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In this part of the study, first the STELLA language software, as an operational manifestation of
the system dynamics approach, is introduced and discussed. Then the general model of the teaching/
learning process is translated into the STELLA stock and flow equation of a system dynamics
model. Although the gist of the teaching/learning model is common for both form-oriented and
function-oriented learners, because of their totally different approaches to learning, two separate
base models could be built and run concurrently. The rest of the paper deals with the description,
analysis and results of the base models and the implementation of the different policies to improve
the behavior of these two systems.

INTRODUCTION

IN THE PREVIOUS PARTS of this study, in line
with step 1 and step 2 of the system dynamics
approach, a system for the teaching/learning
process was defined [1]. The building blocks of
the system, their constituent parts, and their
relationships were theorized and described. Then,
the main parts of the system were converted into a
unified diagrammatic representation. Further
analysis of the literature search, uncovered new
knowledge about student's learning and resulted in
development of a new theory and the introduction
of two different types of learners with two distinc-
tive approaches to learning: form-oriented learners
and function-oriented learners (Form-Function
Theory of Types [2]).

The proposed form-function theory of types,
provides a new ground for analyzing, under-
standing, and re-engineering of the teaching/
learning processes. This theory is based on a
`systems as cause' thinking approach and, hence,
looks at the systems or processes as the cause of
their performance as opposed to their performance
being merely determined by outside forces. This
theory, principally, demands this study to develop
a separate model of the teaching/learning process
for each type of learner.

To investigate how a learner and a teacher really
work and interact with each other over time, a
simulation model should be constructed and run
accordingly. In fact, the model should be based
on the interaction between three major sets of
components in the system:

. the learner's learning abilities and motivation;

. the teaching system's characteristics, and

. the nature and quality of the subject matter.

The answers to two fundamental questions raised
from the interaction of the above forces, namely:
what should be taught to whom; and how should
it be taught should be found in dealing with such
a model. This is achieved by using a system
dynamics approach and employing a computer
simulation program (STELLA Research Soft-
ware). Thus, STELLA software will be introduced
and discussed briefly. Then, two different basic
structures for the form and function learners are
constructed in the STELLA language. The base
models are run and the results are compared
with observed realities to validate the models. A
number of policy variables are used to improve
and to enhance the situation. For instance, it will
be shown that the teaching/learning process may
be enhanced by the careful choice of the learning
material (subjective, objective, and procedural)
that the teaching system presents.

The results of this experimentation indicate the
power and effectiveness of using industrial engi-
neering modeling techniques in the field of
non-physical (non-rigorous) variables of educa-
tion. Moreover, and more importantly, the
proposed Form-Function Theory of Types intro-
duced by this study, facilitates the better under-
standing of the mechanism of learning from one
side and teaching from the other side.

STELLA LANGUAGE SOFTWARE

The STELLA software language is built around
a progression of structures. Stocks and flows are at
the lowest level and are the fundamental building
blocks of the structure. Infrastructures, which vary* Accepted 21 May 1998.
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in size and complexity, are the next step in pro-
gression. They are built up from various combina-
tions of stocks and flows. Feedback loops are the
final step in the progression and are the relation-
ships that link stocks to flows in various ways. In
so doing, they enable infrastructures to exhibit
interesting dynamic behavior [3].

This section provides an overview of each step in
the progression of the fore-mentioned structures.
In fact, this overview will prepare the ground for
understanding what the `structure' looks like at
each level, how each structure behaves, and over-
all, how a STELLA model works. To be more
efficient, in discussing each step, this study uses
examples from the non-physical variables that, one
way or another, are parts of a teaching/learning
process in real life [3].

The building blocks
Components, or the building blocks, of the

system are the first progression of the structure
in the STELLA software language. There are four
basic building blocks in the system: the stocks,
the flows, the converters, and the connectors. A
concise description of each of these components
follows [4].

1. Stocks. Stocks are basically accumulations.
They collect whatever flows into and out of
them. The default stock type in STELLA is the
`reservoir.' A reservoir passively accumulates its
inflow, minus its outflows. Any units, which flow
into a reservoir, will lose their individual identity.
Reservoirs mix together all units into an undif-
ferentiated mass as they accumulate. In a teaching/
learning process, for instance, the student knowl-
edge is an accumulation that varies as the process
of teaching/learning proceeds.

Three other stock types are available in the
STELLA software, but only two of them;
`conveyors' and `ovens' are used in this study. A
conveyor can be thought of as a moving sidewalk
or a conveyor belt. Stuff gets on the conveyor,
rides for a period of time, and then gets off. The
transit time for a conveyor can be either constant
or variable. Both capacity and inflow limit can
constrain entry to a conveyor.

On the other hand, an oven may be thought as a
processor of discrete batches of stuff. The oven
opens its doors; fills (either to capacity or until it is

time to close the door); bakes its contents for a
time (as defined by its outflow logic); then unloads
in an instant. By contrast, stuff that enter these two
stocks (conveyor and oven) do retain both their
magnitude and time-of-arrival identity.

Stocks, in general, can be referred to as system
state variables. Figures 1(a), (b) and (c) show a
reservoir, a conveyor, and an oven type of stocks
respectively.
2. Flows. The task of flows is to fill and drain
accumulations. Mathematically, they are the
instantaneous rates of flows that represent the
means by which the system is controlled and
represent activity points in the system. In fact,
without flows, no change in the magnitude of
stocks could occur. So, stocks and flows are
inseparable components. They form the minimum
set of structural elements needed to describe the
dynamics of a system. Figure 2 exhibits two types
of flows that are used in the STELLA program;
uniflows and biflows. In Fig. 2(a), the unfilled
arrow head on the flow pipe indicates the direction
of the uni-directional flow. Clouds represent infi-
nite sources or sinks for flows as illustrated in the
diagram. Also, Fig. 2(b) shows a bi-directional
flow (biflow), which is used to transport things
both into and out of an accumulation. The second,
shaded arrow head on this flow points the direc-
tion of outflow. Uniflows will assume only non-
negative (i.e., inflow) values, but biflows can take
on any value.
3. Converters. Converters are auxiliary functions
and serve a utilitarian role in the software. They
hold values for constants, define external inputs to
the model, calculate algebraic relationships, and
serve as the repository for graphical functions. In
general, they represent the decision processes in
the system. They are called `converters' since they
convert system states to system activities (or inputs
to outputs). Figure 3 shows the symbol that
represents converters in the STELLA mapping.
4. Connectors. As their names suggest, the job of
connectors is to connect model elements. In fact,
connectors are links that connect all of the compo-
nents to each other. In so doing, they eventually
form arcs that influence the flows (which regulate
the system). The only restriction of connectors is
that one cannot drag it into a stock. The only way
to change the magnitude of a stock is through a
flow. Figure 4 shows how a connector looks in
STELLA software.

Fig. 1. Stock types: (a) a reservoir; (b) a conveyor; (c) an oven.

Fig 2. Flow types: (a) a flow (uniflow); (b) a biflow.

Fig. 3. A converter.

Fig. 4. A connector.
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Infrastructures
As stated earlier, stocks and flows are the

principal building blocks of the STELLA software
language. However, irrespective of how many
flows are attached to it, a single stock system can
self-generate only a very limited set of dynamic
behaviors. In order to produce a more complex
dynamic pattern, it is essential to assemble sets of
stock/flow combinations. These sets of combina-
tions are called infrastructures. They exist in an
essentially infinite variety. For the purpose of this
study's modeling, it is important to recognize
that infrastructures will generally define the range
of characteristic behavior patterns that a model of
teaching/learning will be capable of exhibiting.

In practice, infrastructures typically appear in a
limited number of generic forms. Each generic
form has certain dynamic behavior. Five main
generic forms are recognized in STELLA software
as follows:

1. First-order linear infrastructure: a simple
combination of a compounding and a draining
process (Fig. 5). (Note: In a compounding
process, the stock serves as the basis for pro-
ducing its own inflow while in a draining
process, the stock serves as the basis for
generating its own outflow.)

2. S-shaped: a self-reinforcing growth process
that eventually is under control by some
growth constraint.

3. Overshoot and collapse: accumulations do not
make a smooth transition from growth to
steady-state. Instead, they grow rapidly, reach
their maximum, and then decline to a new
steady-state value.

4. Oscillation: an oscillatory behavior produced
by a minimum of two stocks while each serves
as a catalyst for producing the other stock's
flow.

5. Main chain: represents a sequence of stages
through which stuff flows while the specific

nature of the flows varies, depending on the
specific situations being modeled.

Taken as a whole, these generic processes will help
this study to operationally specify the teaching/
learning processes that it seeks to represent with
the software. A model of a teaching/learning
process will generally employ a combination of
all of the above types. An example of the generic
structure of the first-order linear infrastructure is
shown in Fig. 5. The system is called `first-order'
since only one stock is involved. Also, it is `linear'
since the constant proportionality between the
stock and its flows gives rise to the term linearÐ
which refers to the algebraic form of the flow
equation.

As the diagram shows, the stock is fed by a
compounding process (as defined and formulated
in the figure). It is depleted by a draining process.
Both the compounding fraction and the loss
fraction are constant, which means that both
compounding and draining flows are proportional
to the amount of the stock.

A first-order linear infrastructure can exhibit
three distinct behavior patterns, depending
upon the relationship between the compounding
and loss fractions. When the two fractions are
constant, and the compounding fraction is greater
than the loss fraction, the infrastructure exhibits
exponential growthÐthe compounding process
will dominate the behavior. In each cycle of the
process, more will be added to the stock than will
be taken away. As the stock builds, both inflow
and outflow will grow larger. In relative terms,
however, the inflow will always be greater than the
outflow. The net rate of growth in the stock is
simply the difference between the compounding
and the loss fractions. On the other hand, when the
compounding fraction is less than the loss fraction
in this infrastructure and both are constant, the net
rate of decline is the difference between the loss
and the compounding fractions. Finally, when the

Fig. 5. Example of first-order linear infrastructure.
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two fractions are equal, the stock will remain
constant. The draining flow is equal to the
compounding flow, so no change will occur in
the stock.

Feedback loops
While infrastructures define the range of

dynamic behavior patterns that a model is capable
of exhibiting, the particular kind of feedback
relationships that exist within the infrastructure
will determine which of these patterns is realized.
A feedback relationship is a closed-loop circle of
cause-and-effect. Feedback loop cause-and-effect
always includes at least one stock and one flow.
This is because stocks are conditions that give rise
to actions (or flows of activity) that in turn change
conditions. However, it is really the current state
of conditions, relative to some target level for the
condition, that inspires conditions to change.
Thus, feedback loops could be viewed as relation-
ships that generate goal-seeking behavior. Goal
seeking is a fundamental activity in which all
dynamic systems engage. In fact, goal seeking is
what enables conditions within a system to remain
on course. When deviation occurs, feedback rela-
tionships inspire and direct corrective actions to
bring conditions back in line.

There are two types of feedback relationships:
negative (counteracting) and positive (reinforcing)
feedback loops. When any variable in a negative
loop is changed, then the loop causes that variable
to readjust in the opposite direction. The negative
loop produces self-regulating change (controlling
and restorative behavior). Figure 6 illustrates a
common counteracting feedback process. In the
loop, the level_of_effort is being used to regu-
late the level_of_performance. If performance
falls below the level that the student has set as his
or her target, then effort should go up. A higher
level_of_effort leads to an increased level_
of_performance. So, an initial decrease in per-

formance propagates a signal around the loop,
which leads to an increase in performance. The
loop thus acts to counteract the initial change.

It should be noted that the loop also could
counteract change in the other direction. That is,
if performance rises above target levels, effort will
be scaled back so as to return performance target
levels.

By contrast, positive (reinforcing) feedback
processes compound change rather than counteract
it. When any variable in a positive loop changes,
the resulting interactions cause that variable to
change further in the same direction. The positive
loop, in other words, characteristically produces
self-reinforcing change (unrestrained growth).

Figure 7 is an illustration of how a typical
reinforcing feedback process works. The better a
student performs, the more confident she or he
feels. Subsequently, the more confident s/he feels,
the better s/he performs. However, as mentioned in
the counteracting feedback relationship, the loop
also may change conversely. That is, the less
confident one feels, the worse one performs and
subsequently, the worse one performs, the less
confident one feels.

As the diagram indicates, in the case of a
reinforcing feedback loop, the goal or target_
level_of_performance is linked to the level of
self_confidence. The link means that when
self_confidence rises, the target for level_of_
performance follows suit and vice versa. Then,
as performance adjusts to the new target level,
self-confidence responds accordingly.

Combining counteracting and reinforcing
feedback loops

In fact, it is the interaction and shifting domi-
nance between the two types of feedback relation-
ships that generates the dynamic character of a
system. Figure 8 is an effort to combine the two

Fig. 6. A simple counteracting loop.
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previous examples and to show the way that the
resulting system behaves. As the diagram indicates,
now it is self_confidence that sets target_
level_of_performance and target_level_of_
effort. That is, how confident a student feels,
determines both how well s/he thinks s/he should
be able to perform as well as how much effort s/he
puts out in order to achieve that level of
performance. Level_of_performance feeds back
to determine self_confidence, and level_of_
effort feeds back to determine level_of_
performance.

Now, if this set of relationships is allowed to
operate with the STELLA software, the behavior
of the system will depend on the initial levels of
confidence, performance and effort as well as
the strength of the relationships between self_
confidence and the two targets. For example, if a
decline in self_confidence causes a larger decline

in the target for effort than it does for performance,
then the system accelerates downward.

However a decrease in self_confidence has
only a minimal effect on the target_level_
of_effort, the counteracting feedback loop
which ties level_of_performance back to
change_in_effort will have a chance to operate.
This loop will act to boost the level_of_effort
which, in turn, will increase the level_of_
performance. An increase in performance, then
will inspire a rise in the level of self_confidence
accordingly.

Worth mentioning is that there are a lot of `ifs'
in these scenarios. The `ifs' depend on the relative
strengths of the feedback relationships that are
involved. This simple example emphasizes the
fact that it is difficult to make accurate predic-
tions about the performance of systems involving
extensive webs of feedback relationships.

Fig. 7. A simple reinforcing loop.

Fig. 8. Combining reinforcing and counteracting feedback relationships.
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MODELING SOFT VARIABLES IN A
TEACHING/LEARNING PROCESS

Modeling of a teaching/learning process requires
total involvement with variables that are internal
to both learners and teachers. Variables like
student's abilities and motivation or quality of
teaching are not entities that can be measured or
computed. In fact, since they are non-physical
(soft) variables, they could not get numeric or
precise values. Despite this reality, however tech-
nically, there is a mechanism for tackling such a
problem. The mechanism could be found in the
fundamental distinction that exists between
measurement and quantification [5].

Measurement, by definition, means `assessing
the magnitude of'. The result of the assessment is
often expressed numerically. All physical quanti-
ties or `hard' variables like height, volume and
weight have their pre-defined units-of-measures.
On the other hand, quantification means, `assign-
ing a numerical index to'. While assigning a
quantitative index usually is a pre-condition to
measuring something, the two activities are not
the same. The interesting point is that one can
quantify anything.

Fortunately, in the case of a teaching/learning
process, it is not necessary to measure all of the
soft variables in order to be able to use them in the

simulation model. That is, the study will assign
a numerical index to each of the non-physical
entities that are involved in the system. For
instance, to quantify student motivation, the
research will assume that 0 represents the complete
lack of motivation and 100 represent as much
motivation as is possible for a student to have. A
similar quantitative index would work equally well
for the effort that students put into a learning task
or the interest they have in the subject matter.
Likewise, to quantify the rate of knowledge
acquisition, the research will assume 0 represents
the complete absence of effort to learn and 100
represents as much knowledge as is possible for a
student to acquire for a given period of time.

Doing this will cause this study to act in a
rigorous manner about the relationship each
variable bears to other variables in the teaching/
learning system. Hence, the more this study tries to
quantify, the better the desired model resembles
the real one. In addition, this will enable the study
to solidify all the soft variables and simulate
them to examine their role in the dynamics of a
teaching/learning process.

This study, based on the discussions and find-
ings in the previous parts [3, 4], proposes two
separate models for the components involved in a
teaching/learning process. That is, a system for a
form-oriented learner and a separate system for a

Table 1. Defined variables for the proposed models of teaching/learning process

Proposed
Model Stocks Flows Converters

Form-oriented
learners

hooks_under_development
hooks_for_repetition
hooks_in_memory
quantity_of_info
interest_in_subject
expectancy_
level_of_effort
level_of_performance

taking_ (information)
completing_ (the hooks)
repeating_ (hooks of
information)
lecturing_
change_in_quantity_of_info
change_in_expectancy
change_in_effort
change_in_performance
waste_

type_of_info: memory_info, relrote_info,
relreal_info, procedure_real,
procedure_rote
learning_reinforcers:
testing_ : (rote_type, clsd_prbm_slvg,
opn_prbm_slvg),
quality_of_teaching,
other_reinforcers
interest_in_use,
interest_in_grade,
impact_of_other_values
availability_,
student's_perceived_availability,
forecast_adjustment
prior_knowledge, amount_learned,
productivity_,
coding_.
waste_fraction,
learning_style_compatibility,
constraints_.
willingness_, mark of desire_,
perceived_assessment
target_info, adjustment_fraction
allocated_time_factor

Function-
oriented
learners

relationships_under_study
structures_to_form
structures_in_memory
quantity_of_info
interest_in_subject
expectancy_
level_of_effort
level_of_performance

taking_ (information)
evaluating_ (information)
finishing_ (the structures)
lecturing_
change_in_quantity_of_info
change_in_expectancy
change_in_effort
change_in_performance
waste_

Same as above
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function-oriented learner. It is noteworthy that the
gist of the main structure for both models is the
same and only the main chain within each model is
different.

Table 1 shows the list of the soft variables that
have been defined and considered within the two
models. Each soft variable is represented by one of
the main building blocks of the STELLA software
(stock, flow, or converter). As the table depicts,
each model is composed of exactly fifty soft vari-
ables with most of them being common in both
models. Note that this is a good number for a
STELLA model. In fact, a model with this number
of variables is neither too complicated to be
unmanageable nor too simple to be unacceptable
as the representation of the reality.

Each model uses eight stocks and nine flow
rates. The remaining variables have been defined
by the converters. All of the stocks except two
are reservoir types. These two stocks; hooks_
for_repetition and structures_to_form, are
Conveyor and Oven type stocks respectively.

On the other hand, four flow rates (out of total
nine flows) are biflow types. These flows represent
variables that can `change' values in either
direction (e.g., change_in_quantity_of_info
and change_in_effort).

LEARNING MODEL OF A FORM LEARNER

In this section, the STELLA model of a teach-
ing/learning system for a form-oriented learner
during a short time period (such as a class lecture)
is presented. The role of each variable in the
model is highlighted, the nature of the interactions
between different variables within the entire system
(feedback loops) is described, and finally, the
behavior of the system will be discussed.

Description of the base model for a form learner
The system flow diagram for the learning

process of a form-oriented learner is as shown in
Fig. 9. The diagram has been constructed by
STELLA simulation language software and repre-
sents all the variables presented earlier in Table 1.
Basically, the variables within the system can be
recognized in three sets of components: compo-
nents of the teaching system, components of the
learning side (the form learner) and the compo-
nents of the subject matter. Note that the compo-
nents of both the teaching system and subject
matter are at the top and the right end of the
diagram. The remainder of the diagram includes
the components that represent the characteristics
of the learner (learning, motives and performance).
The definition and description of each variable
have been given in the List of Equations (Appen-
dix). Worth mentioning is that the STELLA
equations created from Fig. 9 in the List of
Equations are two types. The first types are stock
level equations (which are generated by the soft-
ware directly from the diagram) and their asso-

ciated initial conditions. The remainder are the
flow and converter equations that are generated
by the modeler.

Referring to Fig. 9, the main chain infra-
structure at the center of the diagram represents
a sequence of stages through which the informa-
tion flows in the learning side of the system.
Apparently, the specific nature of flows vary,
depending on the specific situation of each type
of information. The chain is fed by a single flow
(taking_). The cloud on the left-hand side of
the flow of taking_ depicts the boundary of
the model. It represents an infinite source for the
taking_ flow, as shown. (For the purpose of this
model, it does not matter what is in the cloud.)
The flow of lecturing_ (teaching system) is
governed by two main variables: type_of_info
and change_in_quantity_of_info. Type_of_
info is composed of five different types of incom-
ing info (as introduced and discussed in Part 2 of
this study [2]). In fact, the composition of the
type_of_info determines the type of the teaching
system or the teacher. If more weight is given to
memory_info or relrote_info (relationship rote
oriented information), the teacher is most likely a
form-oriented teacher. Other potential possibilities
can be created and used in the model by changing
the composition of type_of_info. The governing
effect of type_of info on the flow of lecturing_
has a subsequent impact on the learning_
style_incompatibility (which has its relevant
impact on the learning side as will be discussed
later).

In the present base model, the flow of taking_ is
capturing each piece of issuing information from
the teaching system (flow of lecturing_) and
placing it into the mind of learner (stock of
hooks_under_development). Therefore, the flow
of taking_ depends upon the flow of lecturing_
from one side, and coding_ (suitability to be
categorized and connected to the hooks already
stored in the amount_learned), and the learner's
own forecast_adjustment from the other
side. The flow of waste_ drains the stock
of hooks_ under_development at a rate that
is determined by the level of the stock itself
and the waste_ fraction. Waste_fraction is
the product of constraints_ (that include all
impeding factors, whether internal or external
to the student, that lead to waste in the process of
the knowledge acquisition) and learning_
style_incompatibility.

Flow of completing_ takes the hook of
information from the stock of hooks_under_
development and places them in the stock of
hooks_for_repetition. This flow is under the
influence of four variables: the level of the direct
upstream stock, the learner's interest_in_
subject, interest_in_grade, and interest_
in_use [1]. The learner's interest_in_subject
is represented by a stock and flow combination
while the other two types of interest are shown by
converters. It is assumed that the magnitude of the
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learner's interest_in_subject may vary during
a lecture period while this is not so for the other
two.

As shown in the diagram (Fig. 9), a conveyor
type stock represents the state of the hooks_for_
repetition in the mind of a form learner. Inter-
estingly, by assigning different inflow limits and
capacities to the conveyor, different types of form-
oriented minds can be detailed and modeled.
Subsequently, the flow of repeating_ gets the
repeated hooks off the conveyor and stores them
in the stock of hooks_in_memory. The flow rate of
repeating_ is adjusted by the level_of_effort
that the learner puts into the task. The impact_
of_other_values (all the remaining task values)
reinforces the flow of repeating_. Finally, the
sum of total number of hooks_in_memory and
prior_knowledge are represented by the amount_
learned. Needless to say, all of this entities have
been already defined in the first part of the study
[1].

The other five stocks (shown as boxes in the
diagram) are quantity_of_info (given by the
teaching system), interest_in_subject, level_
of_effort, expectancy_, and level_of_
performance. Each of these stocks allows these
parts of the system to have initial values. These
stocks change in value according to the amount

they receive or lose since their bi-directional flows
can get both positive and negative values.

To simplify the model, only two most important
learning_reinforcers namely quality_of_
teaching (shown on the top right of Fig. 9)
and testing_ (shown on the left end of Fig. 9)
have been defined in the model. Learning_
reinforcers is modeled by a graphical function
of type_of_info and quantity_of_info. On the
other hand, testing_ comprises of rote_type,
clsd_prbm_slvg, and opn_prbm_slvg compo-
nents [2]. In fact the other less important types of
external reinforcers have been represented by a
single converter as other_reinforcers [1].

Also, to have a more solid model, two new
components,productivity_ andavailability_,
have been conceptualized and introduced in the
model. Note that the learner's productivity indicates
the level of his or her learning effectiveness in the
acquisition of new information. It is defined as
the ratio of amount_learned to prior_knowledge
(output to input) and, as pointed out, influences
the learner's performance during the learning
process. Availability_, on the other hand, has
an important inter-relational role between the
learner's available knowledge and his or her
productivity_ from one side, and the impact of
learning_reinforcers on availability_ (of

Fig. 9. System flow diagram for a form-oriented learner.

Towards Dynamic Modeling of a Teaching/Learning System Part 3 175



the current knowledge) from the other side.
Availability_ connects the main chain of the
student' learning abilities to three important
dimensions of expectancy_, level_of_effort,
and level_of_performance.

The remaining components, willingness_,
mark_of_desire, perceived_assessment, stu-
dent's_ perceived_availability, forecast_
adjustment, allocated_time_ factor, target_
info and adjustment_fraction, represent the
other important characteristics within a teaching/
learning system and are defined and detailed in
the List of Equations (Appendix) based on the
previous discussions made in Part 1 and Part 2 of
the study [1, 2].

FEEDBACK MECHANISMS

Several feedback mechanisms are included in
the model (Fig. 9). Four of these loops have a
determining effect on the resulting behavior of the
system. Two loops are acting merely in the
learner's ability (to learn) side. One loop is acting
in the student's performance side (that demon-
strates the impact of subject matter). And the last
loop, which is the largest loop is acting in the
teaching system side.

The learner's ability (to learn) mechanisms
The first mechanism acts along the main chain

running from the stock of hooks_under_develop-
ment to the stock of hooks_in_memory, and from
there to the amount_learned and to the coding_
and finally back to the flow of taking_. This
linkage closes a feedback loop in which as the
amount of incoming information (lecturing_)
increases, the form-oriented learner will take
more and make more hooks_under_development.
This leads to a higher rate of completing_ (the
hooks and strings of information) and subse-
quently, more hooks_for_repetition. A higher
number of hooks_for_repetition, inevitably
increases the rate of repeating_ and the
amount of hooks_in_memory respectively.
Amount_ learned will increase and accordingly
causes an increase in the categorizing and
coding_ ability of the form learner. This, in
return, will facilitate the flow rate of taking_. The
reinforcement of taking_ is one of the feedback
mechanisms included in the model for responding to
changes in amount of incoming information. Thus,
the feedback loop starts with an increase in the
amount of hooks_under_ development and feed-
back to taking_ makes it increase more. This
phenomenon is the characteristic of a positive
feedback loop that tries to reinforce the process.
As stated in the previous sections, when any
variable in a positive loop changes, the resulting
interactions cause that variable to change further
in the same direction. The positive loop, in other
words, characteristically produces self-reinforcing
change (unrestrained growth).

The second mechanism acts in parallel to the
first one, keeping the same track but diverts from
hooks_in_memory to availability_. Thus, an
increase in hooks_under_development, ultimately
increases the hooks_in_memory. The result is an
increase in availability_ (of the information)
that gives rise to a higher student's_perceived_
availability. A higher perceived_avail-
ability, subsequently, decreases the student's
forecast_adjustment. This, in return leads to
a negative impact on the flow of taking_ and
a subsequent decrease in the hooks_under_
development.

Summing up, the loop starts with an increase
in the hooks_under_development and the feed-
back to hooks_under_development makes it
decrease. This phenomenon is typical behavior
for a negative feedback loop. As mentioned in
the previous sections, when any variable in a
negative loop is changed, then the loop causes
that variable to readjust in the opposite direction.
The negative loop produces self-regulating
changes (controlling and restorative behavior).
And so, an initial increase in the number of
hooks_under_development propagates a signal
around the loop, which leads to an eventual
decrease in the level of this stock. The loop thus
acts to counteract the initial change.

In summary, it is obvious that the overall
behavior of the learning ability of the learner is
almost the result of the interaction between these
two feedback loopsÐa positive feedback loop that
acts in the `coding_' side and a negative feedback
loop that acts in the `availability_' side.

The student's performance mechanism
The other feedback loop that has a major effect

on the behavior of the overall learning system acts
along the student's `performance' side (down to the
right of the diagram). This loop may either act as a
negative or a positive feedback loop. The way it
works depends upon the direction (or the resulting
direction) of changes in the involving biflow rates.

This loop starts with the stock of hooks_in_
memory. Note that an increase in hooks_in_
memory, concurrently, increases the amount_
learned (by the student). This, in turn, increases
the student learning productivity_ and avail-
ability_ (of the knowledge) respectively. The
result is reinforcement in the positive direction of
change_in_expectancy which subsequently leads
to an increase in student's expectancy_ for a
higher achievement. The increase in expectancy_
has a direct impact on the student's expected
mark_of_desire, and at the same time, on the
willingness_ [1]. However, if change_in_ perfor-
mance and change_in_effort biflows tend to be
in the positive directions, then they result in sub-
sequent increases in level_of_performance and
level_of_effort respectively.

On the other hand, mark_of_desire and
willingness_ are the target levels for level_of_
performance and level_of_effort respectively.
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Therefore, the rate of change in each biflow
depends directly on the difference between the
value of each reservoir and the value of the corre-
sponding target level. Eventhough, an increase
in level_of_performance reinforces the positive
direction of change_in_effort which subse-
quently increases level_of_effort. The increase
in level_of_effort, strengthens the rate of
repeating_ and generates more hooks_in_
memory. Needless to say, the resulting effect is a
typical behavior of a positive feedback loop. As
mentioned earlier, when any variable in a positive
loop changes, the resulting interactions cause that
variable to change further in the same direction.

Two points are worth mentioning. First, the
biflow of change_in_effort is under the influence
of allocated_time_factor. This converter repre-
sents the time dimension of the effort that a
student puts into different learning tasks. Second,
the biflow of change_in_expectancy is under
the influence of testing_. Note that testing_,
as discussed in the previous part of the study [2],
comprises of three major types of questions:

(1) rote_type (true/false, multiple choice and
short/long answer questions),

(2) clsd_prbm_slvg (closed problem solving type
questions) and

(3) opn_prbm_slvg (open problem solving type
questions).

The value of testing_ in the model is defined by
the following relation:

Value of testing �
� wr � r� wcps � cps� wops � ops

wr � wcps � wops

where

wr � weightpercent of rote type questions
wcps � weight percent of close problem solving

type questions
wops � weight percent of open problem solving

type questions
r � value of the rote type questions in the

teacher's view
cps � value of closed problem solving questions in

the teacher's view
ops � value of open problem solving questions in

the teacher's view

In the base case of the model, it is assumed that
a form-oriented teacher represents the teaching
system. It is obvious that, form-oriented teachers
normally intend to ask questions or take tests with
higher weight percentages of the types of questions
that they prefer the most (i.e., more rote type
and less open-problem solving type). Conversely,
function-oriented teachers normally intend to ask
questions and take tests while they give more
weight to the open problem solving and closed
problem solving type questions.

In the meantime, each of these types has its value
in the teacher's view: form-oriented teachers assign

higher values to rote type questions while function-
oriented teachers assign higher values to the
problem solving types questions. By assumption,
the following values (out of 5) have been con-
sidered for each type of question in a form and
function's view respectively and may be used in the
base model:

Rote type
questions

Closed-
problem
solving

Open-problem
solving

Form teacher 5 3 0
Function teacher 0.5 3 5

Since both the form teacher and the form learner
prefer the first two types of questions, the better a
testing_ represents these two types of question,
the higher the expectancy_ of a form-oriented
student, and the higher s/he sets his or her
mark_of_desire. Subsequently, the higher s/he
sets his or her mark_of_desire, the better s/he
performs. But as it was mentioned in the counter-
acting feedback relationship, the loop also may
change conversely. That is, the less testing_
represents the form student's preferred question
types (if say, for instance, the teacher is a
function-oriented individual), the lower his or her
expectancy_ for a better achievement and subse-
quently, the less his or her mark_of_desire and
the worse s/he would perform.

The teaching side mechanism
The largest feedback loop mechanism acts

along the `teaching_' side (top left) of the
model. This loop, again, may either act as a
negative or a positive feedback loop. The way it
works depends upon the direction (or the resulting
direction) of changes in the involving biflows. This
feedback loop could be tracked as described below.

The `teaching_' loop starts with the stock of
quantity_of_info. The level of this stock (the
total accumulation of information presented at
any time) is controlled by rate of change_in_
quantity_of_info. The biflow of change_in_
quantity_of_info may change its direction in
either positive or negative side to regulate the
level of the stock, based on the amount of
target_info (as is preset by the teaching system
for each lecture, here for instance in the base
model, say it is set as 200 pieces of information)
and adjustment_fraction (as is adjusted by the
teaching system based on the feedback received
from the student's level_of_performance).

As the level of quantity_of_info increases,
provided that type_of_info is at its appropriate
value for a form learner, thequality_of_teaching
increases. The increase in quality_of_teaching
has its reinforcing effect on the student's
learning_reinforcers and subsequently on
the student's availability_ (of knowledge).
The more the availability_, the greater the
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expectancy_, the higher the mark_of_desire, the
better the performance, and finally, the larger is
the adjustment_fraction. This means a higher
flow rate of information to the stock of quantity_
of_info. (Note that for the sake of having a neat
diagram, the connector that links level_of_
performance to the adjustment_fraction is not
shown in Fig. 9).

It is worthwhile to notice the role of type_
of_info in the teaching_ side of the model. In
fact, it represents what is flowing, via lecturing_,
from the teaching system to the learning side
(learner). The different types of information
within a lecture were recognized and classified in
two sets; `main set' and `testing (auxiliary) set,' [2].
At this side, the model shows the types of
information that include in the `main set' namely
memory_info (memorizing typeÐrote info),
relrote_info (relationship type infoÐrote
oriented), relreal_info (relationship type infoÐ
real), procedure_real (procedure type infoÐreal)
and procedure_rote (procedure type infoÐrote
oriented). The four types of the `testing set' have
been reduced to three types and are shown as
constituents of testing_ in the right end of the
diagram (Fig. 9). They are part of learning_
reinforcers like the quality_of_teaching_
and other_reinforcers that were dealt with
earlier. The value of type_of_info is determined
by the following formula:

Value of type of info �

� a� wa � b� wb � c� wc � d � wd � e� we

wa � wb � wc � wd � wd
:

where

w � weight percent of each type of information in
the lecture presented by the teaching system

a � memorizing type information
b � relationship type infoÐrote oriented
c � relationship type infoÐreal
d � procedure type infoÐreal
e � procedure type infoÐrote

In the base case of the model, it is assumed that
a form-oriented teacher represents the teaching
system. It is obvious that form-oriented teachers
normally are giving lectures with higher weight
percentages of the types of information that they
prefer the most (i.e., memory type, relrote, and
procedure-rote). Conversely, function-oriented
teachers prefer these three types of information
the less and are presenting lectures with higher
weight percentages of relreal and procedure-real.
In the meantime, each of these types has its value
in a teacher's view. Form-oriented teachers assign
higher values to a, b and e while function-oriented
teachers assign higher values to c and d. By
assumption, the following values (out of 5) could
be considered for each type of information in a
form and function's view respectively and may be
used in the base model:

type_of_info Form teacher Function teacher

memory_type 5 1
relrote 4 2
relreal 1 5
procedure_real 1 5
procedure_rote 5 1

In general, the last two feedback loops described
above act on two sides of the model (teaching and
learning) and due to the bi-directional effect of
their biflow rates, seek eventually either goal
maintaining or a growing pattern. At the same
time, some smaller loops exist in the model that
behave locally and generate their limited effect on
the system. Consequently, the overall behavior of
the teaching/learning process is the resulting beha-
vior produced by all of the mentioned loops.

BEHAVIOR OF THE SYSTEM

Referring to Fig. 9, and List of Equations
(Appendix), it can be seen that the simulation
starts with an initial stock of hooks_under_
development at 0 hooks, a prior_knowledge of
10 hooks about the subject matter, an initial
interest_in_subject of 0.01 (1%) and an initial
quanity_of_info of 0 hooks. The other initializa-
tion values are as defined and assumed in the List
of Equations (Appendix). The time horizon for the
model is assumed to be 45 normal minutes, namely
the length of a regular lecture.

As the lecture starts, the flow of lecturing_
sends the desired quantity_of_info to the mind
of the learner. The form learner begins to receive
the information at the rate of taking_. At this
stage, as each piece of information moves to the
stock of hooks_under_development, it will be
classified, coded, and adjusted as well. The stock
of hooks_ under_development represents the lear-
ner's short-term memory (STM) in real life. To be
consistent with the reality, the model assumes that
some information is leaked from the stock and has
gotten lost during the information taking process
at the flow rate of waste_. As discussed earlier, the
rate of waste_ is controlled by waste_fraction.
Again, as mentioned earlier, the value of waste_
fraction is determined by two factors: learning_
style_incompatibility and the amount of
constraints_ . Note that the lower learning_
style_incompatibility (say, for instance, both
teacher and learner are form-oriented individuals),
the smaller the waste_fraction, the lower the rate
of waste_ and the higher is the level of hooks_
under_development.

Therefore, as lecturing_ proceeds, the flow of
taking_ sends more hooks to the stock of hooks_
under_development. The flow of completing_
takes the information from the upstream stock
and places them as the completed hooks in the
stock of hooks_for_repetition. The rate of
completing_ is reinforced by three factors: the
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level of student's interest_in_subject (shown
as a stock), and the amount of both interes-
t_in_grade, and interest_in_use (shown as
converters). If the type of information received
by the form-oriented learner is compatible with
his or her preferences (almost rote types), then
learning_style_ incompatibility between the
teaching system and the learner would be at its
minimum. Again, the lower the value of lear-
ning_style_ incompatibility, the lower the
waste_fraction, and the less is the variation in
the level of student's interest_in_subject.

The stock of hook_for_repetition is repre-
sented by a conveyor type stock. The time that it
takes that each piece of information finds its
location in the episodic memory of the learner's
long-term memory (LTM) has been considered as
a variable. The in-flow capacity and transit time
for the conveyor vary for different form-oriented
learners. The maximum inflow capacity for the
hooks_for_repetition in the base model is
assumed to be at most 20 hooks of information.
Also, the transit time (the time it takes that each
piece of information gets off the conveyor) for the
conveyor is assumed to vary. (Refer to the List of
Equations in Appendix)

The flow of repeating_ takes each hook of
information from its upstream stock and after
required repetition implants it into the student's
LTM (hooks_in_memory) as a permanent trace.
The rate of repeating_ is regulated by the stock of
student's level_of_effort and is reinforced by
the impact_of_other_values. Note that three of
the student's perception of task value (interest_
in_subject, interest_in_grade, and interest_
in_use) have been already defined and modeled in
the diagram (Fig. 9). The impact of the remaining
six values (pride in future profession, self-worth,

security in future job, social obligation, band-
wagon effect and association with something one
likesÐas discussed in Part 1 of the study [1]) are
represented by a single converter for the sake of
simplicity.

Maximum level of both hooks_under_
development and hooks_for_repetition happen
between minute 8 and 9. This can be found from
Fig. 10 (graph of base run for a form-oriented
learner). This fits the reality quite well, especially
when one notices the large amount of new infor-
mation that is usually presented by the teacher
right at the beginning of each lecture. Normally, as
the lecture proceeds, the rate of the presentation
of new information decreases and the content of
the lecture, more or less, is focused around the
expansion of the topics that are presented in the
beginning of the lecture.

The maximum level of hooks_in_memory
happen at the end of the simulation period and is
approximately about 15 hooks. The maximum
interest_in_subject is about 0.7 (out of 1.0)
and again happens at the end of the lecture. Also,
the level_of_performance reaches its maximum;
60 out of 100, at the end of the period. (See Fig. 10.)

The simulation may be run for the analysis of
other variables as well. Note that Fig. 11 demon-
strates a second graph of base run for the other five
major variables. As shown in the graph, the flow
rate of waste_ reaches its maximum at minute 7
and then keeps descending at an almost uniform
rate as the lecture proceeds to the end. The reason
why the rate of waste_ is at its maximum at minute
7 may be found in the large amount of new
information that is normally delivered by the
teaching system in the beginning of the lecture.
The sharp ascending pattern of the graph for the
first 7 minutes fits nicely with what is happening in

Fig. 10. Graph of base run for form-oriented learner (Part I).
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the reality. Interestingly, as the teacher gives more
explanation about the topics (learning objectives),
which this usually happens after first 5±7 minutes,
the rate of waste_ then decreases.

Two variables, amount_learned and produc-
tivity_ follow a common track. Both variables
show a continuous increasing trend. These two
variables have been defined, simply by using the
cognitive algebra concept, as below:

amount_learned � prior_knowledge

� hooks_in_memory

productivity_ � amount_learned/

a prior_knowledge

Note that the simulation begins with prior_
knowledge of 10 and hooks_in_memory of 0
hooks. This means that the initial productivity_
is equal to one. At the end of lecture, the form-
oriented learner acquires 14.5 more hooks and
consequently the productivity_ ratio increase
to 2.45.

Also, the flow of taking_ starts at an initial rate
of 0.7 hooks per minute and ends at a rate of
0.2 hooks per minute. In the mean time, the
quantity_of_info delivered by the teaching
system starts at 0 and is accumulated at the final
level of 200 pieces of information by the end of the
lecture. The patterns of behavior of these two
variables over time seem very promising. As the
lecture proceeds, the learner gets more detailed
information about the topics at hand, becomes
more familiar with the subject matter, and con-
sequently adjusts (reduces) his or her rate of
taking_ accordingly.

As mentioned earlier, the behavior of any other
variable can be simulated and tracked on the
similar graphs (or tables). The graph of base run

in Fig. 10 shows the behavior of all of the variables
involved in the simulation model over 45 minutes
of a typical lecture period. The interested reader
can refer to this table and observe how each
variable within the base model changes value
minute after minute.

EXPERIMENTAL RUNS

A number of experiments were carried out with
the simulation model in line with the step 4 and 5
of system dynamics method [1]. The intention was
to examine different policy alternatives and deter-
mine which policies show the greatest promise. The
alternatives were chosen mainly from the experi-
ence of the analyst and also from intuitive insights
generated during the first three stages of the system
dynamics. Although, in a complex system like
teaching/learning, there would be many competing
criteria for defining failure or success, nevertheless
different scenarios of favorable performance might
be identified. In addition, the better alternative
behaviors would often come from changing the
system base structure.

To be concise, only four experiments are
discussed in this section. These simulation experi-
ments were carried out to gauge the effects of
prior_knowledge, memory_info, and rote_type
(questions) as policy variables on the learning
behavior of the form-oriented learner. All of
these variables have been chosen intentionally.
Prior_knowledge represents one of the student's
trait variables in the model, while memory_info
and rote_type represent the characteristics of
subject matter and teaching system respectively.

. Experiment 1: A sensitivity analysis was made of
the student prior_knowledge for 10, 20 and 30

Fig. 11. Graph of base run for form-oriented learner (Part 2).
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hooks of information to gauge its effect on the
rate of completing_ (Fig. 12).

. Experiment 2: A sensitivity analysis was made of
the memory_info for the weight factor of 5, 10,
and 15 to gauge its effect on the productivity_
of the form-oriented learner (Fig. 13).

. Experiment 3: A sensitivity analysis was made of
the memory_info for the weight factor of 0, 5,
and 10 to gauge its effect on the level_of_
perormance of the form-oriented learner
(Fig. 14).

. Experiment 4: A sensitivity analysis was made of
the rote_type (questions) for the weight factor
of 0, 5, and 10 to gauge its effect on the student's
expectancy_ for a mark_of_desire (Fig. 15).

Effects of other policy variables like interest_
in_subject, learning_style incompatibility,
quality_of_teaching, level_of_effort, and
other_reinforcers have been investigated as
well. However, the discussion of results of the
above four experiments (next section) would
suffice and serve the purpose of this study.

Results of experiments
To examine the results of the above experiments,

the data at four points of interest (minutes 11.25,
22.5, 33.75 and 45.0) were extracted from Figs 12,
13, 14 and 15 respectively, and tabulated as shown
in Table 2. The similar results of the base run are
also included, so then the changes in the learning

Fig. 13. Comparative graph for experiment 2.

Fig. 12. Comparative graph for experiment 1.
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`behavior' of the form-oriented learner would be
more obvious.

Rate of completing_, productivity_, level_
of_performance, and expectancy_ are taken as
the measures of change in the behavior of the
system. These choices look reasonable as every-
thing runs on the rate of acquisition of knowledge
(here, in this case, on the rate of completing_ new
hooks of information in the memory). Besides, the
level of the acquisition of knowledge could be
evaluated based on the productivity_, level_
of_performance, and the expectancy_ of the
form-oriented learner (for his or her mark_of_
desire).

The results of Experiment 1 indicate that, the
higher the initial level of prior-knowledge about
the subject, the lower the student's rate of
completing_ would be. This means that a form-
oriented learner with more prior_knowledge
about the subject at the beginning of the lecture,
is more `efficient' in absorbing the new incoming
pieces of information and hence, is more relaxed in
processing the information (here, read it as: slower
in the rate of completing_ hooks of information
in his or her memory).

The difference in the rate of completing_ is
more evident at the beginning of the lecture. As
shown in Fig. 12, for all of three runs, the rate of

Fig. 15. Comparative graph for experiment 4.

Fig. 14. Comparative graph for experiment 3.
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completing_ reaches its maximum in the first ten
minutes of the lecture and then keeps decreasing
for the rest of the lecture. Note that this pattern
of behavior is quite consistent with what happens
in reality in the teaching/learning environments.
Upon beginning a lecture, the teacher usually
starts with the presentation of the topics
and introduction of the learning objectives.
Then, s/he uses the rest of the time of class, to
expand around each topic and to go into the
details. The student, on the other side, knows well
that s/he must build more hooks of information
in the beginning to hang the other information
incoming later onto them. (Refer to Part 2 of this
study, Figs 3(a) and (b) and see the example short
lecture experiment that shows how a form-
oriented learner treats incoming information in
the beginning of the lecture [2].)

Comparing the values of completing_ at
minutes 11.25, 22.5, 37.75, and 45 implies another
finding. With a prior_knowledge of 10 hooks
(base run), a student has a harder job to do in
contrast with a student with a prior_knowledge
of 20 or 30 hooks. In fact, as the prior_knowledge
about the subject increases, the rate of com-
pleting_ shows a more promising pattern of
behavior. For instance, the rate of completing_
for a student with prior knowledge of 10 (Run 1
in Experiment 1) varies in a larger span than of
the student with a prior_knowledge of 20 (Run
2 in Experiment 1) or 30 (Run 3 in Experiment
1). This can be seen in the diagram of Fig. 12.
The rate of completing_ for Run 1, starts at 0 in
the beginning, reaches its maximum (0.50) at
minute 7, and ends up with 0.21 hooks per

minute at minute 45. Compare these values with
the values of completing in Run 3. Here, the rate
of completing_ starts at 0 in the beginning,
reaches its maximum (0.18) at minute 8, and
ends up with 0.15 hooks per minute at minute
45. What are the differences? The form-oriented
learner in Run 3 has an average completing_
rate of about 0.15Ð0.18 hooks per minute over
the whole period of the lecture except for the first
few minutes, (which is normally expected). This,
of course, may be interpreted as less pressure on
the student's mind and more stable behavior in
the process of knowledge acquisition. Run 2
shows a similar pattern to Run 3.

On the other hand, according to the results of
Experiment 2, as the teacher puts more value on
the memory_info and delivers a lecture with a
higher content of memory type information, the
form-oriented learner's productivity_ would be
higher. As shown in Fig. 13, doubling the
memory_ info content (from 5.00 to 10.00)
would result in, more or less, about 10% increase
in the student's productivity_. Even another
increase (this time 50%) would give a better
productivity_ (Run 3 in Table 2). Again, this
fits very well with the reality if one notices that a
form-oriented learner is highly productive when s/
he receives information in his or her type of
preference. Worth mentioning is that if the
teacher uses other rote type information like
relrote_info and procedure_rote in his or
her lecture, the pattern of the behavior would
be similar to that shown in Fig. 13. Conversely, if
the teacher gives a lecture with more stress on
relreal and procedure_real, the form-learner

Table 2. Results of sensitivity analysis

Measure of behavior Minute 11.25 Minute 22.5 Minute 33.75 Minute 45

Base run (prior_knowledge � 10.0)
completing_
productivity_
level_of_performance
expectancy_

0.46
1.45
4.97
0.01

0.31
1.885
9.60
0.05

0.24
2.19

38.38
0.23

0.21
2.45

51.44
0.66

Experiment 1 completing_
prior_knowledge: Run 1 � 10.00
Run 2 � 20.00
Run 3 � 30.00

0.46
0.26
0.18

0.31
0.23
0.17

0.24
0.21
0.16

0.21
0.18
0.15

Experiment 2 productivity_
memory_info: Run 1 � 5.00
Run 2 � 10.00
Run 3 � 15.00

1.46
1.65
1.73

1.90
2.12
2.32

2.20
2.48
2.73

2.45
2.75
2.98

Experiment 3 level_of_peformance
memory_info: Run 1 � 0.00
Run 2 � 5.00
Run 3 � 10.0

4.90
4.97
5.05

7.70
9.60

14.0

16.0
37.33
44.0

42.0
51.44
75.0

Experiment 4 expectancy_
type_of_info: Run 1 � 0.00
Run 2 � 5.00
Run 3 � 10.00

0.08
0.09
0.10

0.10
0.15
0.38

0.15
0.50
1.40

0.022
1.30
3.12
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definitely will be in trouble and his or her
productivity_ will decrease.

Experiment 3 is to gauge the effect of the same
input variable (memory_info) on the student's
level_of_performance. As shown in Fig. 14, if
the teacher uses no memory_type_info in his or
her lecture, the form-learner's achievement falls
below the `passing zone' and is about 42%. In
such cases, the teacher most likely is a function-
oriented individual and the form-oriented student
will be at risk. In contrast, as the teacher uses
memory_type info with 5 or 10 weight factors,
the student's level_of_performance increases to
51.44% and 75% respectively. Interestingly, the
doubling of memory_info content (from 5 in Run
2 to 10 in Run 3) results in about 50% increase in
the student's level_of_performance. The model
assumes that the continuous assessment of the
student's achievement during a lecture is feasible
and practical.

Experiment 4 is complementary to Experiment 3
and demonstrates the effect of different types of
testing_ on the student's expectancy_. Testing_
could be occasional short oral questions during the
lecture or a written short quiz. The important issue
is the type (orientation) of testing_. If the teacher
asks no rote_type questions (memory oriented
yes/no, true/false, short/long answers qestions) in
his or her testing_, the form-oriented learner
presumes a lower level of expectancy_ for success
(in getting a passing grade). In this case, the
teacher most likely is a function-oriented indivi-
dual and hence, the form-oriented student would
be definitely at risk. Apparently, as the teacher
uses rote_type questions in his testing_, say for
instance at a weight factor of 5 (Run 2 of Fig. 15),
then the student's expectancy_ rises considerably
and results in a higher mark_of_desire accord-
ingly. Furthermore, if the teacher doubles the
amount of rote_type questions (Run 3 of Fig.
15), the student's expectancy_, more or less,
increases by 150% (Table 2). Once more, one can
observe the role of different types of issuing
information by a teacher; whether they are part
of `main set' or `auxiliary' (testing) set (as defined
in Part 2 of this study [2]), on the student's
achievement.

LEARNING MODEL OF A FUNCTION
LEARNER

Description of the base model for a function
learner

As mentioned in the beginning, the system flow
diagram for the learning process of a function-
oriented learner is the same as Fig. 9 except for the
main chain of the model. (Refer to Table 1:
Defined variables for the proposed models of
teaching/learning process.) To be brief and to
prevent mentioning repetitive material, in this
section, only the main differences are discussed.

The main chain of the system flow diagram for
the learning process of a function-oriented learner
is shown in Fig. 16. The definition of each variable
except for the main chain is the same as described
in the List of Equations (Appendix). The definition
of each variable in the main chain is given as the
following.

Referring to Fig. 16, the main chain infrastruc-
ture represents a sequence of stages through
which the information flows in the mind of a
function-oriented learner. Note that the specific
nature of flows varies, depending on the specific
situation of each stock. The chain is fed by a
single flow (taking_). A non-conserved system is
demonstrated by the stock of relationships_
under_study. The cloud on the left hand side of
the flow of taking depicts the boundary of the
model. It represents an infinite source for the
taking flow, as shown. (Again, for the purpose
of this model, it does not matter what is in the
cloud.)

In this model, flow or taking_ is receiving each
piece of the incoming information from the teaching
system and placing it into the mind of the function-
oriented learner (stock of relationships_
under_study). The flow of waste_ drains the
stock of relationships_under_study at a rate
that is controlled by the level of the stock itself and
the waste_fraction (not shown in the diagram).

As shown in the diagram, an oven type stock
represents the state of structures_to_form in the
mind of a function-oriented learner. Two interest-
ing points are worth mentioning. First, by assign-
ing different capacities and fill time to the oven,

Fig. 16. Main chain of the system flow diagram for a function-oriented learner.
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different types of function-oriented minds can be
detailed and modeled. Capacity tells how much
information the oven can hold. The oven will close
its doors and begin processing its contents when
capacity is reached, or fill time is expiredÐwhich-
ever comes first. Note that both capacity and fill
time may be assigned small or large values, and so,
make the analyst's job easy or difficult. Second,
oven cook time (processing time) can be set to a
constant or it can be made variable. In so doing,
different situations can be defined for a function-
oriented learner. For example, if the teacher is a
form-oriented individual and delivers memory-
type information rather than relationship-type
information (which is the student's more preferred
type of information), the oven can be set to use
long fill times and small capacity to represent
capacity constrained situations.

Finally, the flow of finishing_ completes the
learning task by taking each would-be-structure
from the stock of structures_to_form and
placing it into the stock of structures_in_
memory. The flow of finishing_ is under the
direct influence of the amount of the structures_
to_form and level_of_effort (not shown in the
diagram). In other word, acquisition of knowledge
is viewed as student effort-based activity as well.
The function-oriented type student acquires
knowledge when s/he puts effort into the learning
task over a certain period of time (as defined).

Feedback mechanisms
The same number of feedback mechanisms as

was discussed for the model of form-oriented
learner are included in the model. Similarly, two
of these loops have a major effect on the resulting
behavior of the learner. Also, as discussed earlier,
both of these loops act in parallel along the main
chain, running from the stock of relationships_
under_study to the stock of structure_in_
memory, and from there each diverts in a different
direction. For the sake of brevity, the material will
not be repeated here.

Behavior of the system
The behavior of the system is the same as dis-

cussed in the previous section for the form-oriented
learner. By assigning initial values to each of the
stocks and converters, the simulation model may
be run. The initialization values could be defined
and assumed in the same way as described in the
List of Equations for the form-oriented learner
(Appendix). The time horizon for the model is
assumed to be 45 minutes, that is, the length of a
regular class lecture.

The only main difference between the two
models is the nature of the pieces of information
that is flowing through the main chain. In the case
of a form-oriented learner, the nature of know-
ledge was based on the hooks of information. In
contrast, in the case of a function-oriented learner,
the nature is based on the structures of informa-
tion. The STELLA model has properly taken

care of this difference. The use of a conveyor-
type stock in the form-oriented case and an oven-
type stock in the function-oriented case, account
for this major difference.

ASSUMPTIONS AND SIMPLIFICATIONS

The proposed form-function model of teaching/
learning in this study is the first attempt in a chain of
models that may evolve from this study later. The
structure of the present model provides a principal
backbone for the future models that necessarily will
have more complicated components and linkages.
However, while the present model includes all the
major variables of a teaching/learning process, it is
founded on a few assumptions to maintain its
simplicity at this stage. These assumptions as well
as simplifications are as follows:

1. Because of the imprecise non-physical nature of
a teaching/learning process, any attempt to
model this process in a quantitative manner
must be influenced by the subjective experi-
ences, backgrounds, and beliefs of the modeler.
Therefore, in the system dynamics model pre-
sented here, one must expect a degree of sub-
jectiveness in the selection of variable values
used in the equations. The values are based on
the `best judgment' of the authors. Clearly, any
other researcher might end up with a different
set of values. This in no way invalidates this
work.

2. Since modeling is an emerging process, any
`model' represents only one of a sequence of
models, that provide insight to the situation and
form a basis for continued evolution. The
model worked on in this study is presented in
this spirit. This model is to be viewed as a
vehicle that can be used to identify the impor-
tant dimension of form-function orientation
for implementing policies and tracing the
resulting behavior of a teaching/learning
process.

3. The focus in the proposed model is mainly on
the learner or learning side of the system. The
reason can be seen in the fact that the two
other sides of the system (teaching system and
subject matter) have complementary roles in a
teaching/learning system and serve the learning
side. Hence, the characteristics of the teacher
system and the subject matter are not defined
and detailed like the learning side in the pro-
posed model. Each of these sides should be
detailed and worked out in a sub-model with
its characteristics' constituents.

4. The obtained results are valid only for the
particular student under the conditions and
limitations defined in the boundary of the
system. Each individual student, whether
form-oriented or function-oriented, has his or
her particular traits that in similar situations
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may give or not give rise to identical pattern of
behavior.

5. The only student's task value that is represented
by a stock-flow combination in the proposed
model is interest_in_subject. The two other
major student's task values namely, interest_
in_use and interest_in_grade have been
introduced by simple converters. Although, it
is assumed that these two values remain
constant during the time of study (i.e., during
a 45 minutes normal lecture), nevertheless, this
assumption is not so far from reality. Consider-
ing their negligible change in short-term, these
values can not vary much to any extent during a
limited lecture period.

6. Also, all of the other values (pride in future
profession, self-worth, security in future job,
social obligation, association of the task with
something one likes, choice of subject, and
bandwagon effect) are presented with a single
converter (other_values). Each of these
values is a complex variable that demands to
be defined separately and be assigned an
appropriate weight factor. Needless to say,
some of these variables have reciprocatory
inter-relationships with each other.

7. Willingness_, despite its complexity, also has
been represented by a single entity. This major
learning driver should be demonstrated in
its own stock-flow combination. To reduce
the weight of this inadequacy in the present
model, willingness_ is defined as a graphical
function and is represented by a graph that
is a function of changes in the student's
expectancy_.

8. Only two external reinforcement factors,
quality_of_teaching and testing_ (method
of assessment) have been defined in the model.
The other five factors (institutional factors,
nature and content of the task, feedback from
the teacher, satisfaction with the university, and
interpersonal relations) are represented by a
single converter (other_reinforcers). In a
more complete model of teaching/learning,
these factors should be represented by separate
entities. Also, the interactions between the
reinforcement factors themselves have not
been shown (i.e., effect of quality_of_
teaching on testing_ and vice versa). How-
ever, the effect of these interactions in the short
term (during a lecture period) is minor and may
be neglected.

9. `Knowledge' is the sole content of all of the
flows and stocks that are located on the main
chain of the model. It is assumed that the unit
of knowledge taking, knowledge processing,
and knowledge storing for a form-oriented
learner is well represented by `hooks of
information.' On the other hand, the unit of
knowledge taking, knowledge processing, and
knowledge storing for a function-oriented
learner is assumed to be well represented by
`structures.'

Other miscellaneous assumptions and simplifica-
tions that have been made include but are not
limited to: absence of some environmental vari-
ables in the model; continuity of testing_; intro-
ducing productivity_ (that seems somehow in
conflict with the basic concept of productivity);
availability_ (that does not seem to be a perfect
term for the concept it represents); simple
approach to the definition of amount_learned
and some other minor items.

SUMMARY AND CONCLUSION

The modeling effort made on the learning
process in this study is a unique combination
of educational metrics and engineering simula-
tion programs. On the one side, the work
consists largely of inferences drawn from avail-
able educational experience and viewpoints with
an absence of a defensible, universal mechanism.
On the other side, it heavily relies on a series of
activities drawn from a methodology of system
dynamics to build a solid engineering framework
for the reinforcement and improvement of the
process.

The sensitivity analyses discussed earlier in
this study, demonstrate that the behavior of the
proposed model seems quite persuasive and
promising. At the same time, the four example
experiments attest the strength of the system
dynamics approach in predicting changes in
behavior of a learner due to using different
policy actions.

Two dynamic models of teaching/learning
worked out by this study are based on continuous
phase-type movement of information from the
issuing origins (different types of teaching
systems) to the receiving destinations (different
types of learners). The main result from the
models reveals that the advance knowledge
about the types of teachers and learners (form-
function orientations) warrants an efficient re-
engineering of the teaching/learning system. In
other word, the types of learners and teachers,
whether they are form-oriented or function-
oriented, has a major impact on the performance
of the system.

The important characteristic of the methodol-
ogy used here is its power to show the insight of
the system or the understanding of what is
happening in the system. As one can observe,
unlike methodologies that focus only on an ideal
future condition for a system, system dynamics
reveals the way one arrives at the present and
then, in a later step, the path that leads to
improvement.

The simulation tests described in this study,
determine which policies show the greatest promise
and how the study can work toward a consensus
for implementation of the policies. Influence of a
combination of two or more policies on the
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behavior of the system can be examined as well.
For instance, in the model of a form-oriented
student, a learner at prior-knowledge of 20 inter-
acting with a type_of_info of 10 (issued from the
teaching system) can be taken as an alternative
option. In general, by comparing the resulting
behavior of the learning system under different
options, the most appropriate policy or course of
action can be identified. This step would eventually
direct the study to the last step of system dynamics
[1]. In fact, this study is now at a position that can
make a conclusive statement related to the results
of the experiments. The conclusive statement will
clarify the standpoint of this study on how one can
implement changes in the policies and structure of
a teaching/learning system for the purpose of its
improvement.

One can thus conclude that: the base model for a
teaching/learning system and all of the experiments
performed by the study on the base model, were
strongly under the influence of the form-function
dimension of the learners and the teachers. This
dimension is so powerful that it has a primary role
in analyzing any teaching/learning process.

The intensive literature search by this study
bears witness to the many dimensions and aspects
that exist in the field of teaching and learning.
However, what this study has done is to highlight a
dimension that by itself takes into account all of
the other dimensions (i.e., lecturing, discussion,
demonstration, etc.).

Implications
This study can help decision-makers select a

performance parameter that will optimize a given
policy variable in a teaching/learning process.
The effect of system configuration (form-function
orientation of individuals) on the performance of
the system can be used to influence the design of
the system before the planning stage is imple-
mented. This information is critical in developing
an efficient system in both academia and industry.

For technical learning it is extremely important
that the learning structure emphasizes function-
learning orientation. The required degree or inten-
sity of the function-learning orientation for each
technical discipline may be considered as an inter-
esting area of research. The field of engineering
education has the necessary and sufficient capacity
for further investigation in this area. Besides, in
other fields, analysts and researchers have to find a
similar measure (or measures) regarding to what
extent the learning structure should emphasize on
form-orientation.

Lastly, with the discovery that this study has
made, it is predictable that the education and
industry sectors, in general, develop a more cost-
effective human resources strategy on the one side,
and higher quality products on the other side. The
challenge is that each organization starts from its
own employees and examines their form-function
orientations to specify whether they fit the nature
and requirement of their particular jobs or not.
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APPENDIX
List of equations
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