Int. J. Engng Ed. Vol. 15, No. 5, pp. 353-357, 1999

Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 1999 TEMPUS Publications.

Use of Simulator in Teaching Introductory
Computer Engineering*

DAVID EDWARDS

School of Engineering, Griffith University, Gold Coast Campus, PMB 50, Gold Coast Mail Centre,
Qld 9726 Australia. E-mail: d.edwards@mailbox.gu.edu.au

Microprocessor development systems are used in the teaching of computer engineering classes. As
standalone devices they have relatively high capital costs and complex modes of operation. Both
these features tend to limit their use in introductory level classes. It is in these classes that students
probably have most need of detailed assistance as they begin their studies of machine and assembly
language operations. Implementation of a software analogue of the system, a simulation, means
that each student has easy access to their own development system. Enhancements in software can
be added that aid the learning process. The use of a simulator allows students to undertake more
complex and real world related exercises than would otherwise be the case. To date a simulator has
been developed for the Motorola 8-bit microprocessor and development system currently in use in
the undergraduate laboratory. This is being extended to include the Motorola 68HCI11 8-bit
microcontroller in the MIT Handyboard environment. Investigations have shown that the teaching
and learning process is enhanced by the added features: the ability to see register contents after
each operation, the ability to single-step through a program, the ability to execute instructions
considerably more slowly than with a real hardware system, the inclusion of integrated debugging
and trace facilities, and the inclusion of an integrated editor assembler. Evaluation of the present
tool has been undertaken. Students have responded favourably to the use of the simulator.

Suggestions for enhancements have been made.

INTRODUCTION

COMPUTER ENGINEERING is introduced in
the first semester of the Bachelor of Information
Technology (BIT) as well as being in the second
year of the microelectronics strand of Bachelor
of Engineering (B.Eng.) through a subject
entitled ‘Microprocessors’. This subject has an
enrolment of 75. Within the subject students are
introduced to the concepts of a microcomputer
and a microprocessor development system.

The subject forms a foundation for further
computer engineering studies for the BEng
students. For the BIT students the use of simple
development system monitor routines introduces
the functional requirements of operating systems;
the use of a simple assembler introduces con-
cepts of compilers used in later courses. The
constraints of assembly language programming
introduces students to the need to carefully plan
and document programming tasks.

The laboratory component of the subject is
based on the Motorola MC6802 8-bit micropro-
cessor in the Motorola D3 Development System.
The Development System is memory sparse. It
includes only 256 bytes of user memory, a hex
keypad for program and data entry, and a multi-
plexed eight-character seven-segment LED display
for output. The system comes with a monitor
routine D3BUG in 2K of ROM. The monitor

* Accepted 20 May 1999.

353

includes subroutines that may be accessed to
allow user programs to read from the keyboard
and write to the display.

EaSim (Editor/assembler and Simulator) is an
integrated assembly language editor/assembler and
simulator for the MC6802 microprocessor running
in the D3 development system environment.

WHY EASIM?

The assessment for the subject includes the
requirement for the students to develop, imple-
ment and demonstrate programmes that read data
from the keyboard, output to the display and
respond to interrupts.

A simple hardware microprocessor development
system is a relatively unfriendly environment for
software development. The lack of any feedback
as the programme is running makes debugging
extremely difficult for novices.

A decision was taken to implement a compu-
ter simulation of the development system that
would enhance the software system development
process as well as lead to a better understanding
of the operation of a microcomputer. At the
time the project was started there was no simu-
lator for the MC6802 available. Today there are
many microprocessor simulators available.

The special feature of EaSim, differentiating it
from other simulators, is that it simulates the
operation of the microprocessor in a real hardware

354 D. Edwards

environment. The commercial simulator for the
68HCI11 from Vmdesign also does this [2].

To give these students adequate development
time on a hardware-based system would require
an expensive outlay for development systems and
laboratories to house them. Using a simulator
allows tutorial/laboratory classes to be taken in a
computer laboratory. Students enrolled in the
microprocessors subject are permitted to make a
copy of the programme for use on their own PC.
This considerably reduces the demand for com-
puter laboratory access. For the last three weeks of
the subject students are given access to the hard-
ware development system to test the operation of
their assigned tasks under the hardware timing
restrictions.

STUDENT ASSESSMENT

The assessment for this subject includes exam-
inations covering the theory plus assignments
involving assembly language programming. The
main assignment involves designing and imple-
menting a programme to run on the D3 hardware.

In 1997 for example, the main assignment task
was to organise the display of the message (CAFE)
on the eight 7-segment LED displays. The message
was to appear from the left and slide across the
display at a specified rate. Once the message had
disappeared it was to reappear from the left. When
an interrupt button was pushed the message was to
flash on and off next time it was centred. The
number of times it was to flash was entered from
the keyboard at start-up. A second press of the
interrupt button was to cause the direction of
‘rotation’ of the message to reverse.

Two earlier assignments were wholly simulator
based involving sub-tasks of this assignment. As
students are given all three assignments tasks at
the beginning of the subject, they could see the
relevance of the simplified early tasks.

All assignments are assessed in two stages. The
running program is demonstrated and marked for
achievement of specifications in lab/tutorial time,
then the write up is assessed separately. The use of
a printed marking sheet/marking scheme, means
the 80 students can be assessed for an assignment
in 4 hours of lab/tutorial time and about 3 hours of
report marking time.

A teaching problem with microprocessor
programming assignments is to keep the level of
complexity low enough to allow all students to
achieve the task while making it non trivial for the
better students. In the subject this is achieved by
having a base task with bonus features to be
implemented if students wish to achieve higher
grades. The subdivision of the task into three
consecutive assignments allows early assignments
to be set with simple requirements which build into
the more complex final task.

THE HARDWARE SIMULATED

The MC6802 is an 8-bit microprocessor running
at a 1 MHz clock speed. It is an early generation
device in a microprocessor family that includes the
68HC11 microcontroller. It has two 8-bit data
accumulators, an 8-bit status register, and three
16-bit address registers: program counter, stack
pointer and index register.

Although the microprocessor is old technol-
ogy, it is upwardly software compatible with the

l Page 00 Addressing #0000 tvo $00FF -

04 05 06

03 0a

00 >09 26
F9 64 97
Cée 04 96
06 63 05
CA 26 03
cC oo e

a0 =2
00 00
F9 &4
ol 0D
€3 03
0S5 DE

Fig. 1. Memory Display showing PC location > and SP location <. Memory contents shown in feint are random, switch-on values,
and have not been set by the user. Memory contents shown in bold have been affected by current instruction.

Use of Simulator in Teaching Introductory Computer Engineering

industry standard 68HCI11 microcontroller. The
limited amount of user RAM for data, program
and stack is seen as an advantage for an intro-
ductory course. It forces students to be concise in
their code, and makes them very aware of the need
to structure data, code and stack space. This in
turn encourages the student to undertake very
careful design and desk checking before coding.
The display is time multiplexed; with each run
through of the display routine a single digit is
flashed. To stop the LED display from going
out, the display routine must be run through at
least 8 x 25 =200 times a second. This need to
service hardware requirements is a common
requirement in a real embedded application.

SIMULATOR DEVELOPMENT

The simulator is a PC-based program, the devel-
opment of which has been a semi-continuous
process over the last 13-14 years. The original
version was written as DASM, an editor/assembler
for the MC6802, and SIMUL-02, the D3 simulator
programme, while the author was with the Univer-
sity of Southern Queensland. These programmes
were originally written in Turbo Pascal Version 2
to run in a CP/M-86 environment. They were later
modified to run under DOS on IBM PCs. In later
years a screen editor was added and the two
programmes combined into the one package.

For 1997, the Griffith University’s general
access computer laboratories, where tutorials and
early laboratory classes were taken, stopped
supporting DOS applications. For that year, the
simulator was completely rewritten as EaSim, a
Windows package in Delphi.

SIMULATOR FEATURES

The simulator has always been designed to
enhance the learning process. Right from the
earliest trial, it was decided to display information
that would help students understand the operation
of a microcomputer. All data is shown in hexa-
decimal. This is the format used by the D3 system
for keyboard entry and for LED display.

In addition to showing the contents of each
memory location in RAM, the microprocessors
register contents are always on screen. Facilities

355

exist for executing a programme step by step or
letting it run. When a programme step, instruction,
is executed, the microprocessor register contents
are all updated appropriately. Any registers that
have changed are highlighted. Any data that is
written to memory by the instruction is shown
highlighted.

EaSim simulates the operation of the 6802
microprocessor in the D3 environment. All of the
6802 instruction set, the D3Bug monitor routines
that deal with input and output, the operation of
the keyboard and the LED display are simulated.

In addition to the simulator for the D3 environ-
ment, EaSim contains an integrated editor and
assembler for the 6802. The integrated editor and
assembler allows programs for the D3 to be devel-
oped as assembly language programs and tested
in the simulated D3 environment. Machine code
can be directly entered into the simulated D3
environment if desired.

A download feature allows developed code
from the simulator to be loaded into the D3
development systems for real time testing.

Enhanced features of the simulator

The EaSim simulator has a number of enhance-
ments over the actual hardware D3 Development
System.

A feature of the display is that the hexadecimal
contents of all 256 bytes of user RAM are always
visible. Values set by the user stand out from initial
switch-on values. As a program is executed, the
contents of any memory location written to by an
instruction are temporarily highlighted.

As shown in Fig. 1, the current location of the
program counter is shown against the memory
location as >. The current location of the stack
pointer is shown against the memory location as <.

An option allows the display of the contents of
the system RAM buffers used by the I/O monitor
routines, these include the keyboard input buffer,
the hexadecimal data display buffer, the 7-segment
display codes output buffer, and the interrupt
vectors. Only those system RAM locations
students should be accessing are displayed. The
hidden locations are shown as ‘..’

The microprocessor register contents are
continuously displayed. The status register is
decoded to the six status flags and either of the
two 8-bit accumulators can be displayed in binary
as well as hex. As the program runs, the status

i

2100

8110

8120
8130

00

00

00

00 00 00

2C
00

02
20

Fig. 2. Part of system RAM area display.

356 D. Edwards

f
.
Ee
=
§

Status DO

HINZYC
11010000

Fig. 3. Microprocessor register display.

flags that are affected by an instruction are high-
lighted, as are the contents of any register affected
by the instruction.

A number of options to facilitate debugging are
included. As each instruction is executed, the
disassembly of the instruction is shown.

A debug option relates the microprocessor
operation back to the assembly language source.
As each instruction is executed the instruction is
highlighted in the on-screen assembler listing.

A trace facility allows the viewing of the most
recent instructions executed. This trace can be
printed out.

The execution speed of a machine language
program can be varied. The program can be
stepped through one instruction at a time. Alter-
natively the program can be set to execute until
conclusion, or a breakpoint, at a speed adjustable
between 0.5 and 20 instructions per second. This
speed is determined by the Windows clock, so the
speed is PC speed independent. A further option
allows the program to run as fast as the PC
permits.

There is extensive on-line help for the assembler
and simulator parts of the programme. This
includes the full microprocessor instruction set, a
description of hardware of a D3 system, and a
description of the operation of the I/O monitor
routines.

STUDENT FEEDBACK

Informal feedback from students and fellow
staff had led to a number of refinements of the
DOS based programme.

7 DISNMI EQU $FBkd
8: ENNMI EQU $FBAF
a: GET EQU $Fo64
1a: ORG $0020
11: *

12: 0020 CE 00 08 LDX #0006

Fig. 4. Current instruction linked back to assembler list file.

The introduction in 1997 of the Windows
version of the programme was used as an oppor-
tunity to undertake a more formal evaluation.
Students were surveyed by questionnaire at the
midpoint and the end of the subject. A summary
of relevant student responses is included in the
Appendix.

Both evaluations gave a very positive response
to the use of the simulator programme. The major
negative response related to the speed of operation
of the simulator. The restriction to 20 instructions
per second was felt to be too slow for the later
assignments and they took too long to execute. An
option was added to the speed control to allow the
programme to run at a platform-limited speed.

A more major problem was that the simulator
runs at an unrealistically slow speed compared
with the real hardware. As the real hardware
runs at around 250,000 instructions per second,
the simulator is operating at 0.01% of that speed.
This makes setting up the display on the D3 more
difficult.

A further negative response was that the simu-
lator does not simulate correctly the operation of
the 7-segment display. (The multiplexed D3
display strobes a character on for 1 ms each time
through the display routine. To keep the display
illuminated, the display routine must be executed
at least 8 times every 1/25 of a second.) Various
options were tried, but there appears to be no easy
solution to this problem.

In the survey, students reported that they made
little use of the extensive Help that was provided in
the package. As students were shown how to use
the package in tutorials, it may have been a case of
‘if all else fails, read the instructions’.

SIMULATOR DETAILS

EaSim was written in Borland Delphi 1. It can
be run on any PC under Windows, Windows 95 or
Windows NT. The program has been developed to
run on as wide a range of PCs as possible. To
facilitate this, the screen size is set to 640480. This
facilitates running on student laptops.

Executable code size is 427 kilobytes. The Help
files are a further 292 kilobytes. The Help files,
written using the HDK authoring package, utilise
a dynamic linked library hdkents.dll to give
enhanced tables of contents.

A demonstration version of EaSim is available
by e-mail from the author.

All files created by EaSim, the assembler source
file, the assembler list file, the assembler symbol
table, the object code, are plain text files. Students
can either print these out or import them into a
word processor for ‘polishing’ for assignments.
The simulator screen and the trace file can also
be printed out.

As there is quite a lot of detail on the screens,
there is a separate Instructor’s Version of the
program for use in lectures. This uses a larger

Use of Simulator in Teaching Introductory Computer Engineering 357

font and rearranged screen layouts to facilitate
reading from video projected images.

FURTHER DEVELOPMENT

EaSim is in the process of being updated to
cover the 68HCI1 microcontroller running in
the MIT developed Handyboard development
environment. This product is in beta test mode.
It will be used in teaching the Microprocessors
subject in 1999.

This version has simulated analogue and digital
inputs as well as digital outputs.

CONCLUSION

EaSim is an integrated editor/assembler simu-
lator package that has proved very useful for
introducing students to microprocessors and
microprocessor programming. Further develop-
ment to encompass the 68HCI11 will extend the
usefulness to more complex tasks.

Acknowledgements—The author would like to acknowledge the
assistance provided by his colleagues in the development of
the EaSim package. Charles Hacker in particular developed the
keyboard entry routines, the download to the D3 hardware and
assisted with general debugging. Nicholas Edwards provided
invaluable assistance with Delphi programming.

REFERENCES

1. M6800 Microcomputer: System Design Data, Motorola Inc., 1976.
2. http://www.vmdesign.com/universal simulator
3. http://www.samphire.demon.co.uk/8086

APPENDIX

Student evaluation summary
A formal evaluation of student perceptions of EaSim was undertaken in the year of introduction. During
this year many versions were released as bugs introduced by the switch to the Windows environment were
found and fixed. A number of pre-existing bugs in terms of the simulation of some 6802 opcodes were also
found and fixed.
Students were asked to indicate there agreement with a number of statements on a modified Lickert 5
point scale ranging from 5 (strong agreement) to 1 (strong disagreement)

Question SA S N D DS Av
EaSim enhanced the learning environment 12 26 4 4.2
Simulator makes it easier to understand pP workings 13 20 7 2 4.1
EaSim makes programming assignments easier 16 18 5 2 4.1

The students also indicated that 97% of the class had access to their own computer off campus. 100% of
the class said they used the simulator program off campus.

When asked to state the best feature of EaSim, the universal answer was the visibility of the memory and
register contents

When also asked to state the worst feature of EaSim, two main complaints were raised. These were the
lack of examples in the Help files and the poor simulation of the LED display in terms of speed.

David Edwards holds a B.Sc. in Physics from University of New South Wales, Australia and
an M.Sc. in Meteorology from the University of Reading, UK. His interests lie in flexible
delivery of engineering subjects and the use of multimedia to support the teaching and
learning environment.

He was the foundation dean of the Faculty of Engineering and Applied Science on the
Gold Coast campus of Griffith University. He is presently a senior lecturer in the School of
Engineering and the Shared resource Co-ordinator for the Faculty of Engineering.

