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This paper focuses on how the symbolic, numerical and graphical power of the computer algebra
system Maple V Release 5 can be used to explore and visualize with animation free harmonic
motion with and without damping and vibration of a mass-spring system forced by an external
sharp blow. Dirac's delta function is used to model the external force that acts for a very short
period of time. It is also demonstrated how displacement resonance in a forced oscillation can be
readily obtained from the transfer function of the system represented by a second-order differential
equation. The information contained in the system frequency response may also be conveniently
displayed in animated graphical form.

INTRODUCTION

AT TELEMARK College, Department of Technology in Porsgrunn, Norway we have incorporated the use
of the computer algebra system Maple V in the engineering mathematics curriculum from August 1995.
With the powerful software program including graphical, symbolic and numerical techniques, Maple V
Release 5 is the ideal program to make mathematics more relevant and motivating for engineering students
and an excellent demonstration tool for the classroom. The use of Maple has changed the way I teach and
hopefully the way the students learn. I now have the opportunity to emphasize the learning of concepts, the
visualization of concepts and the solution of more realistic engineering applications.

Many of the phenomena we observe in everyday life have a periodic motion. And in many cases the
periodic motion is maintained by a periodic driving force. For these forced oscillations the amplitude
depends on the frequency of the driving force. There is usually some frequency of the driving force at which
the oscillations have their maximum amplitude. This occurs when the natural frequency of the vibrating
system and the frequency of the driving force are approximately equal. This phenomenon of resonance
plays an important role in almost every branch of physics. And the avoidance of destructive resonance
vibrations is an important factor in the design of mechanical systems of all types.

Application of differential equations plays an important role in science and engineering. And the most
important step in determining the natural frequency of vibration of a system is the formulation of its
differential equation. The purpose of this article is to demonstrate how Maple can be used to investigate and
visualize with animations:

. simple harmonic motion of a mass-spring system;

. the response of a mechanical system (mass-spring system) to an impulse function;

. the displacement resonance in forced oscillations.

ANIMATION

Coding in Maple does not require expert programming skills, so writing a Maple program deals with
putting a proc( ) and an end around a sequence of commands. And it is pretty easy to put pre-witten
routines together from Maple's powerful building blocks and plotting facilities. The plottools package
provides many useful commands for producing plotting objects, which can be scaled, translated and
rotated. The following Maple codes will be used in the coming sections. The first procedure animates a
mass-spring system with and without a dashpot, and the second animates the response to a rectangular
pulse by a linear differential second-order equation.

Because it is impossible to show animation on paper, the animation figures show four consecutive frames.
The animations in this paper can be seen live on the Journal's Web site.
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Maple code for a mass-spring system
Given m � mass; r � damping constant; k � spring constant; x1; x2 � positions of the spring x0 � x�0�,

xp0 � D�x��0� � initial conditions; f � driving force; n � number of frames.

>mass_spring:=proc(m,r,k,x1,x2,x0,xp0,tk,f,n)

local

mass,deq,init,sol,xk,xu,plt1,plt2,plt,pltxk,rect,base,spring,spring1,rod,cylinder,piston,fluid,dashpot;

with(plots):with(plottools): #loads the plots and plottools packages

spring:=proc(x1,x2,n) #procedure for the spring

local p1,p2,p3,p4,pn_1,pn,p;

p1:=[x1,0];p2:=[x1+0.25,0];p3:=[x2-0.25,0];p4:=[x2,0];

p:=i->[x1+0.25+(x2-x1-0.5)/n*i,(-1)^(i+1)*0.5];

plot([p1,p2,seq(p(i),i=1..n-1),p3,p4],thickness=2,color=aquamarine);

end:

spring1:=x2->spring(x1,x2,12);

rect:=t->translate(rectangle([-0.2,-0.2],[0.2,0.2],color=red),t,xk(t)+x2+1);

#rect: display the position of the mass on the displacement curve x(t)

mass:=x2->rectangle([x2,-1],[x2+2,1],color+red):

if x0=0 and xk(0.1)=0 then xu:=1.5

elif x0=0 and xk(0.1)<>0 then xu:=3.5;

else xu:x0;

fi;

rod:=x2->plot([[x2+2,0],[x2+2.5+2*xu,0]],color=grey,thickness=2);

cylinder:=plot([[x2+2.5xu,-1],[x2+2.5+xu,1],[x2+3.5+3*xu,1],[x2+3.5+3*xu,-1],[x2+2.5+xu,-1]],color=tan,thickness=2);

piston:=x2->rectangle([x2+2.5+2*xu,-1],[x2+3+2*xu,1],color=grey);

fluid:=rectangle([x2+2.5+xu,-1],[x2+3.5+3*xu,1],color=blue);

dashpot:=x2->display(rod(x2),cylinder,piston(x2),fluid);

deq:=m*diff(x(t),t$2)+r*diff(x(t),t)+k*x(t)=f(t);

print(deq);

init:=x(0)=x0, D(x)(0)=xp0;

sol:=dsolve({deq,init},x(t));

print(combine(simplify(sol)));

xk:=unapply(rhs(sol),t);

#xk=x(t) : the displacement of mass

pltxk:=plot([xk(t)+x2+1,x2+1],t=0..max(tk,x2+4+3*xu)+0.5,

color=[blue,grey],numpoints=400);

base:=plot(-1.1,t=0..max(tk,x2+4+3*xu)+0.5,color=brown,thickness=4);

if r=0 then #undamped case

plt1:=x->translate(display(spring1(x2+x),mass(x2+x),base),0,-3);

else #with damping

plt1:=x->translate(display(spring1(x2+x),mass(x2+x),dashpot(x2+x),base),0,-3);

fi;

plt2:=i->display(pltxk,rect(tk/n*i));

plt:=i->display(plt1(xk(tk/n*i)),plt2(i));

display(seq(plt(i),i=0..n),insequence=true);

display(%,args[11..nargs]);

end:

Maplecode for a rectangular pulse
Given m � mass; r � damping constant; k � spring constant; a � constant; eps � constant; n � number of
frames.

>impulse_func:=proc(m,r,k,a,eps,n)

local h,dlign1,dlign2,sol1,sol2,plt2,pltd,plt,txt,txtd,kloss,e;

with(plots):

alias(u=Heaviside):

h:=eps->(u(t-a)-u(t-a-eps))/eps;

dlign1:=eps->m*diff(y(t),t,t)+r*diff(y(t),t)+k*y(t)=5*h(eps);

dlign2:=m*diff(y(t),t,t)+r*diff(y(t),t)+k*y(t)=5*Dirac(t-a);

print(dlign1(eps), epsilon=eps);

print(dlign2);

sol1:=eps->simplify(dsolve({dsolve({dlign1(eps),y(0)=0,D(y)(0)=0},y(t)));

sol2:=dsolve({dlign2,y(0)=0,D(y)(0)=0},y(t));

e:=textplot([6,1.3,convert([101],bytes)], font=[SYMBOL,12]):

txt:=eps->textplot([6.9,1.3,cat(`=',convert(evalf(eps,2),string))]);

align={RIGHT,ABOVE});

pltd:=eps->plot(h(eps),t=0..5*Pi,color=green,thickness=2):
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plt1:=eps->plot(rhs(sol1(eps)),t=0..5*Pi,color=red,thickness=2):

plt2:=plot(rhs(sol2),t=0..5*Pi,color=blue,thickness=2):

plt:=eps->display(pltd(eps),txt(eps),e,txtd,plt1(eps),plt2);

display(seq(plt(eps-(eps-0.1)/n*i),i=0..n),insequence=true);

display(%,args[7..nargs]);

end:

FREE HARMONIC OSCILLATIONS

Machines with rotating components commonly involve mass-spring systems or their equivalents in which
the driving force is simple harmonic motion. The motion of a mass attached to a spring serves as a simple
example of vibrations that occur in more complex mechanical systems.

From a teaching point of view it is suitable to consider a body of mass m attached to one end of a spring
that resists compression as well as stretching. A rod attached to the mass carries a disk moving in an oil-
filled cylinder (a dashpot). The other end of the spring could be attached to a fixed wall and vibrating
horizontally. The resultant force on the body is the sum of the restoring force ÿkx�t� and the damping force
ÿr�@=@t�x�t� where k is the force constant, x(t) is the distance of the body of mass from its equilibrium
position, t is time and r is the damping constant. We take x�t� > 0 when the spring is stretched. The
differential equation of motion is therefore:

>deq1:=m*diff(x(t),t$2)+r*diff(x(t),t)+k*x(t)=0;

deq1 :� m
@2

@t2

� �
� r

@

@t
x�t�

� �
� kx�t� � 0

If we set r � 0 in deq1 the motion is undamped. Otherwise the solution of deq1 presents three distinct cases
of damping according to whether d � r2 ÿ 4mk is greater than, equal to, or less than zero.

>eq:=d=r^2-4*m*k:

>solm:=solve(eq,m):

Let us replace m with a new variable mv in deq1.

>mv:=unapply(solm,d,r,k);

mv :� �d; r; k� ! 1

4

ÿd � r2

k

>deq2:=collect(4*k*subs(m=mv(d,r,k),deq1),diff(x(t),t$2));

deq2 :� �ÿd � r2� @2

@t2
x�t�

� �
� 4k r

@

@t
x�t�

� �
� kx�t�

� �
� 0

With this differential equation, deq2, the system is overdamped if d > 0, critically damped if d � 0 and
underdamped if d < 0. If we request Maple to solve deq1 for the undamped case and deq2 for each of the
damped cases, subject to initial condition x�0� � x0 and ��@=@t�x�t��jt�0 � 0.

>init:=x(0)=x[0],D(x)(0)=0: #initial conditions

we get the following solutions.

Undamped conditions
With r � 0�Ns=m� we get:

>deq1a:subs(r=0,deq1);

deq1a :� m
@2

@t2
x�t�

� �
� kx�t� � 0

>dsolve({deq1a,init},x(t));

x�t� � x0 cos

����
k

m

r
t

 !

Visualizing Free and Forced Harmonic Oscillations using Maple V R5 439



A typical graph of x�t� with m � 1 kg and k � 1�N=m� is shown in Fig. 1. Figure 2 shows the animation of
the undamped motion

>xk:unapply(rhs(%),m,k,x[0],t): #defines x=x(m,k,x[0],t)

Overdamped conditions
>interface(showassumed=0):

>assume(d>0):

>dsol:=dsolve({deq2,init},x(t));

dsol :� x�t� � 1

2

x0�ÿr� ���
d
p �e�ÿ2�r� ��dp �kt=ÿd�r2����

d
p � 1

2

x0�r�
���
d
p �e2��ÿr� ��dp �kt=ÿd�r2����

d
p

>subs(eq,dsol);

x�t� � 1

2

x0�ÿr�
�������������������
r2 ÿ 4mk
p

�e�ÿ1=2�r�
������������
r2ÿ4mk
p

�t=m��������������������
r2 ÿ 4mk
p � 1

2

x0�r�
�������������������
r2 ÿ 4mk
p

�e�1=2�ÿr�
������������
r2ÿ4mk
p

�t=m��������������������
r2 ÿ 4mk
p

>xo:=unapply(rhs(%),m,r,k,x[0],t): #defines x=x(m,r,k,x[0],t)

The solution consists of two exponential terms when r >
���������
4mk
p

. In all subsequent figures we take m � 1 kg
and k � 1�N=m�. Figure 3 show some typical graphs of the position function for the overdamped case.
Figure 4 shows the animation of the motion with the damping constant r � 4�Ns=m�.

Critically damped condition
>lhs(dsol)=limit(rhs(dsol),d=0);

x�t� � x0�2kt� r�e�ÿ2�kt=r��

r

>subs(r=sqrt(4*m*k),%);

x�t� � 1

2

x0�2kt� 2
�������
mk
p �e�ÿ�kt=

�����
mk
p

��������
mk
p

>xc:unapply(rhs(%),m,k,x[0],t): #defines x=x(m,k,x[0],t)

The solution consists of one exponential term when r � ���������
4mk
p

. The graph in Fig. 5 resemble those of the
overdamped case in Fig. 3. The animation of a critically damped motion with r � 2Ns=m is shown in Fig. 6.

Under-damped condition
>assume(d<0):

dsolve({deq2,init},x(t));

x�t� �
x0re�2rkt=dÿr2� sin 2

�������ÿd
p

kt

d ÿ r2

 !
�������ÿd
p � x0e�2rkt=dÿr2� cos 2

�������ÿd
p

kt

d ÿ r2

 !
>subs(eq,%);

x�t� �
x0re�ÿ1=2�rt=m�� sin ÿ 1

2

�����������������������ÿr2 � 4mk
p

t

m

 !
�����������������������ÿr2 � 4mk
p � x0e�ÿ1=2�rt=m�� cos ÿ 1

2

�����������������������ÿr2 � 4mk
p

t

m

 !
>xu:unapply(rhs(%),m,r,k,x[0],t): #defines x=x(m,r,k,x[0],t)

The solution represents exponentially damped oscillations of the mass-spring system about its equilibrium
position as shown in both Fig. 7 and Fig. 8.

Undamped motion results
>with(plots): #load the plots package

>plot(xk(1,1,1,t),t=0..19,color=black,labels=[`t',`x(t)'],labelfont=[TIMES,BOLD,12]);
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>mass_spring(1,0,1,0,5,2,0,14,0,3,tickmarks=[5,3],labels=[`t',`'],scaling=constrained);

@2

@t2
x�t�

� �
� x�t� � 0

x�t� � 2 cos�t�

The small rectangle shows the position of the mass on the displacement curve.

Overdamped motion results
If we select m � 1 kg, k � 1�N=m� and three different d-values: 12, 45, 96 ��Ns=m�2�, r named rk becomes:

>rk:=(d,m,k)->simplify(sqrt(d+4*m*k)):

r=[seq(rk(d,1,1),d=[12,45,96])];

r � �4; 7; 10�
>plt1:=d->plot(xo(1,rk(d,1,1),1,2,t),t=0..20,color=black):

>txt1:=d->textplot([4,xo(1,rk(d,1,1),1,2,4),convert(r=rk(d,1,1),string)]):

>pltod:=display(seq({plt1(d),txt1(d)},d=[12,45,96]),labels=[`t',`x(t)'],labelfont=[TIMES,BOLD,12]):%;

Fig. 1. Undamped motion. m � 1 kg, k � 1�N=m�, x�0� � 2 m.

Fig. 2. Animation of an undamped motion. m � 1 kg, k � 1�N=m�, x�0� � 2 m.
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Figure 3 shows three typical graphs of the position function x(t) for the overdamped case. Figure 4 shows
the animation of the motion with r � 4�Ns=m�.
>mass_spring(1,4,1,0,5,2,0,14,0,3,tickmarks=[5,3],labels=[`t',`'],scaling=constrained);

@2

@t2
x�t�

� �
� 4

@

@x
x�t�

� �
� 0

x�t� � 2

3
e��ÿ2� ��3p �t� ���3p � e��ÿ2� ��3p �t� ÿ 2

3

���
3
p

e�ÿ�2�
��
3
p �t� � e�ÿ�2�

��
3
p �t�

Fig. 3. Overdamped motion, m � 1 kg, k � 1�N=m�, x�0� � 2 m, r: damping constant.

Fig. 4. Animation of an overdamped motion of a mass-spring system with dashpot: m � 1 kg, k � 1�N=m�, x�0� � 2 m, r � 4�Ns=m�.
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Critically damped motion results
>plt2:=plot(xc(1,1,2,t),t=0..20,color=black):

>txt2:=textplot([3,xc(1,1,2,3),convert(r=rk(0,1,1),string)]):

>pltcd:=display(plt2,txt2):%;

>mass_spring(1,2,1,0,5,2,0,14,0,3,tickmarks=[5,3],labels=[`t',`'],scaling=constrained);

@2

@t2
x�t�

� �
� 2

@

@t

� �
x�t� � 0

x�t� � 2e�ÿt� � 2e�ÿt�t

Fig. 5. Critically damped motion, m � 1 kg, k � 1�N=m�, x�0� � 2 m, r: damping constant.

Fig. 6. Animation of an critically damped motion. m � 1 kg, k � 1�N=m�, x�0� � 2 m, r � 2�Ns=m�.
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In this critically damped case, then resistance of the dashpot is just large enough to damp out any
oscillations.

Underdamped motion results
We select m � 1 kg, k � 1�N=m� and two r values 1

2
1
5
�Ns=m�:

>plt3:=plot([xu(1,1/2,1,2,t),xu(1,1/5,1,2,t)],t=0..20,color=black):

>txt3:=textplot([[6.5,xu(1,1/2,1,2,6.5),`r=1/2'],[6.5,xu(1,1/5,1,2,6.5),`r=1/5']]):

>pltod:=display(plt3,txt3,labels=[`t',`x(t)'],labelfont=[TIMES,BOLD,12]):%;

>mass_spring(1,1/5,1,0,5,2,0,20,0,3,tickmarks=[5,3],labels=[`t',`'],scaling=constrained);

@2

@t2
x�t�

� �
� 1

5

@

@t
x�t�

� �
� x�t� � 0

x�t� � 2e�ÿ1=10t� cos
3

10

�����
11
p

t

� �
� 2

33

�����
11
p

e�ÿ1=10t� sin
3

10

�����
11
p

t

� �

Fig. 8. Animation of an underdamped motion of a mass-spring system with dashpot: m � 1 kg, k � 1�N=m�, r � �1=5��Ns=m�.

The action of the dashpot exponentially damps the oscillations in accord with the time-varying amplitude.
The dashpot also decreases the frequency of the motion from 1 in the undamped to case 3

�����
11
p

=10 in the
underdamped motion with the same mass and force constant.

Comparison of the graphs in Figs 3, 5 and 7 (Fig. 9) shows that when the motion is critically damped
the mass reaches its equilibrium position in a shorter time than when the damping is larger. And for
any damping constant less than r � 2�Nm=m� in our particular example the motion becomes oscillatory.

>display(plt1(45),plt2,plt3,txt1(45),txt2,txt3,labels=[`t',`x(t)'],labelfont=[TIMES,BOLD,12]);

Fig. 7. Underdamped motion, m � 1 kg, k � 1�N=m�, x�0� � 2 m, r: damping constant.
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Fig. 8.

Fig. 9. Overdamped, critically damped and damped oscillatory motion of a mass-spring system: m � 1 kg, k � 1�N=m�, x�0� � 2 m, r:
damping constant.
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FORCED HARMONIC OSCILLATIONS

Mechanical systems are often acted upon by an external force of large magnitude that acts for only a short
period of time. For example a spring-mass system could be given a sharp blow at some specific time t. In
engineering practice it is convenient to use the Dirac delta function as a mathematical model for such a
blow. But it is my experience that it is often difficult for engineering students to get a real understanding of
what this impulse function stands for. With the use of Maple it is easy and instructive to simulate Dirac's
delta function ��tÿ a�.

The response of a mass-spring system to an impulse function
As said above the Dirac delta function ��tÿ a� could serve as a mathematical model for an external force

of large magnitude that acts for only a very short period of time.

>delta(t-a)=piecewise(t<a,0,t=a,infinity,t>a,0);

��tÿ a� �
0 t < a

1 t � a

0 a < t

8<:
where:

>Int(delta(t-a),t=-infinity..infinity)=int(Dirac(t-a),t=-infinity..infinity);�1
ÿ1

��tÿ a�dt � 1

Obviously no real function can satisfy being zero except at a single point and have an integral equal to one.
In Maple ��tÿ a� � Dirac�tÿ a� is expressed as the derivative of the Heaviside standard unit step function
u�tÿ a�.

>alias(u=Heaviside):

>Diff(u(t-a),t)=diff(u(t-a),t);

@

@t
u�tÿ a� � Dirac�aÿ t�

It is instructive to use Maple to model such an instantaneous unit impulse by starting with the function:

>delta[epsilon](t-a)=piecewise(t<a,0,t<a+epsilon,1/epsilon,0);

���tÿ a� �
0 t < a
1

�
t < a� �

0 otherwise

8><>:
>h:=unapply(convert(rhs(%),Heaviside),t,a,epsilon);

h :� �t; a; �� ! u�tÿ a�u�a� �ÿ t�
�

A plot of the rectangular pulse for a � � and � � 3 gives:

>plot(h(t,Pi,3),t=0..10,thickness=3);

>assume(epsilon>):

>A:=Int(h(t,a,epsilon),t=a..a+epsilon):

>A=value(A); �a��

a

u�tÿ a�u�a� �ÿ t�
�

dt � 1
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where u�t� is Heavisides unit step function. We can compare the response of a damped mass-spring system
to a rectangular pulse ���tÿ a� as �! 0 with the response of the Dirac's delta function used by Maple.

The output of the Maple code impulse_func in Fig. 11 animate the response to the rectangular pulse
���tÿ a� by a linear second-order differential equation with constant coefficients and with damping.

>impulse_func(1,3,1,Pi,3,3,tickmarks=[0,0],labels=[`',`']);

@2

@t2
y�t�

� �
� 3

@

@t
y�t�

� �
� y�t� � 5

3
u�tÿ �� ÿ 5

3
u�ÿ�ÿ 3� t�; � � 3

@2

@t2
y�t�

� �
� 3

@

@t
y�t�

� �
� y�t� � 5 Dirac�tÿ ��

Fig. 10. Rectangular pulse ���tÿ a� with a � � and � � 3 (width � and height 1=��. The area of the rectangular pulse is equal to 1.

Fig. 11. The behavior of the response to a rectangular pulse by a linear second-order differential equation with damping as �! 0
compared to the response to Dirac's delta function.
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The last animated frame in Fig. 11 shows little difference between the two responses when � � 0:1 Figure 12
shows an animated response of the damped mass-spring system initially at rest. At time t � � the system is
suddenly given a sharp ``hammerblow'' modelled by f�t� � 5 Dirac�tÿ ��.
>f:=t->5*Dirac(t-Pi):

>mass_spring(1,3,1,0,5,0,0,14,f,3,tickmarks=[5,3],labels=[`t',`'],scaling=constrained);

@2

@t2
x�t�

� �
� 3

@

@t
x�t�

� �
� x�t� � 5 Dirac�tÿ ��

x�t� �
���
5
p

u�tÿ ��e�1=2�tÿ���ÿ3� ��5p �� ÿ ���
5
p

u�tÿ ��e�ÿ1=2�tÿ���3� ��5p ��

The displacement resonance in forced oscillations
In every oscillating system there is dissipation of mechanical energy, which results when the motion of the
mass-spring system described in the previous sections die out. If the oscillations are to be maintained, energy
must be supplied to the system. In this section we shall assume that the system is acted on by a periodic
driving force. Suppose that the mass-spring system is subjected to a periodic force F0 sin�!t� , where F0 is the
maximum value of the applied force and f � !=2� is its frequency. The equation of motion is then:

m
@2

@t2
x�t� � r

@

@t
x�t� � kx�t� � F0 sin�!t�

where m is the mass of the system, x(t) is the distance of the body of mass from its equilibrium position, r is
the damping constant and k is the force constant. The frequency response of this system can be readily
obtained from the system transfer function H(s) by replacing s by i!.

Fig. 12. The motion of a mass-spring system with dashpot under the influence of a sharp blow at t � � provided by 5��tÿ ��.
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>f:=`f':

>with(inttrans): L:=x->laplace(x,t,s):invL:=X->invlaplace(X,s,t):

>alias(X(s)=L(x(t)),F(s)=L(f(t))):

>dlign:=m*diff(x(t),t$2)+r*diff(x(t),t)+k*x(t)=f(t);

dlign :� m
@2

@t2
x�t�

� �
� r

@

@t
x�t�

� �
� kx�t� � f�t�

>simplify(L(dlign));

ms2X�s� ÿmsx�0� ÿmD�x��0� � rsX�s� ÿ rx�0� � kX�s� � F�s�

>X(s)=solve(%,X(s));

X�s� � msx�0� �mD�x��0� � rx�0� � F�s�
ms2 � rs� k

>subs(x(0)=0,D(x)(0)=0,%);

X�s� � F�s�
ms2 � rs� k

The transfer function of the mass-spring system is given by:

H�s� � 1

ms2 � rs� k

>H:=s->1/(m*s^2+r*s+k):

It is easy to show that the steady-state frequency response to an input q�t� � F0 cos�!t� becomes:

>x(t)=F[0]*abs(`H'(I*omega))*cos(omega*t+arg(`H'(I*omega)));

x�t� � F0jH�I!�j cos�!t� arg�H�I!���
>value(%);

x�t� �
F0 cos !t� arg

1

ÿm!2 � Ir!� k

� �� �
j ÿm!2 � Ir!� kj

The steady-state system response is also a cosine having the same frequency ! as the input. And the
amplitude of this response is F0jH�I!�j. The variation in both the magnitude jH�I!�j and argument
arg�H�I!�� as the frequency ! of the input cosine is varied constitute the frequency response of the system,
as the following example shows.

Let us first solve the differential equation using Maples dsolve.

>f:=(omega,t)->2*cos(omega*t);

f :� �!; t� ! 2 cos�!t�
>deq:=(m,r,k,omega)->m*diff(x(t),t$2)+r*diff(x(t),t)+k*x(t)=f(omega,t);

deq :� �m; r; k; !� ! m
@2

@t2
x�t�

� �
� r

@

@t
x�t�

� �
� kx�t� � f�!; t�

>sol:=dsolve({deq(1,0.25,4,2),x(0)=0,D(x)(0)=0},x(t),method=laplace);

sol :� x�t� � 4: sin�2:t� ÿ 4:007835463e�ÿ:1250000000t� sin�1:996089928t�
>plot(rhs(sol),t=0..40,color=black);
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The graph shows that the transient solution dies out as t increases.
The transfer function of the system is given by:

>H:=(m,r,k,s)->1/(m*s^2+r*s+k);

H :� �m; r; k; s� ! 1

ms2 � rs� k

With m � 1 kg, k � 4�N=m� and s � I!, we get:

>`H'(1,r,4,I*omega)=H(1,r,4,I*omega);

H�1; r; 4; I!� � 1

ÿ!2 � Ir!� 4

>Habs:=unapply(evalc(abs(H(1,r,4,I*omega))),r,omega);

Habs :� �r; !� ! 1��������������������������������������������
!4 ÿ 8!2 � 16� r2!2
p

There is a frequency called the resonance frequency at which the amplitude A � 2Habs becomes a
maximum. This resonance frequency can be recognized in many vibrating systems unless the damping
force r is too large.

>solve(omega^4-8*omega^2+16+r^2*omega^2=0,{r});

r � I�!� 2��!ÿ 2�
!

� �
; r � ÿ I�!� 2��!ÿ 2�

!

� �
With zero damping force, r � 0 and the resonance frequency ! � 2 in our example. See also Fig. 15.

The phase angle � is given by:

>phi:=unapply(evalc(argument(H(1,r,4,I*omega))),r,omega);

� :� �r; !� ! arctan�ÿr!;ÿ!2 � 4�

Fig. 13. The displacement x�t� of a mass-spring system undergoing forced oscillations plotted against the time: m � 1 kg,
r � 0:25�Ns=m�, k � 4�N=m�, ! � 2=s.
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Substituting the values r � 0:25�Ns=m�, ! � 2=s and F0 � 2N, gives the steady-state response, xs � x�t�
>xs:=unapply(2*Habs(0.25,2)*cos(2*t+phi(0.25,2)),t);

`xs'(t)=xs(t); #steady state respons

xs�t� � 4:000000000 cos�2tÿ 1:570796327�
>sol; #Maple's solution

x�t� � 4: sin�2:t� ÿ 4:007835463e�ÿ1:250000000t� sin�1:996089928t�
As t!1, x�t� ! xs�t�.
>control:=`4*sin(2*t)-4*cos(2*t-Pi/2)'=simplify(4*sin(2*t)-4*cos(2*t-Pi/2));

control :� 4 sin�2t� ÿ 4 cos 2tÿ 1

2
�

� �
� 0

The system is lagging because the phase shift between input and output arg�H�i!�� is � � ÿ1:57 . . . Figure
14 shows this phase shift.

>with(plots):

plt1:=plot([f(2,t),xs(t)],t=30..39,color=black,thickness=[1,2]:

plttext1:=textplot([[39,xs(39),`steady-state

response'],[39,f(2,39),`input']],align=RIGHT):

display({plt1,plttext1},labels=[`t',`x(t)'],labelfont=[TIMES,BOLD,12]);

>A:=`A':

Habsi:=i->plot(Habs(i,omega),omega=1..3,A=0..2.5,color=black):

>plt2:=i->display(Habsi(i),text2(i)):

>text2:=i->textplot([2,Habs(i,2),convert(r=i,string)],align=ABOVE,font=[TIMES,BOLD,12]:

>display(seq(plt2(i),i=[0.1,0.25,0.5,0.5,0.75,1,1.41]),labels=[`omega',`A'],labelfont=[TIMES,BOLD,12]);

Fig. 15. Variation of the amplitude A � 2=� ���!p 4 ÿ 8!2 � 16� r2!2� against the angular velocity ! of the forced oscillations-
displacement resonance for different values of the damping constant r.

Figure 15 shows that the smaller the value of r, the sharper the resonance of the vibrating system to the
applied force. And the resonance frequency varies with the value of the damping constant r. The amplitude
A tends towards infinity when the applied frequency becomes equal to the resonance frequency and the
system has zero damping.

Fig. 14. Phase shift between steady-state response and input displacement x(t).
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Figure 16 animates the displacement resonance of the forced oscillations and Fig. 17 shows the variation
of the phase shift against the angular velocity, which is animated in Fig. 18. Figure 19 shows what happens
with the mass-spring system when the damping constant r � 0:25�N=s� and Fig. 20 when the damping
constant is approximately equal to zero, r � 0:01�N=s�.

>display(seq(plt2(0.05*i),i=1..28),insequence=true,labels=[`omega',`A'],labelfont=[TIMES,BOLD,12]);

Fig. 15.

Fig. 16. Animation of Figure 15.
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>Harg:=i->plot(phi(i,omega),omega=1..3,color=black):

>text3:=i->textplot([2.4,phi(i,2.4),convert(r=i,string)],align={RIGHT,ABOVE},font=[TIMES,BOLD,12]):

>plt3:=i->display(Harg(i),text3(i)):

>display(seq(plt3(i),i=[0.1,0.25,0.5,0.75,1,1.41]),labels=[`omega',`phi'],labelfont=[TIMES,BOLD,12]);

As the applied velocity is increased from zero to the natural angular velocity of the system, the phase angle �
increases from zero to �=2. When r � 0 the angle � changes abruptly from 0 to �.

>display(seq(plt3(0.05*i),i=1..28),labelfont=[TIMES,BOLD,12],insequence=true);

Fig. 17. Variation of the phase shift � � arctan�!2 ÿ 4=r!� against the angular velocity ! of the forced oscillations-displacement
resonance for different values of the damping constant r.

Fig. 18. Animation of Fig. 17.
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>f:=t->2*sin(2*t):

>mass_spring(1,0.25,4,0,5,0,0,20,f,3,tickmarks=[5,3],labels=[`t',`'],scaling=constrained);

@2

@t2
x�t�

� �
� 0:25

@

@t
x�t�

� �
� 4x�t� � 2 sin�2t�

x�t� � ÿ4:000000000 cos�2:000000000t� � 530 10ÿ8 sin�2:000000000t�
�4e�ÿ0:1250000000t� cos�1:996089928t�

�0:2504897111e�ÿ0:1250000000t� sin�1:996089928t�

>mass_spring(1,0.01,4,0,5,0,0,11.5,f,3,tickmarks=[5,3],labels=[`',`'],scaling=constrained);

@2

@t2
x�t�

� �
� :01

@

@t
x�t�

� �
� 4x�t� � 2 sin�2t�

x�t� � ÿ99:99999997 cos�2:000000000t� � 0:19530 10ÿ6 sin�2:000000000t�
�99:99999995e�ÿ0:005000000000t� cos�1:999993750t�
�0:2500005858e�ÿ0:005000000000t� sin�1:999993750t�

Fig. 20. The displacement x(t) of the mass-spring system undergoing forced oscillations with damping constant r � 0:01�Ns=m�.

Fig. 19. The displacement x(t) of the mass-spring system undergoing forced oscillations with damping constant r � 0:25.

H. Pleym454



SUMMARY

This paper discusses the use of the computer algebra system (CAS) Maple in calculating and animating
the responses of free and force vibrations systems. CAS has changed the fundamental way in which many
math and engineering courses are taught. The user can enter a mathematical expression which in this paper
Maple subsequently executes, and one is freed from tedious computations. This allows the student to
explore how the solution of an engineering problem depends on various parameters of the problem under
study. The graphics capabilities are extremely helpful for visualizing the behaviour of the system under
investigation. Maple's plots and plottools packages enable the user to utilize plotting objects for
animating purposes. This is highlighted and demonstrated in this paper. It is hoped that this feature can
attract the attention of both lecturers and students to visualize dynamic responses, typical in engineering,
more realistically.

Harald Pleym is Associate Professor in Department of Technology at Telemark College in
Porsgrunn, Norway. His professional background is geophysics and atmospheric sciences,
but now he regularly teaches courses in engineering mathematics. He initiated the use of the
Computer Algebraic System, Maple, as a tool in all math courses since August 1995. His
current main interest is preparing lessons and developing supplementary, interactive course
material in Maple. The Maple system enables him to develop both simple and complex
mathematical models in the classroom and laboratory, making mathematics more dynamic
and meaningful.

Fig. 20.
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