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The Use of MathCad in Teaching Ideal
Fluid Flow with Complex Variables*

MICHAEL REX MAIXNER

Maine Maritime Academy, Castine, Maine ME, USA. E-mail: mmaixner@bell. mma.edu

The use of MathCad for the visualization of two-dimensional, irrotational, steady, incompressible
flow patterns is discussed, along with the appropriate mathematical background. MathCad's
contour plotting capabilities and its ability to handle complex numbers permit rapid depiction of
basic flows and linear combinations of these flows with relative ease, allowing students to
concentrate on understanding the material and broader concepts. Sample output, recommended
lecture topics, and suggested topics for further study are presented, and the address of a web site
containing a prepared lecture is provided (http:/lwww.mathsoft.comlappsindex.html).

NOMENCLATURE

cylinder radius
complex function used in definition of
Milne-Thompson circle theorem (see text)
= ¢ + inp, complex potential

dF

= — = u — iv, complex velocity
dz

= u+ 1y, velocity

[ = +/—1 (Note the carat (*) atop the letter
i to differentiate it from the letter i when
employed as a subscript or index.)
index associated with x-direction

index associated with y-direction
number of subdivisions in x- and y-
directions

array of source and sink strengths in von
Karman problem (see text)

= |z] = v/x? + »2, modulus of position
in the complex plane

magnitude of free stream velocity
velocity in the x-direction

velocity in the y-direction

= |F'| = |F'|, magnitude of velocity
real component of position in the
complex plane

array of source and sink locations in von
Karman problem (see text)

imaginary component of position in the
complex plane

= x + iy = re’, position in the complex
plane

orientation angle of free-stream relative
to positive x-axis

orientation angle of doublet relative to
positive x-axis

vortex strength

angle of position in the complex plane,
measured counter-clockwise from posi-
tive x-axis
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source (or sink) strength
doublet strength

= Re(F), potential function
= Im(F), stream function
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INTRODUCTION

FLOW VISUALIZATION has been an invaluable
tool in the study of ideal and real fluid flows,
providing a synergism that allows the student to
gain an understanding not only of the phenomen-
ological aspects of the flow, but also of the under-
lying mathematics. Detailed analysis of these flow
visualizations permits not only the streamline and
equipotential patterns to be obtained, but also the
location of critical points in the flow, such as
stagnation points. Numerous methods of flow
visualization exist, and include electric analogs,
experimental  techniques (hydrogen bubble
method, smoke tunnels, aluminum flakes sprinkled
on the surface of dye-colored water, dye injection,
etc. [1, 2]). Given the requisite time and patience,
qualitative sketches of potential flow patterns
provide additional insight into the underlying
physics. A natural outgrowth of sketches is the
use of computer graphics to assist in these visual-
izations, but early attempts at the use of computers
for this purpose were generally limited to main-
frame machines with, eventually, time-sharing
workstations with graphics terminals [3-6]. More
recent developments in flow visualization with
personal computers are provided in the references
[7-9]. MathCad, a relatively inexpensive and read-
ily available calculation software product, com-
bines an excellent contour plotting capability and
the ability to perform calculations with complex
functions. This makes it an extremely powerful
tool in the visualization of ideal fluid flow patterns
by individual users on personal computers.
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Students with a background in basic fluid
mechanics and complex variables are quickly able
to obtain plots of streamlines and equipotential
lines.

At Maine Maritime Academy, the course
‘Numerical and Computer Methods for Engineer-
ing Design’ (Es490) is taken in the spring term of
the third year of a five-year marine engineering
systems curriculum. Prior to that, students have
had basic courses in fluid mechanics and struc-
tured computer programming, and will also have
been introduced to complex variables. Es490 also
follows an introductory design course, and is
taken in conjunction with an intermediate design
course. The course provides students with a variety
of numerical methods and techniques (numerical
integration, differentiation, finite difference
methods, interpolation, curve fitting, solution of
differential equations and systems of differential
equations, etc.) that may be used throughout
the remainder of their curriculum, including the
two-semester capstone design sequence taken in
the fifth year. Excel spreadsheets, QBASIC,
and MathCad are utilized to complete a variety
of problems (structural, electrical, fluid mech-
anics, optimization, aerodynamics, heat transfer,
etc.).

As part of this course, students receive
instruction in the representation of ideal fluid
flows as a complex function whose real and
imaginary parts are, respectively, the potential
and stream functions. Following this basic
instruction and several examples, students are
required to solve problems involving linear
combinations of these potential flows, to draw
elementary conclusions from these representa-
tions, and, in general, to recognize the power
of this method, especially when used in conjunc-
tion with boundary layer methods at fluid-
structure interfaces. The prototype of this
instructional method was employed in the
early 1980s by the author when on the faculty
of the Department of Mechanical Engineering
at the Naval Postgraduate School in Monterey,
California. At that time, an IBM 360 main-
frame was required to run the program, with
students utilizing time-sharing stations and separ-
ate Tektronix graphics screens to view the flow
patterns. With the advent and proliferation of
personal computers and software since then, the
same capability is now available on desktop and
laptop computers. The intent of this instructional
package (originally at the Naval Postgraduate
School and in its current incarnation at Maine
Maritime Academy) was to relieve students of
the laborious plotting associated with flow visual-
ization. The student is thus able to investigate
many more combinations of basic potential flows
and, consequently, obtain a better understanding
of the subject matter. It is this method and its
specific implementation in Es490 at Maine Mari-
time Academy with which the remainder of this
article is concerned.

BACKGROUND

Students who took the pilot version of Es490 in
the fall of 1998 and spring of 1999 were required to
purchase the student edition of MathCad, version
7. The professional edition of MathCad was also
available for both classroom instruction and after-
hours use on the local-area network. The topic of
potential flows is presented in the latter part of the
term, so students will already be familiar with
MathCad when this subject is reached.

A detailed lesson plan file in MathCad work-
sheet format is provided to all students to follow
along during the lectures and to use as a study
guide. A copy of the lesson plan may be obtained
through the MathCad web site or directly from the
author by e-mail. Due to the number of illus-
trations embedded in the lesson plan and the grid
size used for illustrations, it is recommended that
the program be run on a computer with at least a
Pentium processor, otherwise the refresh times for
successive screens becomes excessively long. Alter-
natively, the grid coarseness may be increased by
reducing the number of grid points (see next
section) with a concomitant reduction in graphic
quality.

The background for this topic may be found in
various mathematics [10,11] and fluid mechanics
[12] texts; many of the details are omitted here for
the sake of brevity, but may be found in the lesson
plan placed on the MathCad web site. Instruction
begins with a review of the basics of complex
number theory, whereby an imaginary number, z,
may be represented in either rectangular (x- and y-
components) or polar (r- and f-components):

z:x+;’y:re;9:r(0059+fsin0) (1)

where 6 = arctan (y/x).

For the two-dimensional, irrotational, steady
flow of an incompressible fluid, the u- and v-
components of velocity (in the x- and y-directions,
respectively) are related by the Cauchy-Riemann
equations:
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(2)

where ¢ and 1 are, respectively, the equipotential
and stream functions for the flow; they are ortho-
gonal, and give rise to the complex potential
function:

F(Z) = (b(xay) +2¢(x7)’> (3)

Most students readily grasp the significance of a
streamline (a line of constant ) and recognize
that there can be no velocity normal to a stream-
line. The concept of an equipotential (a line of
constant ¢) is usually not as easily mastered, and
must be reinforced through the correlation of the
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Cauchy-Riemann equations with plots of equi-
potential lines in ideal flow patterns.

The student is then shown that the complex
velocity may therefore be obtained from:
_dF _OF 0 0

+i—=u—1iv (4)

Foy=%_% _
O = =ax"ax T on

MathCad’s built-in derivative function may be
employed in this last equation. Note that in
order to obtain the actual velocity, we must take:

Fl(z)=u+iv (5)

Finally, the magnitude of the velocity may be
obtained from:

V) = PG = FG) = [F - F|"? = 2 +)"
(6)
DISCRETIZATION OF FLOW FIELD

Prior to displaying any of the more interesting
potential flows, a grid must be established, with the
grid intersections being the points at which ¢ and v
will be calculated. A grid is employed with x and
y each bounded by +1.5, with the domain sub-
divided into a number of rectangles in the x- and y-
directions. All grid points are then offset slightly
by the same amount X,pe, = Yogser = 0.0001;
should the user decide to place a singularity at,
say, z = 0 4 i0, (a common choice), then calcula-
tion will not be performed ‘at’ the singularity. This
shift is essentially transparent to the user from this
point on. An equal number of grid points is
utilized in each direction, with indices in the x-
and y-directions, respectively, of i =0 — n and
j =0 — n; with n = 25, this gives, in all, (n + 1)* =
676 points in the plotting area. MathCad’s default
index counter is set to 0 so that all vector and matrix
subscripts begin with 0; the grid point corres-
ponding to i = 0, j = 0 is situated at the lower left
corner of the plotting area.

The complex offset z,,, and complex grid-
points z;; are defined as:

Zoffset = Xoffset + ;yoﬁ’set (7)
X; = Xmin + L\ ¥max 7 Ymin) (xmaxn_ Xiin)

j' (ymax - ymin)
n

Zij = Zoffset + (X,‘ + ;y])

Yj = Ymin +

(The choice of z,p., and the grid size (i.e., n) may
result in large values of F(z), depending on how
close a grid intersection lies to the location of a
singularity. Since MathCad may arbitrarily select
the contour values, adjacent contours may then
appear very dense or very sparse. The user may be
required to make judicious choices of n and the
location of singularities to produce suitable
contour density.)

Once the grid is established and v and/or ¢ are
evaluated at each grid point, MathCad’s contour
plotting capability is used to plot ¢ or ¢. MathCad
performs a linear interpolation between gridpoints
to establish contours of the quantity being plotted
(either ¢ or 1)); the ¢;; or 1)y are stored as a matrix
of equally spaced values, without reference to the
coordinates at which ¢ or ¢ are evaluated. The
default plotting limits for grid positions are
—1 <x<land-1<y<1,and must be changed
by the user to reflect the values previously chosen
(i'e" Xmin S X S Xmax and ymin S y S ymax)-

Version 7 of MathCad limits the user to one
contour plot per graph. If, instead, two contour
plots were allowed, then lines of constant ¢ and
lines of constant ¢ could be viewed on the same
plot, thereby illustrating the orthogonality of these
two functions. Instead, the user must plot ¢ and
on separate graphs; if placed in close proximity to
one another, though, the orthogonality is readily
discernable. MathCad Version 8 has enhanced
three-dimensional and contour plotting capabil-
ities, which allow the plotting of two sets of
contours on the same graph.

BASIC FLOWS

With the preliminaries out of the way, the
student is now introduced to the basic potential
flows.

Free stream

A free stream of magnitude U, and inclined at
an angle to the positive x-axis of « will have the
potential function:

Fpeestream(2) = Upze ™ (8)

Recalling that ¢ is the real part of the complex
function, and that ¢ is the imaginary part, we
have ¢i,j = Re(Fffeesrream(Zi,_j)) and wi,j =
Im (Fjicestrean(2i)). In the lesson plan, items such
as o and U, are included in the text as ‘math
regions’ so that they may be varied as desired. In
fact, the student is encouraged to do so, and to
examine changes in the output — this is the real
benefit of a program such as MathCad. As a
consequence of the Cauchy-Riemann equations,
the streamlines and equipotential lines are ortho-
gonal for all potential flows and for all linear
combinations of these flows. MathCad allows
various modifications to the contour plots, includ-
ing colors or shades of gray between successive
contours, automatic contour plotting, choice of
numbers of contours, etc. Figure 1 depicts the
equipotential lines and streamlines for a free
stream of magnitude U, = 1 and « = 7/3.

SourcelSink
The complex potential for a source is given as:
Fiource(2) = iln(z — Zsource) 9)
source - 271_ source
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Fig. 1. Equipotentials and streamlines for free stream of strength Uy = 1 and « = 7/3. Note the orthogonality of the two plots.

A sink is merely a source of negative strength. In
Fig. 2 the equipotential lines and streamlines are
plotted for a source of strength of A\ = 27 and
located at z,... = 0, using the relations ;; =
Im(Fsource(Zi,j)) and ¢i,j = Re(Fsom‘ce(Zi,j))~ Notice
that the streamlines all emanate from the origin
of the source, and that the equipotential lines and
streamlines are everywhere perpendicular. Note
also the concentrations of the streamlines along
the negative x-axis — this is the location (within
MathCad) of the so-called Riemann cut; the value
of ) jumps by a value of 27 as the Riemann cut is
traversed.

Doublet

A doublet is formed when a source and sink of
equal magnitude are brought together, maintain-
ing the product of strength and separation at a
constant value. In the limit, as the separation
between the source and sink tends towards zero,
a doublet of strength p will result with an orienta-

™,

o—

4) source

tion relative to the positive x-axis of angle 3 (fluid
emanating from the doublet on the side originally
occupied by the source, and fluid entering the
doublet on the side originally occupied by the
sink); the complex potential is given as:

—u e—?ﬂ

B 10
27T(Z - Zdouh/et) ( )

Fdoublet (Z) =

Equipotential lines and streamlines for a doublet at
the origin and with strength = 27 and orientation
(§ = 7 are depicted in Fig. 3.

Vortex

For a vortex of strength T" (a positive value of T'
results in a counter-clockwise velocity), the
complex potential is:

—ir

FVO"lé’X(Z) = ﬁln(z - Zvurtex) (11)

v source

Fig. 2. Equipotentials and streamlines for source of strength A = 2.
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Fig. 3. Equipotentials and streamlines for a doublet of strength y = 27 and orientation 3 = .

Figure 4 depicts the equipotentials and streamlines
for a vortex of strength I' = 27 situated at the
origin. At this point, students are shown how the
equipotentials for a source are analogous to the
streamlines for a vortex, and vice-versa; this is due
to the fact that their complex potentials are similar,
differing only by a factor of —i.

COMBINATIONS OF BASIC FLOWS
‘Bathtub’ vortex
By combining a sink and a vortex, the following

complex potential results:

ir

A
Fbathlub(z) = - ﬂln(z - Zsink) - Zln(z - Zvortex)
(12)
Choosing A =T = 27 and Zg,k = Zyorrex = 0, @ plot

of the streamlines for this flow (Fig. 5) shows that
the streamlines spiral, with the flow directed
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toward the origin. Were a source used instead of
a sink, the flow would spiral outward from the
origin, much as is obtained in a centrifugal pump.

Aircraft trailing vortex system

When two vortices of equal magnitude, opposite
sign, and located at z; and z, are combined, the
following complex potential results:

Fry(z) :—;F In(z —z1) —In(z — z3)] (13)

2
—_;Tln z— 2
T 2w zZ— 12

Figure 6 depicts the streamlines obtained from two
such vortices of magnitude 27 and situated z = +1.
In fact, what this situation represents is the flow
pattern exhibited by a lifting wing, with a trailing
vortex emanating from each wingtip. The vortices
are ‘images’ of one another, and result in a plane of
symmetry at mid-span (x = 0), where ¢ = 0.

N \/ /
BN

WV vortex

Fig. 4. Equipotentials and streamlines for vortex of strength I" = 2.
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V bathtub

Fig. 5. Streamlines for “bathtub” vortex.

The Magnus effect

In the early 1850’s, the Prussian army noted that
rounds fired from their artillery pieces were falling
long or short of the target, for no apparent reason.
Gustav Magnus [13] was given the task of investi-
gating this phenomenon. The bores of the artillery
pieces were rifled to impart a spin to the rounds as
they traversed the barrel to introduce stability to

the round after exiting the muzzle. Magnus discov-
ered that when the projectiles were subjected to a
crosswind in flight, the velocity on either the top or
bottom of the spinning projectiles (depending on
the wind’s direction) was augmented by the wind.
This resulted in reduced pressure on that side of
the projectile and a net force on the projectile in
that direction. This tended to either keep the

V trailing_vortex

Fig. 6. Streamlines resulting from aircraft trailing vortex system.
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projectile aloft for a longer time (low pressure
region on top) or a shorter time (low pressure
region on the bottom). It is this same phenomenon
which causes golf balls, baseballs, and other spin-
ning spherical objects to deflect in flight [14]. (See
the article by Swanson [15] for a more recent
discussion of this effect.) The power of complex
variables may be used to depict this region of
higher velocity for the two-dimensional, rather
than the three-dimensional case (i.e., the Magnus
problem of a spinning cylinder, rather than a
spinning sphere). This particular problem may be
easily handled with MathCad.

Consider the combination of a freestream of
magnitude U, = 1 oriented o = 0 (flow in the
positive x-direction) and a doublet of strength
27U, oriented § = 7 (in the negative x-direction)
and situated at the origin. This results in a cylinder
of unit radius whose surface is the locus of points
where ¢ = 0. Since there can be no flow through
the surface of the cylinder (i.e. no normal velocity
on the cylinder), the tangential velocity is the total
velocity along this surface. We will also include a
vortex of strength I" at the origin — this will later be
varied to investigate the effect of circulation on
the flow pattern. The complex potential that
results is:

. —iB A-F
day HC Dz (14)

Frpaonus(z) = U,
Magnus (2) o€ 2z 2w

With I' = 0, the resulting streamline plot is shown
in Fig. 7(a); stagnation points exist on the cylinder
at the intersection of the cylinder surface with the
x-axis. As the vortex circulation is increased to
I" = =27 (i.e. circulation in a clockwise direction),
the stagnation points move to locations on the
lower two quadrants of the cylinder, as seen in Fig.
7(b). Further increasing the circulation to I' = —4r
results in the stagnation points meeting at the
bottom of the cylinder, Fig. 7(c), and a further
increase results in one stagnation point moving
into the flow, and the other moving inside the
cylinder, Fig. 7(d)!

The region of more densely packed streamlines
on the upper surface of the cylinder corresponds to
a region of higher velocity since the free stream
velocity adds to the rotational velocity imparted by
the spinning cylinder. From Bernoulli’s theorem,
this is also a region of lower pressure, so that a net
force in the positive y-direction results. At this
point, a discussion of viscous effects and separ-
ation is appropriate, since the real flow would
separate from the cylinder somewhere in the first
quadrant (i.e. on the downstream side of the upper
surface). It is also instructive to plot the velocity on
the surface of the cylinder at several points for the
ideal (i.e. unseparated) flow. A device employing
this principle (a 26-meter high ‘turbosail’) will be
installed as a means of supplementing more
conventional means of propulsion on Calypso II,
the research vessel for the Cousteau Society — it is
anticipated that fuel savings on the order of 30 per

cent will be realized when compared to the fuel
consumption of a more conventional vessel of the
same size [16].

PROBLEMS FOR FURTHER STUDY

The basic flows and combinations thereof are
contained in the lesson plan posted on the Math-
Cad web site; the following constitute additional
problems which may be employed as homeworks,
projects, or to merely spark discussion.

Wing in ground effect

As an extension of the lifting wing problem,
consider an aircraft in close proximity to the
ground (i.e. during take-off or landing) [17, 18].
In addition to the plane of symmetry along the
centerline of the aircraft discussed previously,
there must now be another along the ground
since there can be no flow through that plane
either. The standard model of this is to add to
each wingtip (located at z; and z,) a vortex which
must have an image of opposite sign situated as far
below the ground (located at, respectively, z4 and
z3) as the wingtip vortex is above the ground. The
appropriate complex potential is;

—il', [(z=2z1)(z—z3)
Fer = 2r In {(2—22)(2—24)} (15)
The streamlines which result from a vortex
strength of I' = 27, a wingspan of 2, and an altitude
of one-quarter wingspan are depicted in Fig. §(a).
Since there can be no flow through the ground, the
horizontal velocity there is the total velocity.
If positions along the ground are represented in
complex number form and inserted in:

ngund(z) = '%FGE(Z) (16)

the velocities induced on the ground are obtained
as in Fig. 8(b). It can be seen that the maximum
induced velocities on the ground occur immedi-
ately beneath the real vortices. An additional topic
that may be discussed is the path taken by the
wingtip vortices after they are shed; the point must
be made that each vortex (real or image) cannot
induce any velocity on itself. Therefore, to calcu-
late the velocity of a real vortex, the resulting
complex potential must exclude the term corres-
ponding to that vortex prior to calculating its
velocity. The distance traveled by the vortex is
then obtained via an FEulerian scheme over a
suitably small time interval; the velocity is multi-
plied by the time interval, and this result is added
to the previous position of that vortex to update its
position. The other real vortex and the image
vortices move a similar distance, but symmetrically
relative to the aircraft centerline and the ground.
The resulting path, Fig. 8(c), is hyperbolic, with the
vortices moving toward the ground and outward.
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Fig. 7. Streamlines for flow about a cylinder with: (a) No circulation, with two stagnation points situated on x-axis; (b) Circulation of

intermediate strength I' = —27, with two stagnation points moving down and towards each other; (c) Critical circulation of I' = —4,

resulting in one stagnation point at the bottom of the cylinder; (d) Circulation of strength I' = —4.03x, with one stagnation point
moving towards the origin (inside cylinder) and the other in the flow moving away from the cylinder.

At this point, a discussion is appropriate of the
effect that the trailing vortices shed by a large
aircraft could have on smaller aircraft, and why
there can be a significant wait on the ground as
aircraft queue for take-off.

Von Karman problem

In the 1920s, Theodore von Karman was
contracted by the Zeppelin company to investigate
the pressure distributions on airship hulls. His
ingenious method of combining various singula-
rities to obtain the required airship body profiles,
although created for the axisymmetric case, may
be easily demonstrated with MathCad using com-
binations of the two-dimensional singularities

discussed above. For a detailed discussion of the
method, see References [19-22].

Von Karman’s method begins by placing a series
of sources towards the bow along the centerline
(i.e. the x-axis) of the body, and a series of sinks on
the centerline towards the stern. The body is
presumed to be operating head-on into a free
stream of magnitude U,. The sum of all sources
should equal the sum of all sinks, so that there will
not be any flow through the body. What is
required is the proper combination of source and
sink strengths and locations so that the body’s
outline is matched by the ¢ = 0 streamline.

A drawback of MathCad (before version 8) is
that no other plot may be superposed on a contour
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Fig. 8. (a) Streamlines resulting from aircraft in ground effect; (b) Velocities induced on ground; (c) Path of vortex shed from starboard
wingtip.

plot. (Version 8 of Mathcad supports multiple
plots of different types, as well as multiple contour
plots.) Consequently, an ellipse or other outline
which represents the airship hull may not be placed
on a plot, so that the ) = 0 streamline may be
compared to it as singularities are changed.
Instead, the student may be told to make the ¢ =
0 streamline touch certain points on the x- and y-
axes. Specifically, a combination of sources and
sinks situated in a free stream is required which
will place the ¢ = 0 streamline at y = £0.75 and x =
+1.25. An array Q containing the strengths of
three sources and three sinks is used, along with
an array X which contains the x-coordinates of the
singularities. These will be used in the complex
potential:

1
Fyk(z) = Uyz +E Z In(z — Xisource) (17)

isource

Figure 9 depicts the streamlines obtained from:

T 0.8 ] [—1.07
1.0 —-0.9
0= 09 and X = —08 (18)
-0.9 0.8
-1.0 0.9
| —0.8 ] L 1.0 ]

As the student varies any of the singularity para-
meters, the MathCad plot immediately updates
itself and provides instantaneous feedback
regarding the effect of each change. Outlines of
actual airships are, in fact, not nearly as blunt
as the outline depicted in Fig. 9; suitable choices
of source and sink locations and strengths in the
Q- and X-arrays could provide more realistic
shapes.
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Fig. 9. Illustration of von Karman’s method: two-dimensional free stream about a series of sources and sinks situated along the x-axis.
The streamline 1) = 0 represents the outline of the body.

Circle theorem

With the aircraft trailing vortex example, the
aircraft centerline was seen to be a plane through
which no flow passed; similarly, an aircraft in
ground effect also had no flow through the plane
that represented the ground. This technique is
referred to as the method of images, and is not
restricted to plane boundaries. In fact, Milne-
Thompson’s circle theorem [23] states that if the
complex potential f(z) represents a flow without
singularities for |z| < a, then:

Fo) =1 +7(%) (19

represents the same flow at infinity with a circle of
radius ‘a’ at the origin. (When used on a function,
the overbar notation f indicates that all complex
constants in the original function f are now their
complex conjugates.) In the case of a vortex situated
at z,.4 in the vicinity of a circular cylinder of unit
radius, the circle theorem gives the complex potential:

—il ir (1
F(Z) = ?ln(z — nga]) + Zln (E — Zrea[) (20)

Following a bit of algebra, this equation may be
recast as:

—ir ir 1
F(2) =5 G = 2rea) #5710 (z B er/)
ir LI
— 3z 45— In(—Zrea) 2y

Studying the right hand side of this last equation
reveals that the first term is the real vortex; the
second term is an image vortex of equal (but
opposite) strength situated at 1/Z,,; the third
term is a vortex of the same magnitude and sense
as the real vortex, but located at the origin; the
last term is a constant which ensures that the
locus of ¥ = 0 coincides with |z| = a = 1. Had
the last term been left off, there would still be a
circular streamline on |zl = « = 1, but its
value would be non-zero. It is a simple matter
to plot the resulting streamlines using either of
the last two equations in MathCad; additionally,
if the second equation is used, the change in
streamline values which occurs when the last
term is included or left out can be readily and
quickly observed.

Figure 10 illustrates either of the last two equa-
tions with I' = 27 and z,.,; = 1.2 + 1.2i; note that
the image vortex is located at Ziuuge = 1/Zreas =
417 + 417 on a line between the origin and the
real vortex. Students should be encouraged to
invoke the circle theorem for multiple vortices
to simulate the classic Karman vortex street, or
to verify the validity of the circle theorem when
applied to sources, sinks, and/or doublets.

Kelvin oval

Numerous other possibilities for further study
may be found in the references [24-26] or in the
current literature. As a final illustrative example,
though, the Kelvin oval is shown in Fig. 11. This
results from a vortex pair of equal magnitude and
opposite sign whose axis is perpendicular to an
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Fig. 10. Illustration of the circle theorem for a real vortex of strength I' = 2 situated at z = 1.2 + 1.2 in the presence of a cylinder of
unit radius centered on the origin.

opposing free stream, resulting in a complex poten- 27. It can be seen that this constitutes a recircula-
tial of: tion cell within the streamline ¢ = 0. In fact, if the
) vortices are brought together in such a manner

ir Z — Zupper that the product of their strength and spacing

F(z) = Uoz —27Tln< ) (22) approaches a finite value, a doublet results, just

. as was obtained from a similar source/sink combi-

where Zypper = 1/2, Zigwer = Zupper» Up = 1, and I' = nation. The only difference is that the vortex pair is

Z — Zlower

¥ Kelvin_Oval

Fig. 11. Streamlines of Kelvin oval representing from free stream opposing the flow from two oppositely-signed vortices of magnitude
2 located at z = +(i/2).
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oriented perpendicular to the free stream, while the
source/sink combination lies on an axis parallel to
the free stream.

CONCLUSION

MathCad is an inexpensive and readily available
calculation software package which, even in the
student version, contains a powerful contour plot-
ting routine and the ability to perform calculations
with complex numbers. These features make it an

excellent choice for teaching ideal fluid flow with
complex variables. The lesson plan provided on the
MathCad web site may be easily modified to suit
individual teaching preferences or topics. With
minimal effort, the lesson plan may be changed
to provide instruction in electrostatics. The stream
function 1 for the fluid flow problem is analogous
to the potential function in the electrostatic analog;
likewise, the potential function ¢ (and the equipo-
tentials) of the fluid flow problem find their
parallels in the stream function (and lines of
force) of electrostatics.
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