Int. J. Engng Ed. Vol. 14, No. 6, pp. 426-430, 1998
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 1998 TEMPUS Publications.

Carnot Theory: Derivation and Extension™

LIQIU WANG

Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong.

E-mail: lqgwang@hkucc.hku. hk

The present work reports the cycle maximizing the work done per cycle, or, alternatively, the
thermal efficiency of a class of reversible heat engines obtained from an optimization analysis. This
arrives at and extends the classical Carnot theory of heat engines. The first and second laws of
thermodynamics are applied to examine the total work output during a general thermodynamic
process. This leads to an extension of the Carnot principles to general thermodynamic processes.

SUMMARY OF EDUCATIONAL
ASPECTS OF THE PAPER

1. The paper discusses materials for a course in

Engineering Thermodynamics.

Students in all branches of engineering are

taught in this course.

Level of the course (year) is Level 2.

Mode of presentation is through lectures.

The course is presented as a regular course.

Hours required to cover the material is one

hour.

7. Student homework or revision hours required
for the materials is one hour.

8. The first part of the paper provides an alter-
native approach to introduce the Carnot cycle
and two Carnot principles through an optimi-
zation analysis. This forms a systematic
method for obtaining the Carnot cycle to
achieve the optimal performance of cycles,
and answers the question whether an engine
should operate differently when different
performance criteria are used. The second
part of the paper applies the first and second
laws of thermodynamics to extend two classi-
cal Carnot principles to general processes. This
forms an answer to the question frequently
asked by students what will happen if the
process is not a cycle. This also help students
in understanding concepts of availability and
exergy when they learn second law analysis of
engineering systems.

9. The standard text recommended in the course
is Y. A. Cengel and M. A. Boles, Thermo-
dynamics: An Engineering Approach, 3rd
edition, McGraw-Hill (1998), which does not
cover this additional material.
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INTRODUCTION

A SYSTEMATIC study of the physical processes
governing steam engines was undertaken first by
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Sadi Carnot, a French engineer, resulting in his
remarkable paper Réflexions sur la puissance
motrice du feu et sur les machines propres a
developper cette puissance (On the Motive Power
of Heat) published in 1824 [1]. In his work, Carnot
constructed an ideal cycle, which is now well
known as the Carnot cycle, and analyzed its
thermal efficiency. Carnot showed that:

1. Any engine, using heat from a hot reservoir at

temperature 7j, to do work, has to transfer

some heat to a reservoir at lower temperature

T;.

The thermal efficiency of the Carnot cycle was

working medium-independent.

3. No engine could convert into work more of
heat taken in at 7j than the fraction 7,
1 — T;/T), known as the Carnot efficiency.

Later, a systematic proof of the Carnot theory
was carried out by Rudolf Clausius based on the
second law of thermodynamics, which is now
known as the Carnot principles [2]. Since then,
however, no significant development was made on
the Carnot theory. Indeed, the theory is still largely
taught today along lines which follow closely those
set out by Carnot and Clausius.

Several questions arise from the re-examination
of the Carnot theory. Among them is the sys-
tematic method for obtaining the process paths
to achieve the optimal process values. Indeed,
classical Carnot theory contains no technique for
deriving Carnot cycle to achieve maximum
efficiency. Another question is concerned with
whether the engine should operate differently
when different performance indices such as work
and efficiency are maximized. Furthermore, the
Carnot principles are only for the cyclic devices
(heat engines), stating that:

1. The efficiency of an irreversible heat engine is
always less than the efficiency of a reversible
one operating between the same two reservoirs;
The efficiencies of all reversible heat engines
operating between the same two reservoirs are
the same.
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The questions regarding the performances of a
general thermodynamic process have been left
unanswered.

The motivation for the present work comes
from the desire of deriving the Carnot theory in
a systematic and rigorous way and extending the
Carnot theory to answer questions mentioned
above. This yields a systematic technique to find
the optimal cycle and an extension of the
Carnot principles to the general thermodynamic
processes. The present work is believed to be of
both pedagogical and academic importance by
noting that the classical Carnot theory is only
on analyzing the performances of the Carnot
cycle with known process paths rather than
deriving the cycle to achieve the optimal
performances.

DERIVATION AND EXTENSION: CYCLES

Heat engines may be conveniently classified by
the type of cycle undergone by the working fluid.
For the engines considered in this work, such
cycles are made up of totally reversible processes
in which working fluid undergoes reversible
transformations (internal reversibility) and is
coupled to the environment through reversible
processes (external reversibility) [2, 3]. They are
reversible engines discussed in thermodynamic
textbooks.

For a cycle,

ASz%dS:O (1)

Here AS is the change of the working fluid in
entropy. In the present work we choose entropy
as the independent variable and temperature as
the dependent variable. Then the property of the
working fluid is represented by the function
relation 7 = T(S).

Let T, and T; be the temperature of the hottest
and coldest thermal reservoirs, then the function
T = T(S) must satisfy:

T)<T<T, (2)
Furthermore, we require:

where S; and S,, are the minimum and maxi-
mum values of entropy permitted during the cycle,
respectively.

Following analyses are to find function
T = T(S) which makes the work done, thermal
efficiency or whatever else we choose as an
objective functional an extreme. In this paper, we
investigate the optimal operation of engines in
terms of maximum work and maximum efficiency
as follows.

Maximum work

By applying the first law of thermodynamics to
the cycle, the work done per cycle may be
written as:

W:%Twym 4)

Therefore we should maximize W subject to the
constraint (1), i.e., we maximize:

1;:W-AAS:§a@q—»ds (5)

by varying T(S).

In order to take account of constrains (2) and
(3), we replace T and S by two new variational
parameters 6§ and ¢ such that

T =3(Ty+ T1) +5(T) — T1) tanh 0 (6)
S = %(Sm + Sz) + % (Sm — S,) tanh¢ (7)

where 6 and ¢ are unconstrained. It is now a simple
matter to maximize L by applying Euler-Lagrange
equation as:

T =T (S — Si) sech’fsech’p =0  (8)
This leads to:

0 = +o0 9)
or
¢ =+o0 (10)
which mean that:
T=T,orT (11)
and
S =S;orS, (12)

Therefore, optimal trajectory is made up of four
branches:

T(S)=T, (13)
T(S)=T, (14)
S=S5; (15)
S =S5, (16)

It is a simple matter to prove that the Legendre’s
necessary condition [4] is also satisfied along each
of these branches. The resultant optimal cycle is
shown in Fig. 1. At corners 1-4, it is simple to
show that both first and second Weierstrass-
Erdmaun corner conditions [4] are satisfied.

In order to show that this is the true maximum,
it is usually to consider second variation of L. If
the second variation is less than zero for all
admissible functions in a particular one-parameter
family, the result is regarded as the true maximum.
However, this is fallacious as pointed out in [4]. It
is only the necessary condition for the maximum
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that the first variation is zero and second variation
is less than zero. Readers are referred to [4] for this.
In the best knowledge of the author, the general
sufficient conditions have not been established in
the calculus of variations. An ad hoc proof is
usually produced for some problems. Fortunately,
the second law of thermodynamics concludes that
the solution obtained is really a maximum for our
problem.

Under optimal trajectory, the maximum work is:

Wmax = (Th - Tl)(Sm - S,) (17)
and the efficiency is:

n= Wmax/Ql =1- T//Th (18)
Here

0 - 5{> T(S)$(dS) dS (19)

is the input energy with ¢(dS) as the Heaviside
step function [¢)(x) = 1 if x > 0, ¢(x) = Lif x < 0].
It is worth noting that n is constant once 7; and 7},
are fixed. However, W, increases proportionally

The cycle derived above is the Carnot cycle
operating between 7, and 7). It is worth to note
that the fact that we need only the hottest and
coldest reservoirs and that we do not need any
other reservoirs is not a trivial result. Also, the
derivation does not depend on the working
medium,.

Maximum efficiency

It is often useful to run an engine at maximum
efficiency rather than some other operating goal
such as we did above. The efficiency is, as usual,
defined by:

n=Ww/o (20)

where W and Q; are defined by equations (4) and
(19), respectively.

This is a quotient of two integrals. There are two
ways to obtain its optimal trajectory. One is to
maximize 7 for a fixed input energy Q). If the
resulted maximum value of 7 is dependent on Qj,
the optimization of n with respect to Q; is followed
to achieve the final result. The other is to maximize
n directly based on the following theorem.

Theorem 1. The function yielding the extreme of
the quotient of two functionals J; and J, should
satisfy the Euler-Lagrange equation for the
intermediate functional:

H=1J —X\J, (21)

The constant )\ is determined from the condition:

Ao = Ji(ye) /T2 (ye) (22)
where y = y, yields the extreme of the functional:
Jy=J1/]» (23)

Proof. Since: J3 = J;/J2, then:
6J5 = (LhoJy — J1602) )T}

Suppose that y = y.(x) yields the extreme of the
functional J3. Then 6J3 =0, and therefore (if

Jy # 0):
J2(ye)oJ1 — J1(ye)8J2 =0

Using the notation Ao = Ji(y.)/J2(y.), we obtain:
8J1 — XobJ2 = 8(J1 — AoJ2)

and we arrive at the theorem above.

For our problem, two methods lead to the same
result. Shown in this paper is the second method.
Applying Theorem 1 to our problem, maximizing n
in equation (20) under constraint (1), is the same as
maximizing:

L=W —\AS — )0, (24)

It is simple to show that we again obtain the
Carnot cycle as shown in Fig. 1 with:

Nmax = 1 — T1/ T}, (25)
and
W= (Ty—T1)(Su—Si) (26)

These are the same as those in equations (17) and
(18).

Once again, the Legendre’s necessary condition
and both first and second Weierstrass-Erdmaun
corner conditions are satisfied by the solution.
Also the second law of thermodynamics
concludes that this is a true maximum. The
optimal process paths can also be regarded as
the representation of the property of the optimal
working fluid. This shifts the focus from the
process to the working fluid. The optimal path
2-3 in Fig. 1, for example, may be realized not
only through an isothermal process but also
through any working fluid with the property of
entropy-independent temperature. Boiling water
under the constant pressure has this property.
Then the boiling water may be used to realize
this path under the constant pressure.

T
Ty .
ki - 5
T 1 4
S}l S S

Fig. 1. Optimal cycle of reversible heat engines.
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EXTENSION: PROCESSES

Consider a mass system A4 undergoing a
process from state 1 to state 2 in Fig. 2. The
work directly delivered by the system is termed
the internal work W,!2. The work produced by
auxiliary cyclic devices is called external work
Wl (=311 W?). Such auxiliary cyclic devices
are required to ensure external reversibility [2, 3]
in any heat exchanges between the system and its
environment for a general process 1-2. The sum of
W12 and W% is termed total work W,12. Note that
the process in the auxiliary devices is cyclic. The
change in the total energy of the combined system
AT, comprising 4 and the auxiliary cyclic devices,
is thus equal to that for the system A alone. The
W2 and QFF (=7 ,Q)7) are the work and
heat interactions between the system 4™ and its
surroundings, respectively. A striking feature of
W12 can be revealed by applying both first and
second laws of thermodynamics to the system A%,
and is summarized as the following theorem which
can be regarded as an extension of the Carnot
principles to the general processes.

Theorem 2. For a system exchanging heat with a
single thermal reservoir (the environment at
temperature 7, for example), the total work
output is the same for all totally reversible pro-
cesses between the same specified end states 1 and
2, which is termed the maximum total work
symbolized with W,2. During any irreversible
process between these same specified end states,
the total work output W 12 is always less than W12,

Proof. To prove this theorem, consider two pro-
cesses R and I between 1 and 2, as shown in Fig.
3(a). One process (R) is totally reversible, and the
other (/) is irreversible. The amount of total
work produced during the totally reversible pro-
cess R is W2, and the amount produced during
the irreversible one is W,}>. The heat exchanged
with the environment during the totally reversible
process R is Q}%, and the heat to the environment
during the irreversible one 7 is Q}2.

In violation of the theorem, we assume that

12
01

Environment T

Fig. 2. Total work and totally reversible process.

12
W,

Environment 1,

(a) (b)
Fig. 3. Proof of theorem 2.

Environment T,

Wi > w2 and thus Q)2 < Ql% by the first law
of thermodynamics. Now let the reversible process
be reversed as a process R’ from 2 to 1. This process

will receive a work input W2 from the surroundings

and a heat input Q)% from the environment.

Now considering the R’ and I together as a cycle
(Fig. 3(b)), we have an engine that produces a
net work in the amount of W,> — WX while
exchanging heat with a single reservoir in the
amount of Ql% — Q}7, which is a violation of the
Kelvin-Planck statement of the second law of
thermodynamics. Therefore we conclude that:

Wil < Wi (27)

However, if the equality holds in equation (27),
the process I must be reversible as the process R’
could then also act as the erasing process of I.
This is certainly against the initial assumption.
Consequently, we have:

Wi < Wi (28)

Since both processes R and [ are arbitrarily chosen
as the totally reversible and irreversible respec-
tively, this is the proof that the total work output
during an irreversible process is always less than
that during a totally reversible process.

Now we replace I and R by two arbitrarily
chosen totally reversible processes R; and R,
respectively. Equation (27) leads to W,z < W .
Similarly, if 7 and R are replaced by R, and R,
respectively, equation (27) yields W2 < W,;2.
As both expressions are true, to satisfy them
simultaneously, we must have:

12 _ 12
Wle - W[Rz'

However, R; and R, are any two totally reversible
processes between the specified end states 1 and 2,
so that we conclude:

Wtﬁ = Wtkzz = thez (29)

This and equation (28) together establish the
above-stated theorem. While work is generally
dependent on the characteristics of process,
W2 is uniquely-valued for all totally reversible
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processes between two specified end states 1 and 2.
Therefore, it must represent the change of a state
property.

It should be noted that the theorem is not valid
for the internal work output as, with variable
temperature of the system A4, we cannot find a
single thermal reservoir to ensure the reversible
heat transfer.

CONCLUSIONS

The optimization theory is used to derive and
extend the classical Carnot theory. Two perfor-
mance indices, work done per cycle and thermal
efficiency, are used in the process of optimization.
Same results are obtained for these two perfor-
mance indices. This shows that the operation of the

engines considered in this work should remain
unchanged when different performance indices
are optimized.

The optimization analysis for reversible heat
engines arrives at the Carnot theory of heat
engines. Unlike the classical thermodynamics,
the new approach provides methods for deriving
the Carnot cycle to achieve maximum work or
efficiency.

The first and second laws of thermodynamics
are employed to show that: (1) the total work
output during any irreversible process is always
less than that during a totally reversible one
between the same specified end states, and (2) the
total work output is the same for all totally
reversible processes between the same specified
end states. This may be regarded as the extension
of the Carnot principles to the general processes.
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