tests and in approximately 7% of the previous time.
Both strategies are implemented in USReT; the
choice of which to use is made at execution time.

USReT software considerations. data shift, hold
and master reset testing

The data value, 01010101, is written to the USR.
The mode is then changed to a DSR operation.
Two shift operations are performed with testing
after each shift. Because the wiring of the USR in
the testbed produces circular rotations, a success-
ful test indicates that each cell of the USR can
effectively shift in both a 0 and a 1 from the
right. The procedure is then repeated for a DSL
operation.

The Hold and Master Reset testing is relatively
straightforward and requires no unusual strategies.
At any stage a failed test identifies a faulty USR.

Participants’ reactions. initial and final

The initial overview and stated specifications for
the design project generally results in nervous and
fearful participants. While all have had some soft-
ware experience, none of the students have had any
hardware exposure. However, these concerns are
resolved by using the design station to develop
the testbed and exercise the basic logic chips and
latches.

In the end, the participants acquire a real
appreciation for the differences between input,
output and control signals. The manual operation
of the tester for several good and faulty chips
enhances their understanding of the design speci-
fications. It further fosters a desire to connect the
testbed to the system bus and to automate the
process through software development.

One reaction to the successful completion of the
project is as follows: ‘I produced a system which
met 100% of the specifications required. It was a
very eventful and exciting project to work on.” This
participant had just completed his junior year in
high school. He later stated that the experience was
the primary motivation for his choosing to study
computer engineering in college.

The parents of a second student expressed their
appreciation for the opportunity the program gave
their daughter to learn about engineering; she also
decided to study it in college. Thus far, anecdotal
evidence suggests that the program is successful in
promoting engineering.

304 B. Monaghan

CONCLUSION

The tracking procedure currently in place shows
that 92% of the participants choose a science
discipline in college. Beginning in 1998, the pro-
cedure will be fine-tuned to determine how many
students enter and complete an engineering
program of study. In addition, departmental
entry and exit questionnaires will measure the
short-term objectives: how much did the partici-
pants learn about engineering and the engineering
profession? Finally, feedback will be elicited on
how the presentation might be improved.

Since both assembler language programming
and interfacing are new to the participants, most
find the SAGE project to be quite challenging. To

date, however, all have completed it. The USReT
project has been implemented as well, but only by
the top students.

It is seen that a slight modification of the
hardware testbed enables it to easily accommo-
date different chips. Future presentations of the
program will use a 74180 parity checker and genera-
tor, 7485 comparator and the 74181 arithmetic/
logic unit.

Over the past several years, our experiences with
the SAGE and USReT testers clearly show that
microcomputer-based hardware/software design
projects are viable for secondary school students.
Furthermore, engineering concepts take on real
meaning in their lives, perhaps adding to the
pool of future engineers.

REFERENCE

1. W. Monaghan, Smart Automated Gate Evaluator, Proc. Middle Atlantic Section Meeting, ASEE,

1994.

Bill Monaghan is an associate professor in the Department of Applied Sciences, College of
Staten Island, of the City University of New York. He develops and teaches courses in
electrical and computer engineering. His major areas of interest are in microprocessor
interfacing for controllers and the use of digital signal processing microprocessors. He is
particularly involved in presenting the engineering profession to secondary school students.

