
Managing Large-scale Multimedia
Development Projects*

SIMON PRICE
Institute for Learning and Research Technology (ILRT), University of Bristol, 8 Woodland Road,
Bristol BS8 1TN, UK. E-mail: simon.price@bristol.ac.uk

This paper presents generally applicable techniques drawn from the experience of managing the
UK's Teaching and Learning Technology Programme (TLTP) Economics Consortium project to
develop WinEconÐa computer-based package covering an entire first-year introductory economics
degree course. The WinEcon project has been a highly successful, large-scale multimedia project. It
has received multiple international awards, is site licensed by over 80% of UK universities and over
200 organisations world-wide. However, what really happens when you set out to develop the
world's largest computer-based training package for economics with a team of 35 content experts
and 17 programmers distributed across eight geographically separate sites is a far cry from the
typical case study found in a software project management textbook. There are inherent
characteristics of multimedia software which make its development difficult. Consequently any
multimedia project carries a high risk of failing to deliver on time, quality or budget and the nature
of large-scale development projects only serves to amplify the risk to such a degree that many such
projects fail to deliver satisfactorily in any of these three areas. These management challenges
encountered by the WinEcon project are independent of subject matter and must be addressed when
managing any large-scale multimedia development.

INTRODUCTION

SINCE 1992 the UK Higher Education funding
bodies has awarded £35 m to 76 discipline-based
consortia under phases 1 and 2 of their Teaching
and Learning Technology Programme (TLTP).
Under this initiative, the Economics Consortium,
a partnership of eight UK university economics
departments, were awarded £640,000 to develop
computer-based learning materials covering the
whole first year economics degree course [1]. A
comprehensive presentation of an electronic engi-
neering design project within TLTP was given by
Hicks et al. [2].

Five years on, after a total investment of over
£1,000,000 and deals with six publishers, the resul-
tant package, know as WinEcon, remains the
world's largest and most widely used courseware
package for teaching introductory economics. It
has received multiple international awards, is site
licensed by over 80% of UK universities and over
200 organisations world-wide.

However, in common with the experiences of
other successful TLTP projects in disciplines apart
from economics, the experience of the Economics
Consortium has been an education in itself. This
paper attempts to pass on the hard learnt lessons
of this education, drawing on the experiences of
the author as a member of the WinEcon manage-
ment team and as a technical consultant to other
TLTP projects.

PROJECT AIMS AND OBJECTIVES

The WinEcon project had two overarching aims:

1. to reduce the cost of delivering intro-
ductory economics courses, particularly for
non-specialist students;

2. to maintain the quality of these courses in a
climate of decreasing funding and increasing
student numbers.

To achieve these aims the project targeted the
traditional tutorial, where the staff to student
ratio is relatively low and, consequently, where
the cost of delivery is relatively high. This is in
contrast to lectures where the ratio is high and cost
relatively low. The consortium's key objective was
to produce a software package capable of being
used as at least a partial replacement for tutorials.
Ultimately, it was hoped that the package would
be capable of replacing up to 50% of tutorial time
in any UK university which adopted it.

WinEcon, the resultant software package, was
designed to cover the entire first-year economics
degree course. It consists of over 1000 tutorial
screens, a glossary, references to leading texts,
economic databases, quizzes, exams, a course
management system and a customisation interface.

PROJECT DEVELOPMENT MODEL

Although less than optimal in terms of tech-
nical effort, the Consortium opted to distribute
the development work across the eight member
universities with central co-ordination from a* Accepted 10 October 1998.

407

Int. J. Engng Ed. Vol. 14, No. 6, pp. 407±418, 1998 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 1998 TEMPUS Publications.

small management team at Bristol. This model was
deliberately chosen after a lengthy debate over the
relative merits of centralised versus decentralised
development. In all the arguments relating to effort
and technical efficiency the centralised model
was clearly superior. However, a decentralised
model was chosen with quite a sizeable majority.
The logic behind this seemingly bizarre decision
being that there was serious concern that the
project should build the right application, even if
inefficiently, rather than the wrong one efficiently.
In common with most multimedia projects,
content rather than coding dominates development
effort [3] and so it was deemed crucial that the
content experts (i.e. the economists) be deeply
involved in the development on a day-to-day basis.

Linked to this decision was the adoption of an
iterative, evolutionary development model to
facilitate a high degree of user (i.e. the economists)
involvement at every stage in the development
process. This, essentially, Rapid Application
Development (RAD) model contrasts sharply
with the classic waterfall model with its discrete
stages and user input largely confined to the
pre-development stages of the life cycle [4].

Organisational structure
Interestingly, the Economics Consortium, as is

frequently the case with consortia, had a circular
management structure. On day one the consor-
tium consisted of eight Member Universities, each
with equal representation on the Executive
Committee. The Executive Committee appointed
a project director and senior programmer as the

management team to be based at the Centre for
Computing in Economics in Bristol. The manage-
ment team were charged with delivering
WinEcon. So far this is analogous to a project
control board and project management team in
a hierarchical organisation. However, the devel-
opers undertaking the work were the Consortium
Members themselves. Consequently there is a
circle of `advice' as illustrated in Fig. 1. Lines on
the diagram indicate the flow of advice: heavy
lines represent formal advice; light lines represent
informal advice.

The positive effect of this structure is that a
product must be produced by consensus if it is to
be produced at all. Therefore, such a structure is
far more likely to result in a generally acceptable
product, overcoming the oft cited `not invented
here' justification for rejecting off-the-shelf course-
ware. The incorporation of advice from around
100 associate member universities and their elected
advisory group also safeguarded against the
creation of an esoteric and unwanted product.

In arriving at this organisational structure the
consortium made a judgement that the risk of
failure resulting from unclear lines of authority
and responsibility was outweighed by mitigating
the risk of developing an unwanted product. Even
so, a circular line of responsibility does carry a
high risk of being unmanageable and one is
unlikely to see it recommended in a software
project management text.

INHERENT RISKS OF MULTIMEDIA
PROJECTS

Non-multimedia, software development is
typically undertaken by specialist programmers
within specialist organisations using specialist
tools and methods. By contrast, multimedia soft-
ware development (especially in the educational
sector) typically takes place under dramatically
different circumstances. Multimedia, by its very
nature, requires multidisciplinary skills for its
development. It is characterised by the majority
of the development effort being associated with
content and user interface as opposed to code. In
the WinEcon project a ratio of 2:2:1 was measured
in review times which suggests that code accounted
for only one fifth of the development effort. This
fundamental shift in emphasis, coupled with
novelty, tends to result in the following three
characteristics which present inherent risks to any
multimedia project:

1. End-user programmers. Content experts are
often involved in development in a hands-on
fashion and yet have no formal training in
software engineering.

2. Relatively inexperienced organisations. Devel-
opment teams are often drawn together
from diverse organisations, cultures andFig. 1. Economics consortium structure.

S. Price408

backgrounds to work together solely for the
life of the project.

3. Relatively new tools and methods. Code-based
development tools have been evolving for
decades and are supported by analysis and
test tools, methods and standards which are
not yet available for multimedia [5].

Developing any type of software can be a risky
business even for specialists. Due to the com-
mercial and political sensitivity of data on project
failure it is difficult to obtain an accurate estimate
of project failure rates. However, some estimates
have been made and about RAD projects in
particular. Multimedia projects are usually RAD
projects and according to Cambridge Market
Intelligence, in 1995 over 70% of RAD/client
server projects failed [6]. If we assume that multi-
media projects are indeed unlikely to be more
successful than conventional software projects
then, all multimedia projects presently carry an
inherently high risk of failing to deliver on quality,
cost and time.

Additional risks in large-scale projects
In a small project with a handful of developers

based at a single location, communication between
the developers is relatively straightforward. In such
circumstances, maintaining good team dynamics
and a shared vision of the product is achievable
and inexpensive. However, as the number of
developers increases there is a nonlinear increase
in the number of lines of communication and
before long intraproject communication becomes
difficult and expensive. The problem is exasperated
when the developers are spread across multiple
sites and organisations.

In the case of large-scale multimedia develop-
ment projects there is also an additional effect. The
inherent risks related to end-user programmers,
relatively inexperienced organisations and new
tools and methods are amplified so that previously
benign issues become serious threats. For example,
end-user programmers tend to know little about
variable scope (e.g. local vs. global variables)
which can conceal an integration time bomb
when their work must eventually run alongside
that of the other end-users. Another example,
which the author has encountered in numerous
multidisciplinary large-scale projects, is that there
is no clear definition of when and how a job of
work is deemed to be finished. A final example of
how project size amplifies multimedia risks, in this
case the risk of losing or overwriting each other's
work, comes from the fact that today's software
version control systems are poorly equipped to
handle the data formats and volumes required
for multimedia development.

Stacking the odds in favour of success
By identifying the inherent risks of large-scale

multimedia projects early on in the life of the

WinEcon project the Economics Consortium
was able to take steps to avoid downstream
problems. The following is a list of what turned
out to be the five most efficient and effective of
these measures, compiled with the benefit of
hindsight:

. guidelines

. templates and model examples

. peopleware

. inspections and reviews

. customisation.

These are dealt with individually in the following
sections.

GUIDELINES

Written guidelines setting out project pro-
cedures, conventions and standards are a basic
requirement of any large project. Like the soft-
ware, it is hard to produce them all at once and an
evolutionary approach will be required. At some
point before the main body of work starts these
guidelines must be frozen.

Development work on a project should not start
until the first iteration of the guidelines has been
agreed. It has long been known that errors early on
in the development process can ultimately be
orders of magnitude more expensive to correct if
carried through to later stages of development.
Guidelines are a way of avoiding potentially
serious early errors across a large project.

The WinEcon project's main guidelines started
off as a supplementary manual for the ToolBook
development environment but rapidly changed
direction and title to become, Authoring GuideÐ
Standards for Courseware Authoring. Over the first
two years of the project it grew from an initial five
pages to a 78-page document, at which point it was
frozen. The final table of contents is listed below
and shows the roughly sequential evolution of the
document.

1. Development environment
2. Installation
3. Extensions to ToolBook
4. Custom authoring tools
5. Module structure
6. Programming style
7. Authoring style
8. Documentation
9. ToolBook hints and tips

10. WinEcon template error messages
11. Appendix IÐE-mail Feedback Form

Although the authoring guide was the most
substantial set of guidelines produced by the
project, the following, smaller guidelines were
also produced early in the project life cycle:

. Data Security PlanÐbackup and anti-virus
procedures

. Programmer's LogbookÐan example

Managing Large-scale Multimedia Development Projects 409

Both of the above documents were concerned with
risk reduction and, as events transpired, proved to
be prudent measures. The data security plan
facilitated a successful disaster recovery after
thieves stole the NeXT FTP server which held
master copies of two years of development work.
Similarly, the logbook reduced the difficulty of
continuing the work of a key developer who left
before completing a software module on the
critical path.

TEMPLATES AND MODEL EXAMPLES

Reusable templates (also described as patterns in
some software engineering literature) can pin down
most aspects of a screen or an interaction, leaving
the developer to specify only what is different in
each instance. Templates constrain creativity in
many ways but in so doing can act as a rigorous
method for enforcing project standards. At the
same time, a template can provide a cost-effective
way of making global changes to all instances of
the template. Without templates, far-reaching late
changes in response to user trials can be prohibi-
tively expensive.

While written guidelines can be effective, some
aspects of multimedia development cannot easily
be captured by the written word and are more

easily communicated through model examples or
reusable components. It is useful to note that,
when producing computer-assisted learning soft-
ware, these examples may well be pedagogic
exemplar rather than just technical models.

The WinEcon project developed a custom
template layer on top of the Asymetrix ToolBook
authoring tool. In its first version the template
imposed a rigid screen format with predefined
areas reserved for specific interactions. However,
while highly efficient in technical terms, this
proved too constraining in pedagogic terms and
was soon replaced by a more flexible version. The
cost of giving authors this extra flexibility was a
template which was both more difficult to learn
and more difficult to use. The benefit was a more
educationally appropriate product.

The template went through nine major
releases, although some of these releases actually
removed features rather than added them. A
notable example of feature removal was the reduc-
tion in the number of available font sizes and
styles. This was to enforce a hitherto written guide-
line on the use of fonts that was being ignored by
some authors.

Figure 2 shows a typical screen authored in
the template. It was built around a number of
standardised typographical elements and pre-
programmed interactions. On top of these are a

Fig. 2. Typical screen authored in the template.

S. Price410

number of layout properties and custom behaviours
specific to this screen.

In order to create the screen shown in Fig. 2, the
author would first create a new, blank template
screen (Fig. 3). In keeping with most template-
based systems, this blank screen encapsulates
all the default control buttons in addition to a
standard graphic design. Having created a blank
canvas the author then needs to add each of the
necessary user interface elements such as the
graph, the `step-by-step field', the `professor
field', the clipart and 3D objects.

The earliest versions of the template supported
relatively few of these user interface elements and
authors had to create them from native ToolBook
objects and their own scripts. As it became clear
what the most commonly needed elements were,
standards for them were agreed and reusable
components were created and added to a catalogue
of clip objects (Fig. 4).

As the catalogue grew in size and the clip objects
grew in complexity, alternative and more efficient
methods of achieving standardisation were added
to the template. Eventually, the role of the cata-
logue was refined to be solely a source of clip art

and model examples; most interactive objects were
transferred to the core template, accessible through
pull-down menus added to ToolBook. The most
frequently used pull-down menu was the Style
menu which allowed authors to apply project
standard styles to regular ToolBook objects.

Styles ranged from the purely typographical
through to functional behaviours for objects. An
example of the former was the `professor field'
which was used to convey advice to the student on
how to use the current screen. By drawing a
normal ToolBook text field (e.g. Fig. 5) and
applying the professor field style to it, a graphic
was attached to the field and font styles and
borders were automatically set (Fig. 6).

When used for typographical standards, WinE-
con template styles performed exactly the same
role as styles in a word processor and had all the
same benefits of consistency and ease of global
update. However, by adding functionality to the
style, as well as typography, far more powerful
objects could be created. For instance, by drawing
a normal ToolBook text field with text paginated
by `@' characters (e.g. Fig. 7) and then applying
the `step-by-step field' style, a multiple `card' text

Fig. 3. A blank template screen.

Managing Large-scale Multimedia Development Projects 411

object could be created (Fig. 8). The template
automatically split the text up into a number of
cards and inserted left and right buttons to step
backwards and forwards through the discrete
blocks of text. These objects were used to drive
the step-by-step build-up of explanations, graphs,
tables and so on. Prior to the introduction of this

object style, each author had invented their
own convention for navigating backwards and
forwards through a screen. Each author had
come up with a slightly different look and feel
and, in many cases, significantly different
behaviours. The step-by-step style object pro-
vided a project standard and the effort involved

Fig. 4. Clip objects catalogue.

Fig. 5. Text field prior to applying `professor field' style.

Fig. 6. Text field after applying `professor field' style.

Fig. 7. Text field prior to applying `step-by-step field' style.

Fig. 8. Text field after applying `step-by-step field' style.

S. Price412

Fig. 9. `Graph field' style's dialog box.

Fig. 10. A screen about to cause information overload.

Managing Large-scale Multimedia Development Projects 413

in retrospectively replacing the diverse, home-
grown mechanisms was worthwhile given the
improved consistency across the courseware.

The graph which appears in Fig. 2 is a more
extreme version of a style objects with built-in
functionality. It was created by drawing a normal
ToolBook text field and then applying the `graph
field' style. Doing so presented the author with a
dialog box (Fig. 9) into which they would enter the
details of the graph. Complimentary styles existed
for lines, points and rectangles, each with their
own dialog boxes. The need for a graph object
had been anticipated from the outset. However, it
had not been appreciated how difficult the non-
programmer authors would find the programming
associated with adding interactivity to graph
objects. Fortunately the style system made it
possible to retrospectively attach appropriate
default functionality to graph objects to signifi-
cantly reduce the burden on the non-programmer
authorsÐallowing them to concentrate on the
economic content rather than learning to program.

One example of where the template approach to
developing a large-scale multimedia program had a
clear pay back was when the project reached the
alpha release stage. A serious problem arose which
had not shown up in early pilots. Feedback from
users of the alpha version was generally positive in
all but one respect: the step-by-step mechanism for

building up screens a piece at a time was very
unpopular. The reason cited was that when one
clicked on the next step button everything changed
on screen at once, causing information overload
and uncertainty about where to look first. The
problem is illustrated in the transition from Fig. 10
to Fig. 11.

Clicking the next step button (i.e. the right
arrow in the step-by-step field) simultaneously
changed the text, the graph and the table. Users
frequently thought that they had missed something
and kept flicking back to the previous step.

Fortunately, by making a minor change to the
template it was possible to globally fix the problem
without having to undertake a major rework of the
whole project. An extra button, the SHOW button
was added to the step-by-step field style so that
when a user clicked the next step arrow, only the
text would change and a SHOW button would
appear. Having read the text, the user clicked the
SHOW button to reveal the changes elsewhere on
the screen. Figure 12 shows this intermediate step
between the screen states shown in Figs 10 and 11;
only the text differs from Fig. 10 and clicking
SHOW would then reveal the changes to the
graph and table to arrive at the state shown in
Fig. 11.

One final advantage of the template approach
came when a new version of the ToolBook authoring

Fig. 11. The same screen after information overload.

S. Price414

tool was released mid-way through the project. By
applying global changes to the template the project
was able to upgrade to take advantage of the much
improved authoring tool. The upgrade would have
been prohibitively expensive otherwise.

PEOPLEWARE

`Peopleware' is a term borrowed from DeMarco
and Lister [7] and refers to the role of people in
software development teams.

However, before delving into the realms of team
dynamics and psychology, it is important to note
that one cannot understate the importance of good
old-fashioned contractual obligation with financial
penalties for failing to deliver. For all the people-
ware issues discussed below, a clear and legally
binding contract between partners is essential in
any development partnership. In particular, it safe-
guards the time contribution of content experts for
whom multimedia authoring is often only a minor
part of their overall job function.

On the other hand, contractual obligation does
not have much to contribute in terms of creating
team spirit, rivalry and the shared vision which is
so hard to achieve with large teams. In WinEcon
these were consciously built up through regular
newsletters, discussion lists and meetings. Other
communication methods may be more appropriate

in different projects but these worked well for
WinEcon.

Best practice should be identified, shared and
promoted. Those who contribute to the exchange
should be rewarded financially or through some
other incentive scheme. Peer respect and rivalry are
also powerful motivators if individual or team
successes are communicated across the project.

One effect it would be wise not to overlook is the
pride developers can derive from external recogni-
tion of their work. On a small project this is
immediately obvious whenever demonstrations
are given to visitors or trials conducted. On
larger projects, particularly multiple site projects,
it is important to communicate this positive feed-
back to those members of the team who would
otherwise not receive it.

INSPECTIONS AND REVIEWS

The mixed backgrounds of multimedia
developers makes the application of the software
quality management techniques particularly diffi-
cult. Even so, the WinEcon project achieved
considerable success with a weak form of Fagan
Inspections [8, 9] tailored to cover content and user
interface as well as, more conventionally, code.

Full Fagan Inspections, while effective, can be
prohibitively expensive to conduct over a large

Fig. 12. Intermediate step using SHOW button.

Managing Large-scale Multimedia Development Projects 415

volume of multimedia material. Consequently,
the Economics Consortium adopted a simpler
programme of structured reviews. Before the first
round of reviews these were seen as an imposed
bureaucracy and were strongly argued against by
some of the team. By the third round, they were a
popular event and the reviewers became a much
sought after resource.

On the motivational level, simply knowing that
poor quality would be detected put an end to a
number of bad practices. Also, considerable per-
sonal satisfaction could be derived from passing a
review.

The reviews produced perceptible improvements
in the `-ilities' (e.g. reliability, maintainability,
usability) while simultaneously having a positive
educational side effect. The fine details identified
in the ever evolving review checklist built up a
common view of the product at a level which was
not achievable through written guidelines or even
through templates.

On the WinEcon project the checklist grew from
a two to a nine page document over the first two
years of the three year project. The checklist was
divided into three sections covering each of the
three main areas of multimedia courseware
development: user interface, content and code.
This is can be seen in the table of contents from
the checklist document listed below.

1. Look and Feel
1.1. Sections
1.2. Pages
1.3. Objects

2. Educational Style
2.1. Interaction
2.2. Learner-control
2.3. Individualisation
2.4. Educational Objectives and Prerequisites
2.5. Assessment and Feedback
2.6. Readability
2.7. Cross-referencing

3. Technical Style
3.1. Authoring Guide
3.2. OpenScript Code

Each section in the checklist consisted of a series of
questions under relevant sub-headings. The ques-
tions for the subsection on graph objects are listed
below as an example of typical checklist items:

. Do graphs conform to the standard style?

. Do they have the 3D frame?

. Do they have the source of the data?

. Are they labelled and have keys?

. Are they sufficiently legible with consistent
colours?

. Are they animated?

. Are blue and white grid lines used?

. Do these reveal and do so in the correct
direction (^ <)

. Are arrows used to show the direction of
animation?

. Have solid shading blocks been used?

Like the core template, the checklist reached a
point where it was felt necessary to freeze it in
order to provide a fixed frame of reference and
target for developers. This occurred approximately
two years into the three-year project by which
point the checklist had largely stabilised anyway.

Inspections and reviews also offer a relatively
objective measure of when a job of work is
complete. Given that the checklist evolved with
contributions from across the project team it then
embodies the most detailed available specification
of a `complete' module. Were there no other
benefits, this alone might be sufficient justification
for the adoption of reviews or inspections in a
large-scale project.

CUSTOMISATION

No matter how well managed a large-scale
educational multimedia development project is, it
may still be doomed to failure unless the end result
is customisable. It simply is not possible to please
all the people all the time and this is never more
true than when developing software as a con-
sortium of diverse organisations. During the
early requirements analysis for WinEcon it
became apparent that no single solution would
satisfy all the Economics Consortium partners'
expectations. Chiefly, there were differing and
mutually exclusive opinions as to the order in
which various economic topics should be taught.
A technical solution was proposed by the manage-
ment team to allow a compromise to be reached.
It was decided that the courseware should be
customisable so that the structure of courses
could be redefined by lecturers to suit their own
requirements.

Thus, the WinEcon Lecturer customisation and
course management system was born out of a
dispute over the structure of the ideal course
structure. WinEcon Lecturer allows instructors to
aggregate subsets of topics selected from the full
range of around 1000 screens into sections,
chapters and courses of their own choice. Similar
customisation features in WinEcon Lecturer (Fig.
13) solved disputes over the correct definition of
glossary terms, the right Fig. textbooks to refer to,
the best wording of questions and a host of other
subjective choices.

Although strictly speaking a software require-
ment, end-user customisation of software, as used
in WinEcon, is a powerful managerial tool that
facilitates compromise where it would otherwise be
impossible. It was not part of the initial project
specification submitted to the funders but was
introduced to meet a managerial need for
compromise.

CONCLUSION

There are strong arguments to support the
view that multimedia projects carry a number of

S. Price416

inherent risks which are amplified in large-scale
developments. The greatest risk of all is that the
project will be unable to specify sufficient detail
at the outset and that the wrong product will be
built. This risk can be offset by adopting an
evolutionary development model with a high
level of end-user involvement throughout all
stages of the development process. While doing
this results in a number of secondary risks, these
can be addressed if the project takes the time
to monitor and manage them. Guidelines,
templates, peopleware, reviews and customisation
are profitable areas to address in meeting the
challenges these risks pose to large-scale
multimedia development projects.

In 1998 the Economics Consortium was
awarded a further £299,000 to develop WinEcon
II or `web.econ' as it will be known. This new
project will extend the coverage of WinEcon to
include business studies while at the same time
adapting all the materials to a Web and Java
implementation. Given the lessons learnt on the
WinEcon I project, which aspects of the project
will the Consortium be approaching differently
and which will it carry forward unchanged? The
RAD development approach and organisational

structure will be carried forward largely
unchangedÐrisks and all. However, three key
changes are being proposed by the author:

1. Instrumentation of the authoring tool. WinEcon
II will be using tools capable of recording
development effort, duration and elapsed
time. This information will be used to drive
effort prediction models as the project pro-
gresses and will feed into tracking, planning
and scheduling.

2. Constant end-to-end product visibility. Using
Web technology, it should be possible for
developers to either upload their work on a
day-by-day basis or to actually author online
so that the entire product will be visible to the
entire development team at any point in time.

3. Continuous online review and feedback. By
virtue of end-to-end visibility of the product
it will be possible to distribute the review
effort more evenly across time. More frequent,
smaller reviews will be applied so that errors
can be picked up early and correction costs
reduced. In so doing, the benefits of inspec-
tions and reviews will be maintained and in
some cases enhanced.

Fig. 13. WinEcon Lecturer customisation interface.

Managing Large-scale Multimedia Development Projects 417

REFERENCES

1. J. Sloman, WinEcon, software review, Economics Journal, 432 (1995) pp. 1322±1346.
2. P. J. Hicks, E. L. Dagless, P. L. Jones, D. J. Kinniment, F. J. Lidgley, P. E. Massara, D. Taylor

and L. T. Walczowski, A computer-based teaching system for electronic design engineering, Int. J.
Eng. Education, 13 (1997) pp. 64±71.

3. S. Price, L. L. Cheah and P. Hobbs, Software quality management in end-user programming and
object based rapid application development (RAD), Software Quality Management IVÐImproving
Quality, Proceedings of the British Computer Society SQM'96 Conference, Mechanical Engineering
Publications, London (1996) pp. 485±493.

4. DSDM Consortium, Dynamic Systems Development Method, Tesseract Publishing, Ashford, Kent
(1997).

5. I. M. Marshal, S. Price, P. I. Dugard, P. Hobbs and W. B. Samson, Code-based analysis of the
development effort of a large scale courseware project, Information and Software Technology, 39
(1997) pp. 541±549.

6. P. Gerrard, Never mind the qualityÐhere's Client/Server, Software Quality Management Presenta-
tions, SGES Publications and Mechanical Engineering Publications, London (1996).

7. T. DeMarco, T. Lister, Peopleware, Dorset House (1987).
8. T. Gilb, D. Graham, Software Inspection, Addison-Wesley (1993).
9. I. S. Strauss, R. Ebenau, Software Inspection Process, McGraw-Hill (1994).

Simon Price is director of the WinEcon II project. He was formerly senior programmer on
the WinEcon project and prior to that worked for eight years in the computer games
industry.

S. Price418

