
Creating a Multiple-choice Self-marking
Engine on the Internet*

T. W. NG
Faculty of Engineering EA-07-32, National University of Singapore, 9 Engineering Drive 1, Singapore 117576.
E-mail: engngtw@nus.edu.sg

Multiple-choice questions can be used to effectively reinforce concepts taught in lectures. This
paper describes a multiple-choice self-marking engine which had been successfully developed using
Javascript language. This tool can be easily incorporated into any web page written using the
hypertext markup language (HTML) to provide students with a dynamic study aid over the
Internet.

AUTHOR QUESTIONNAIRE

1. The paper discusses materials/software for a
course in: Mechanics of Materials.

2. Students of the following departments are
taught in this course: Mechanical and
Manufacturing Engineering.

3. Level of the course (year): a first-year-level
course in Mechanical and Manufacturing
Engineering.

4. Mode of presentation: the tool described is
available for students to access at any time
over the Internet. They are encouraged to use
it as often as they wish.

5. Is the material presented in a regular or elective
course: Mechanics of Materials is an essential
module which is covered over 39 hours of
lectures, tutorials and laboratory sessions.

6. Class or hours required to cover the material:
students will typically be required to complete
one chapter of study before using the multiple
choice tool to deepen their understanding.

7. Student homework or revision hours required
for the materials: depending on the ability of the
student, a range of 3 to 10 hours of revision
would be needed before the tool would be
useful.

8. Description of the novel aspects presented in
your paper: this paper describes an Internet tool
wherein educators can adapt to enable students
to better comprehend a topic through multiple
choice questions. The interactive nature of the
tool makes study more interesting.

9. The standard text recommended in the course,
in addition to author's notes: Mechanics of
Materials, Beer and Johnston.

BACKGROUND

WITH THE INTERNET providing the means for
students to access information remotely, the
challenge for educators today is to develop tools
that would engage students to deepen their under-
standing of a subject effectively. The presently
ubiquitous hypertext markup language (HTML)
was originally introduced to produce plain and
static documents that could be viewed using any
browser over the World-Wide-Web. Although
many educators have since learned to mount
their teaching material on web pages using this
simple language, such pages, in honesty, can
hardly hope to engage a student for more than
one or two visits. The reason for this lies in the lack
of interesting and interactive features on web pages
based solely on HTML.

Creating interesting features on web pages,
however, can appear to be daunting for an educa-
tor who has little background in programming.
However, this does not have to be so with the
Javascript [1±2] programming language. Javascript
started its life as Livescript. When it was first
introduced in January 1996 by Netscape, Live-
script was designed to augment HTML pages. In
the beginning, interest in Livescript was mild, due
primarily to the frenzy surrounding a more robust
Internet programming language called Java. When
Netscape announced its decision to support Java,
it did so by re-engineering Livescript, which was
later renamed Javascript. Suddenly, interest in
Javascript grew. The reasons were obvious. While
Java required in-depth programming knowledge
and a software development kit, Javascript needed
none of these. As a scripting language, Javascript
code can be easily prepared using any text editor
and corrected on the fly without the need of
compilation.

One project to produce more interactive educa-
tional web pages must surely be in the creation of
multiple-choice self-marking engines. Although* Accepted 10 October 1999.

50

Int. J. Engng Ed. Vol. 16, No. 1, pp. 50±55, 2000 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2000 TEMPUS Publications.

multiple-choice questions are admittedly not ideal
in eliciting creative answers from students, they
are, nevertheless, invaluable in reinforcing impor-
tant concepts taught in lectures. This is particularly
pertinent for concepts that can be applied in a
myraid of application instances. The main advan-
tage of multiple choice testing is that the correction
is objective. The major disadvantage is that writing
good questions takes considerable skill and time.
However, references are available that deal with
the good practice of question design [3±5].

This paper aims to highlight a Javascript
approach to create a multiple self-marking
engine. There are, of course a myraid of ways,
based on personal preferences, to produce such an
engine. This paper does not attempt to discuss the
various possible approaches. Rather the modus
operandi is to state the desired features of an
engine to be created and to describe how Javascript
was used to engineer it.

DESCRIPTION OF THE MULTIPLE-
CHOICE SELF-MARKING ENGINE

The engine described in this work was developed
with the following features in mind:

1. The questions are to be randomly selected from
a pool of questions prepared. If the student is
presented with a question that he/she does not
wish to attempt, it should be possible to skip
that particular question.

2. The prepared questions are contained within a
selection of HTML web pages.

3. A student responds to the question by a simple
selection of choices, from A to D, using the
computer's mouse.

4. The program compares the student's response
with an attempted answer to the question and
indicates whether it is right or wrong.

5. If the response given is wrong, the student
should be able to reselect until he finally gets
it right.

6. The engine does not grade the student's
attempts as it is meant to be used as a tool by
the student to gauge his/her understanding of
the topics taught.

Clearly, a single HTML file would not suffice to
achieve the features described. I have chosen to
present the tool developed by giving the name of
each document and showing a skeleton version
of the text contained within. Following this, a
description of the syntax is given to provide
readers with a clearer understanding of what the
instructions achieve. To facilitate description, the
code rows are numbered with small letters along
the left margin. Logically these numbers should be
omitted if the code is to be used.

Filename: quiz-header.html
Contents:
1 hHTMLj
2 hHEADj

3 hTITLEjThis is the quiz headerh/TITLEj
4 h/HEADj
5 hFRAMESET ROWS = `30%,70%'j
6 hFRAME SRC = `processor.html'j
7 hFRAME SRC = `instruction.html' NAME =
`results'j

8 h/HTMLj

This document creates a web page containing two
frames for the quiz. The relative sizes of the frames
can be controlled by the percentages input (line 5).
The first frame (described by line 6) visually serves
as the control console where the student can
randomly generate a question and respond to
that question. Within the HTML document
supporting this frame (i.e. processor.html) is
the Javascript syntax which generates the question
and marks the response. The second frame
(described by line 7), alternatively, serves as the
frame where the quiz instruction and questions are
placed. This frame contains standard HTML
documents without Javascript. In other words, it
functions as a dummy page in the interface. Since it
is always good to include instructions for users, a
HTML document with such content is called by
default (e.g. instruction.html).

Filename: instruction.html
Contents:
1 hHTMLj
2 hHEADj
3 hTITLEjThis is the instruction page

h/TITLEj
4 h/HEADj
5 hBODYj
6 hPjClick on the Question Button to obtain a
randomly generated question.

7 Click on selections A to D to choose your
answer.

8 The program will automatically mark your
response for youh/Pj

9 h/BODYj
10 h/HTMLj

This document contains the instruction for
students (body of text given in lines 6 to 8). It is
the default page which appears in the lower frame
each time the tool is run.

Filename: question-1.html
Contents:
1 hHTMLj
2 hHEADj
3 hTITLEjThis is the quiz headerh/TITLEj
4 h/HEADj
5 hBODYj
6 hPjThis is Question Number 1h/Pj
7 hPjSelection A) Aa B) Bb C) Cc D) Ddh/Pj
8 h/BODYj
9 h/HTMLj

This is a sample HTML document containing the
question. Each question is prepared in a separate
document. It is possible to create many questions
in different documents in this way. However,

Creating a Multiple-choice Self-marking Engine on the Internet 51

the naming of the document is important. For
instance, the second question should be named
question-2.html and so forth. Note that it is
possible to include accompanying pictures into
these documents as well.

Filename: processor.html
Contents:
1 hHTMLj
2 hHEADj
3 hSCRIPT LANGUAGE = `Javascript'j

4 tieidx=0;

5 function ShowTie(){
6 tieidx=Math.round(Math.random() *
(2-1))+1;

7 parent.results.location=`question-'
+tieidx+'.html';}

8 function CheckAnswer(sent){
9 answer = new Array()

10 A=1
11 B=2
12 C=3
13 D=4
14 answer[1]=B
15 answer[2]=D

16 if (tieidx==0){ window.alert(`Select A
Question First!'); }

17 else{
18 if (sent==answer[tieidx]){
19 window.alert(`CORRECT

ANSWER!... Very Good'); }

20 else{
21 window.alert(`Sorry! Wrong

Answer... Try Again'); }
22 }
23 }

24 h/SCRIPTj
25 h/HEADj

26 hBODYj

27 hFORM name = tiecheckj
28 hInput type=`button' value=`Question'

OnClick=`ShowTie()'j
29 h/FORMj

30 hFORM name = tieformj
31 Select Your Answer
32 hinput type=`radio' checked name=`tiebox'

onClick=`CheckAnswer(1)'>A
33 hinput type=`radio' name=`tiebox'

onClick=`CheckAnswer(2)'>B
34 hinput type=`radio' name=`tiebox'

onClick=`CheckAnswer(3)'>C
35 hinput type=`radio' name=`tiebox'

onClick=`CheckAnswer(4)'>D
36 h/FORMj

37 h/BODYj
38 h/HTMLj

This is the HTML document that serves as the
brain of the entire tool. There are two parts to this
document. The portion of syntax contained within
the hSCRIPTj tag (lines 3 to 24) is written in Java-

Fig. 1. The initial display of the multiple-choice self-marking engine as viewed using the internet browser.

T. Ng52

script and serves to generate a question and
processes the student's selection. The other portion
of syntax is written in standard HTML.

Let us consider the HTML code first. Notice
that two forms are described. The first form, called
tiecheck (line 27), appears as a conventional

button. Once this button is clicked, the Javascript
function ShowTie(_) is called. The second form,
called tieform (line 30), contains radio buttons
wherein a student can choose a response from A
to D. Once a radio button is clicked, the function
CheckAnswer(_) is called.

Fig. 2. The alert window appearing when an answer is given before a question is selected.

Fig. 3. Sample page when a question is selected.

Creating a Multiple-choice Self-marking Engine on the Internet 53

Let us now consider the Javascript portion of
the document. Note that the variable tieidx is
initially set to zero. Recall that clicking the conven-
tional calls the function ShowTie(_). A random
number ranging from 1 to 2 is generated for tieidx.
Of course, with X number of questions, the range
of the random number can be changed to vary

from 1 to X. A string is then generated to indicate
the location of the HTML document containing
the selected question. This is then placed in
parent.results.location, which allows the question
to be placed in the second frame described in
document quiz-header.html.

We now consider the marking portion of the

Fig. 4. The alert window appearing when the answer given is incorrect.

Fig. 5. The alert window appearing when the answer given is correct.

T. Ng54

script. Recall that clicking any of the radio buttons
calls the function CheckAnswer(_) (line 8). In this
function, the variable tieidx identifies the ques-
tion selected. If no question is selected, tieidx is
zero. For this, a window will appear prompting the
student to first select a question (line 16). If a
question is selected, the marking can commence.
All the answers to the question are placed in the
array answer[]. The variable sent contains the
response given by the student. If the contents of
answer[tieidx] and sent are equal, it means that
the student has answered correctly. A window will
appear to make this known to the student (line 19).
Conversely if the answer supplied is wrong,
another window will appear to alert the student
(line 21).

DEMONSTRATION

The multiple-choice self-marking tool developed
was incorporated into a web page designed by the
author to teach a first-year undergraduate course
on the Mechanics of Materials. Sample pages

illustrating the working of this tool are given in
Figs 1 to 5. When the tool is first called, it appears
as shown in Fig. 1. If a student attempts to give a
response without selecting a question, a window
appears prompting him to do so. This is shown in
Fig. 2. Once a question is selected, it appears as
shown in Fig. 3. Selecting the wrong response gives
the window alert as shown in Fig. 4, whereas
selecting the right answer gives the window alert
as shown in Fig. 5.

CONCLUSIONS

This work describes and demonstrates a multi-
ple-choice self-marking tool on the Internet devel-
oped using the Javascript language. The tool is
simple and can be incorporated into any web
page written using HTML. Such a tool can
effectively engage a student to deepen his under-
standing of a subject by reinforcing the concepts
learned in class.

REFERENCES

1. G. McComb, Javascript Sourcebook, John Wiley & Sons, New York (1996).
2. A. Weiss, The Complete Idiot's Guide to Javascript, Prentice Hall, Indianapolis (1997).
3. R. J. Leuba, Machine-scored testing, Part I: purposes, principles and practices, Eng. Educ., 77 (1986)

pp. 89±95.
4. R. J. Leuba, Machine-scored testing, Part II: creativity and item analysis, Eng. Educ., 77 (1986)

pp. 181±186 .
5. E. Boone and G. DeMay, Some practical aspects of multiple choice examinations, Eur. J. Eng.

Educ., 12 (1987) pp. 325±328 .

Dr T. W. Ng is currently Assistant Professor in the Faculty of Engineering, National
University of Singapore. His research interests are in optical testing and educational
development. Dr Ng is also editor for Optical Testing Digest an electronic periodical
supported by SPIE (The International Society for Optical Engineering).

Creating a Multiple-choice Self-marking Engine on the Internet 55

