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The issue of point location is an important problem in computer graphics and the study of efficient
data structures and fast algorithms is an important research area for both computer graphics and
computational geometry disciplines. When filling the interior region of a planar polygon in
computer graphics, it is necessary to identify all points that lie within the interior region and
those that are outside. Sutherland and Hodgman are credited for designing the first algorithm to
solve the problem. Their approach utilizes vector construction and vector cross products, and forms
the basis of the `odd parity' rule. To verify whether a test point is within or outside a given planar
polygon, a ray from the test point is drawn extending to infinity in any direction without
intersecting a vertex. If the ray intersects the polygon outline an odd number of times, the
region is considered interior. Otherwise, the point is outside the region. In three-dimensional space,
Lee and Preparata propose an algorithm but their approach is limited to point location relative to
convex polyhedrons with vertices in 3-space. Although it is rich on optimal data structures to reduce
the storage requirement and efficient algorithms for fast execution, a proof of correctness of
the algorithm, applied to the general problem of point location relative to any arbitrary surface
in 3-space, is absent in the literature. This paper argues that the electromagnetic field theory and
Gauss's Law constitute a fundamental basis for the odd parity rule and shows that the odd parity
rule may be correctly extended to point location relative to any arbitrary closed surface in
3-space.

INTRODUCTION

IN COMPUTER GRAPHICS [1±3, 13], to deter-
mine whether a point lies within or outside a
polygon, a ray is drawn starting at the point and
extending to infinity in any direction but not
intersecting any vertex. If the ray intersects the
outline of the polygon an odd number of times, the
test point is considered to be within the polygon.
Otherwise, the point is outside the polygon. The
technique is referred to as the odd parity rule. The
basic scheme is due to Sutherland and Hodgman
[4]. A key elementÐfunction `INSIDE' [1], deter-
mines whether a point, P, is to the left or right of a
boundary, represented by the directed line segment
from P1 to P2. First, the cross product of P1P2 and
P1P is computed. Second, where the cross product
is along the positive z-axis, the point P is to the left
and thus outside. If it is along the negative z-axis,
the point is to the right or inside. In Fig. 1, P3 is
considered inside since the cross product of P1P2

and P1P3 is along the negative z-axis. Point P4 is
viewed as outside since the cross product of P1P2

and P1P4 is along the positive z-axis.
The scan-line approach, used in polygon filling,

is an extension of the basic approach described
earlier. Given a point and a closed polygon, one
draws a line through the point extending to

infinity. If the line intersects the polygon an odd
number of times, assuming that the line does not
intersect at any vertex, the point is considered to lie
inside the polygon. Otherwise, it lies outside the
polygon. Figure 2 shows a complex polygon with
two holes in it and a number of points P1 through
P4, some located within while others are located
outside the polygon. The algorithm correctly deter-
mines that the points P2 and P4 lie inside the
polygon since the lines P2Q2 and P4Q4 intersect
the polygon an odd number of times, while the
points P1 and P3 lie outside the polygon since the
lines P1Q1 and P3Q3 intersect the polygon an even
number of times.

In the discipline of computational geometry, the
problem of point location in a planar subdivision
[5] reduces to determining the region of the sub-
division occupied by the point. The basic approach
is to triangulate any subdivision or a polygon with
holes and determine the triangle in which the point
lies. The computational geometry literature is rich
on techniquesÐchoice of data structures and
algorithms, to speed up the result [6±8]. Given a
subdivision S with n vertices, the key performance
measures for the point location algorithm are:

. the time for preprocessing;

. the space required to store the data structure;

. the time required to search the data structure to
locate the point.* Accepted 9 September 1999.
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Lee and Preparata [6] present an approach to
determine whether a test point P is located within
a convex polyhedron in 3-space. They select a
vertex with the largest Z coordinate and then
drop a stereographic projection of the vertex of
the polyhedronÐa planar graph S' onto a x-y
plane. The test point is also projected on the
same x-y plane as P 0. Next, they apply their
planar point location technique to the projected
point and planar graph on the x-y plane and argue
that if P' is within S', the original point in 3-space
is contained within the convex polyhedron.
Edelsbrunner, Guibas, and Stolfi [8] present a
space-optimal approach for point location and
claim that its efficiency renders it a candidate for
rectangular point location in higher dimensions.

The literature in both computer graphics [9, 10]
and computational geometry [6, 7] focus on effi-
cient data structures and algorithms for fast region
filling and point location. However, the literature
does not address the underlying principle of the
odd parity rule and is unable to argue why the
technique works, whether it is guaranteed to work
for every planar polygon, and whether it may be
extended to any arbitrary polygon in 3-space. The
issue is important, especially from the perspective
of fundamentals in engineering education.

This paper presents a fundamental physical
principle from which the `odd parity' rule may be
derived for 3-space. Thus, given any arbitrary
closed surface in 3-space, the location of any
point relative to the closed surface may be deter-
mined. The aim of this paper is to present the

underlying principle for the point location prob-
lem and not to provide an efficient algorithmic
implementation.

A PHYSICAL PRINCIPLE UNDERLYING
THE POINT LOCATION ALGORITHM

According to the electromagnetic field theory, a
point charge gives rise to an electric field whose
flux is measured by the number of lines of force
that cut through a surface. Furthermore, Gauss'
Law [11] states that for any closed hypothetical
surface in 3-space, the flux through the surface is
related to the net charge, q, enclosed by the surface
through a surface integral, shown in equation (1):

"0

Z
E � dS � q �1�

where "0 is the permittivity constant, E is the
vector electric field at a point on the surface, and
dS denotes the outward normal vector to the
surface at that point. Where the net charge
enclosed by the volume corresponding to a
hypothetical surface is zero, the flux through the
surface is also zero. Otherwise, the net flux through
the surface is non-zero.

The key elements in Gauss' Law are that it
applies to any arbitrary closed surface in 3-space
and that the flux through the surface is related to
the net charge enclosed by the surface. Clearly, the
net charge enclosed by a surface may be considered
a point charge, without any loss in generality.
Assume a positive point charge located at a point
P with respect to an arbitrary closed surface, S, in
3-space. P may be either outside the surface or
inside the surface. Where P lies on the surface, the
issue of point location is easily settled by examin-
ing whether the coordinates of the point satisfy the
mathematical equation of the surface.

First, consider that P is located outside S.
Although the arguments in this paper apply to
any arbitrary surface, for simplicity, assume that S
is either a spherical surface or a U-shaped rectan-
gular cylinder, as shown in Fig. 3. According to
Gauss' Law, the net flux through S due to P must
be zero. To satisfy this requirement, Feynman [12]
argues that, for any line of force, , emanating at P
and terminating at infinity, if it intersects S, the net
flux through S, due to , must be zero. According
to Feynman [12], any volume can be thought of as
completely made up of infinitesimal truncated
cones with the apex at P. For each line of force,
represented by E, the infinitesimal truncated cone
may correspond to one continuous unit as in the
case of the sphere in Fig. 3 or a set of disconnected
truncated cones as in the case of the U-shaped
rectangular cylinder also shown in Fig. 3. Gauss'
Law dictates that the flux of E entering the leading
surface of any infinitesimal truncated cone must
equal the flux of E exiting the corresponding
trailing surface of the truncated cone, such that

Fig. 1. The basic Sutherland and Hodgman scheme.

Fig. 2. Planar point location utilizing the odd parity rule.
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the net flux is zero. Feynman [12] explains it clearly
by utilizing the argument that the intersecting
end surfaces are infinitesimally small so that they
subtend an infinitesimal angle from the source, and
that the E field is sufficiently uniform over the
surface such that we can use just its value at the
center. Thus, the flux entering the sphere through
the infinitesimal surface `a' must be equal to that
exiting through the infinitesimal surface `b.' Also,
the flux entering the rectangular cylinder through
infinitesimal surface `a' must be equal to that
exiting through the infinitesimal surface `b' and
that entering through `c' must equal the flux
exiting through `d.' Similarly, the flux through `a'
`must cancel out that through `b'.

Therefore, where E intersects the surface S,
there must be an integral number of pairs of
intersecting points, implying a total of an even
number of intersection points. If, on the contrary,
we assume that the number of intersection points is
odd, then there is one intersection point through
which the flux of E either enters or exits S and
there is the absence of the corresponding inter-
section point to force the net flux through S to
equate to zero. This would violate Gauss' Law.

Therefore, the number of intersections of E with S
must be even, zero included.

Next, consider that P is located inside S as
shown for the three closed surfaces in Fig. 4. As
before, although the arguments in this paper apply
to any arbitrary surface, for simplicity, assume
that S is a closed sphere, a toroid, or a rectangular
dumb-bell. Gauss' Law requires the net flux out of
S to be positive. Feynman [12] argues that every
line of force, , emanating at P must intersect S, at
least once. Utilizing similar arguments as before,
namely that any volume can be thought of as
completely made up of infinitesimal truncated
cones with the apex at P, for each line of force,
represented by E, the corresponding infinitesimal
truncated cone may either consist of one con-
tinuous unit as in the case of the sphere in Fig. 4
or a set of disconnected truncated cones as in the
case of the toroid and the rectangular dumb-bell,
also shown in Fig. 4. Since the point charge at P lies
inside the surface, Gauss' Law implies that the net
flux exiting the infinitesimal surface must be finite.
Thus, for the sphere S, the flux exiting the infinite-
simal surface `a' of the sphere must be finite. For
the toroid and the rectangular dumb-bell, while the

Fig. 3. Electromagnetic fluxfor a positive point charge located outside a surface in 3-space.

Fig. 4. Electromagnetic flux for a positive point charge located inside a surface in 3-space.
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flux entering the infinitesimal surface `b' equals
that exiting the surface `c,' the flux exiting the
surface `a' is finite, implying that the net flux
exiting out of the surface is non-zero. Therefore,
the number of intersections of any E line of force
with the closed surface must be odd, at least 1,
so that the outward flux through at least one
infinitesimal surface is non-zero, yielding a net
positive outward flux.

Thus, for any arbitrary closed surface in 3-space,
a straight line, originating at any point P and
extending to infinity, must intersect the surface
an odd number of times, at least 1, if P is located
within the surface. Where P is located outside the
surface, the straight line from P may either never
intersect the surface or intersect it an even
number of times. This constitutes the definition
of `point location' for any arbitrary closed surface
in 3-space. Since Gauss' Law may be re-written
for 2 dimensions using a line integral instead of a
surface integral, the `odd parity' rule for planar
point location also derives its basis from the
electromagnetic field theory.

The polygon in Fig. 5(a) poses an interesting
challenge to the key thesis in this manuscript.
Although the point P appears to lie within the
polygon, according to the odd parity rule, any ray
emanating at P, except those passing through the
vertices including S, intersects the polygon twice.
Therefore, P should lie outside the polygon. For
a better understanding, consider that there are
three polygonsÐthe triangle SGF, the pentagon
ASDCB, and the octagon ASGFSDCB. Figure
5(b) enables a better appreciation of the octagon
AHGFEDCB, where H and E are apart by an
infinitesimal distance. In truth, the point P lies
inside the triangle SGF. The point P also lies
within the pentagon ASDCB. In both cases, any
ray drawn from P will intersect the polygon
only once. However, the point P lies outside

the octagon ASGFSDCB in Fig. 5(a) which is
apparent more clearly in the octagon
AHGFEDCB in Fig. 5(b).

The above findings are corroborated by Gauss'
Law, as follows. Assume, on the contrary, that the
point P lies within the octagon and that it holds a
positive charge. Therefore, the net flux through the
octagon must be non-zero. Now, an electric field
line emanating from P and terminating at infinity
will intersect the octagon twice, except when it
passes through S, exactly as in the case of the
odd parity rule. The role of S is anomalous and,
for the diagram in Fig. 5(a) to be viewed as an
octagon S, cannot constitute a vertex. Thus, an
electric field line through S is not meaningful and
the representation in Fig. 5(b) is more appropriate.
Assume that the flux flows relative to the octagon
at these intersecting points are given by F1 and F2,
respectively. Also, assume arbitrarily that a posi-
tive value implies flux exiting the octagon, while a
negative value implies flux entering the octagon.
Since P is assumed to lie within the octagon, F1

must be positive, i.e. the ray emanating from P
must first exit the octagon. The quantity, F2,
cannot assume a positive value since once the ray
has exited the octagon, it cannot exit again without
first entering it. Therefore, F2 must assume a
negative sign. Thus, the signs of F1 and F2 are
opposite, and utilizing Feynman's [12] argument
for an infinitesimal cone of flux, F1 and F2 will
cancel each other, implying that the net flux
through the octagon is zero. This clearly
contradicts Gauss' Law. Since Gauss' Law is a
fundamental physical law that underlies the
electromagnetic field theory, it cannot be violated.
Thus, the point P must lie outside the octagon and
no anomaly is implied between the odd parity rule
and Gauss' Law. Thus, closed planar polygons
with spirals in 2D space and self-intersecting
surfaces in 3D space require careful examination.

Although it is not the aim of this paper to
present data structures and algorithms for point
location, the computation required to locate any
given point relative to a hypothetical surface in 3-
space, is presented as follows. First the equation of
the surface is developed. Then, the coordinates of
the point are substituted to verify whether they
satisfy the equation of the surface. If affirmative,
the point lies on the surface. Otherwise, the point is
located either within or outside the surface. Since
the fundamental principle applies to any line of
force, emanating at the positive point charge, a line
is constructed to pass through the given point and
the origin and its equation is synthesized. Next,
the intersections, if any, between the line and the
surface are obtained by solving for sets of fx; y; zg
values that simultaneously satisfy both of the
equations. Where the set of fx; y; zg values is nil,
the point is considered to lie outside the surface.
Otherwise, the magnitude and signs of the
distancesÐP1I1, P1I2; . . . ;P1Ij, from P to all of
the intersection points, 1; 2; . . . ; j, along the
straight line through P, are computed. From thisFig. 5. Point location in a complex polygon in 2-space.
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knowledge, it is deduced whether P is located
inside or outside the closed surface depending on
whether the number of intersections of the line
originating at P and the surface are odd or even.

CONCLUSIONS

The literature presents a mechanism for planar
point location relative to a polygon, as proposed
by Sutherland and Hodgman. Although it is rich in

optimal data structures and efficient algorithms
for fast execution of the planar point location
problem, a proof of correctness for the general
problem of point location relative to any arbi-
trary surface in 3-space is absent in the literature.
This paper has argued that the electromagnetic
field theory and Gauss's Law constitute a funda-
mental basis for the `odd parity' rule and has
correctly extended the `odd parity' rule to locate
points relative to any arbitrary closed surface in
3-space.
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