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This paper describes an alternative method for teaching undergraduate dynamics that has been used
in the Faculty of Mechanical Engineering at Technion for over twenty years. The sequence of topics
in the course presents the kinematics of particles, systems of particles and rigid bodies in three
dimensions before discussing the kinetics of these systems. This alternative sequence provides the
students with sufficient time and practice to master the concepts of a rotating coordinate system
which are essential for three-dimensional problems in dynamics. In addition, the paper presents a
discussion of indicial notation and tensors, a simple proof of the formula relating the time derivative
of rotating base vectors and the angular velocity vector, as well as a convenient tabular notation
that helps formulate complicated problems in dynamics. Two example problems are presented to
demonstrate the use of this tabular notation.

INTRODUCTION

MOST UNDERGRADUATE courses in
dynamics use textbooks [1-5] which introduce the
notions of dynamics in an order that is based on
increasing mathematical complexity. Specifically,
the kinematics and kinetics of particles are
introduced for motions in one dimension, two
dimensions and then in three dimensions. Simi-
larly, the kinematics and kinetics of rigid bodies
are introduced for motions in two dimensions and
then in three dimensions. This sequence of topics
also can readily be adapted to splitting the study of
dynamics into two courses: one for particles and
rigid bodies in two dimensions, and the second for
rigid bodies in three dimensions.

The main objective of this paper is to discuss
aspects of an alternative method for teaching
dynamics that has been used in the Faculty of
Mechanical Engineering at Technion for over
twenty years. This alternative method presents
the material in a different sequence in order for
the student to have sufficient time to develop
proficiency in using the vectorial formulation
which is essential for three-dimensional problems.
The dynamics course at Technion is the most
intense mandatory course in the undergraduate
mechanical engineering curriculum. It is taught
as a 5.0 credit course with two two-hour lectures
and one two-hour recitation per week for a total of
fourteen weeks. The lectures are given by profes-
sors to large groups of students (50-70) and they
cover the basic theory and illustrative examples.
The recitations are given by graduate student
teaching assistants to smaller groups of students
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(25-35) and they present detailed solutions of
additional example problems.

An outline of this paper is as follows. Section 2
presents an alternative sequence of topics used for
teaching dynamics. Section 3 presents basic funda-
mentals of indicial notation, vectors and tensors.
Section 4 discusses a simple proof of the formula
relating the time derivative of rotating base vectors
and the angular velocity vector, section 5 presents
a convenient tabular notation for formulating
problems in dynamics, and section 6 presents two
example problems. Section 7 presents conclusions.
Throughout the text, bold faced symbols are used
to denote vectors and tensors. The components of
these tensors are presented using indicial notation.
Also, a-b denotes the dot product and a xb
denotes the cross product between two vectors a
and b.

SEQUENCE OF TOPICS

The dynamics course has a unique position in
the mechanical engineering curriculum. In spite of
the fact that it presents difficult challenges to the
analytical abilities and the physical insights of
students, it also remains extremely interesting
and rewarding. In this regard, the dynamics
course offers the opportunity to teach important
fundamental aspects of the mathematics of tensors
in an environment in which students see the
physical relevance and are highly motivated. This
course is studied by Technion students in their
third or fourth semester, and the main pre-
requisites are two semesters of calculus, one
semester of linear algebra and one semester of
statics. These mathematics courses cover dif-
ferentiation and integration in one, two and three
dimensions as well as vectors, matrices, eigenvectors
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Table 1. Sequence of topics for the dynamics course at Technion. (Each week corresponds to two 2-hour lectures and one
2-hour recitation)

Week Topics

1 Introduction; Vector algebra and indicial notation; Vector calculus; Position, velocity, acceleration; Tangential and
normal coordinates; Rectilinear motion

2 Polar coordinates; Cylindrical polar coordinates; Relative motion; Rotating coordinate axes and angular velocity

3 General differential operator; Spherical polar coordinates

4 General rigid body motion

5 Instantaneous screw motion of a rigid body; Contact of bodies

6 Kinetics of a particle

7 Vibrations; Mechanical power, work and energy (particle); Conservative force fields

8 Energy equation for a particle; Angular momentum; Conservation of momentum (yes or no?); Impulse and momentum

9 Kinetics of systems of particles; Alternative formulation of the balance laws; Impulse and momentum (systems of
particles); Mechanical power and kinetic energy (systems of particles); Coefficient of restitution

10 Equations of motion of a rigid body; Inertia tensor

11 Inertia tensor (continued); Transfer theorem for the inertia tensor

12 Planar motion

13 Impulse on a rigid body; Energy equation for a rigid body; Angular momentum and transformation relations; Point
masses, massless links, and a system of rigid bodies

14 Gyroscopic effects; Euler angles and a spinning top; Euler equations of motion

and eigenvalues. The statics course covers basic
equilibrium of bodies, trusses, and machine parts
in three dimensions, as well as elasticity of bars in
uniaxial stress. Also, the dynamics course is taught
in the same semester that the students are learning
their first course in differential equations. This
means that most of the emphasis is focused on
the proper formulation of problems in dynamics
and on the simple momentum and energy integrals,
instead of on the solution of the resulting nonlinear
equations. Nevertheless, solutions of important
problems are presented and the results are dif-
ferentiated to show that these solutions satisfy
the equations of motion.

Since the motions of particles, systems of
particles and rigid bodies in three dimensions are
presented in a single intensive course, it is possible
to teach the course using a sequence of topics that
is not standard. Table 1 presents an outline of the
topics that are taught. From this table it can be
seen that the course is divided into two main parts:
the first five weeks concentrate on the kinematics
of particles, systems of particles and rigid bodies in
three dimensions, and the remaining nine weeks
concentrate on the kinetics of these systems of
bodies.

In the more standard sequence of topics,
students can rely on simple geometry and trigono-
metry to solve problems of particles and rigid
bodies in one and two dimensions. Although this
geometrical approach is helpful to develop intui-
tion and should be emphasized whenever possible,
it cannot be easily generalized to three-dimensional
problems which require a vectorial approach.
Consequently, students who rely too heavily on
the geometrical approach are required to learn
both the mathematics of the vectorial approach
and the kinetics of rigid bodies in three dimensions
near the end of the semester when there is pressure
from exams and not enough time to absorb and
exercise this difficult material.

In contrast, the sequence of topics at Technion
forces the students to become familiar with the

vectorial approach near the beginning of the
semester by focusing on three-dimensional
problems. In particular, the complicated kine-
matical techniques that are learned during the
first part of the semester are exercised continually
during the remainder of the semester because
the study of kinetics requires the calculation of
acceleration.

Moreover, once students have learned the three-
dimensional kinematics of a rotating coordinate
system to describe the motion of a particle in
space, it is trivial to describe the kinematics of a
rigid body in three dimensions. Specifically, it is
easy for students to understand the fundamental
notion of a rigid body which requires the distance
between any two material points to remain
constant. They also understand that the angle
between any two material lines in a rigid body
remains constant. Therefore, the base vectors of a
body coordinate system which is attached to the
rigid body, will remain a set of orthonormal
vectors. Consequently, the motion of material
points in a rigid body becomes a special case of
the motion of a particle relative to a rotating
coordinate system.

Before closing this section, it should be
mentioned that Suhubi [6] uses a similar sequence
of topics in his dynamics course.

INDICIAL NOTATION, VECTORS
AND TENSORS

The modern literature in mechanics uses indicial
and tensor notation to write mathematical equa-
tions for physical laws. Moreover, with the advent
of hand-held calculators which easily perform
matrix operations, it is very practical and efficient
to teach students indicial notation. For these
reasons, a few fundamental notions of indicial
notation are introduced in the dynamics course.
Specifically, the rectangular Cartesian coordinates
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(X1, X», X3) and Dbase vectors (e;, e, €3) are
identified with the usual expressions:
(Xh X2, X3) = (Xa Y, Z)> (61,627 e3) = (i7j7 k) (1a7 b)
After introducing the notion of a free index (an
index that appears only once in an expression and
takes the values 1, 2, 3), the components x; of

the position vector x of a material point are
determined by the three indicial equations:

Xj =X-¢ (2)

Next, the notion of a dummy index (an index
that appears only twice in an expression) and the
Einstein summation convention (a dummy index
takes the values 1, 2, 3 and the terms are summed)
are introduced so that the vector x can be
expressed in the compact form:

X = X € (3)

The notion of a second-order tensor appears
quite naturally in the discussion of the angular
momentum of a rigid body. Specifically, let xp
(relative to a fixed origin O) locate an arbitrary
material point in a rigid body. Then, the position x
(relative to O) of another arbitrary material point
in the rigid body can be expressed in the form:

X =xp+¢& 4)

where the vector £ locates the point x relative to B
(see Fig. 1). It follows that the angular momentum
Hjp of the rigid body relative to the point B can be
expressed by the integral:

HB:J (X—XB)Xp(f{—XB)dVZJ € x p€dv
P P
(5)

where p is the mass density (mass per unit volume),
P is the region of space occupied by the rigid body,
dv is an element of volume of P, and a superposed
dot denotes time differentiation.

Before learning kinetics the student has already
mastered differentiation with respect to a rotating

Fig. 1. Kinematics of a rigid body.

coordinate system. Consequently, since £ is a
vector connecting two material points on a rigid
body, it follows that:

E=wx¢ (6)

where w is the absolute angular velocity of the rigid
body. Moreover, since w is a function of time only,
it is obvious that w can be removed from the
integration over space in equation (5).

To this end, the tensor product operator ® is
defined by the properties of the second order
tensor (a®b):

(a@b)c=a(b-c),c(a®b) = (c-a)b,

(aob) =bxa (7a,b,¢)
where a, b, ¢ are arbitrary vectors, and (a@b)"
denotes the transpose of (a ®b). It then follows by
using equation (6) in (5), expanding the vector
triple product:

Ex (wx €)= (£ Hw— (£ w)E (8)

and using equation (7), that the angular momen-
tum Hg can be written in terms of the inertia tensor
Ig by the expressions:

Hp = Ipw, Iy Lp[(ﬁ-ﬁ)l—€®£]dV=I§
(9a,b)

where I is the second-order unit tensor. Moreover,
with the help of the symmetry of I and the proper-
ties of the tensor product it can be seen that Iz is a
symmetric tensor.

Knowledge of the tensor product has the
additional important advantage that students can
easily recognize how to generalize the representa-
tions in equations (2, 3) for vectors to higher-order
tensors. In particular, a general second-order
tensor T can be expressed in terms of its compo-
nents Tj; relative to the basis e; by recognizing that
the nine second-order tensors (e; ® e;) represent the
basis for the space of all second-order tensors so
that:

T:Tij(ei®ej),Tij :T-(ei®ej) (10a,b)

In these expressions the summation convention
is employed and the dot product operation has
been generalized to second-order tensors so that:

(a@b)-(ced)=(a-c)(b-d) (11)

where a, b, ¢, d are arbitrary vectors. By comparing
the expressions in equations (2, 3, 10) it can be seen
that vectors are first-order tensors, which are a
special case of general-order tensors.

The knowledge that tensors can be expressed in
coordinate-free notation, equations (3, 10a), helps
students understand the fundamental nature of
transformation relations. In particular, consider
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another set of right-handed orthonormal base
vectors e; which are characterized by their direc-
tion cosines A ;; relative to the basis e; such that:

Ajj = e - ej = cos(e;, j) (12)

Now, the vector v and the second-order tensor T
can be expressed in terms of their components v;
and Tj; relative to the basis e; or in terms of their
components v{ and T}, relative to the basis e{ such
that:

v=vie; =vie;, T =Tij(e; @ e;) = T},(e; @ e})
(13a,b)
These equations express the fact that the tensors
v and T are coordinate-independent. In contrast,

the components of these tensors are determined by
the expressions:

Vi=V-e,Vvi=v-el,

Tij=T (ei®e), T =T (e[ e])

(14a,b)
(14c,d)

which are seen to be explicitly dependent on the
choice of the coordinates. Furthermore, in order to
preserve the coordinate-independent nature of the
tensors v and T, the components of these tensors
relative to the unprimed basis must be related
to those relative to the primed basis by tensor
transformation relations.

Using the definition in equation (12) of the
direction cosines Ajj, these tensor transformation
relations can be developed easily by noting that
since e] and e; both span the three-dimensional
space, they can be expressed in the forms:

engijej,ei:AjieJ( (15a,b)
Consequently, with the help of equation (14) it
follows that:

Vi=V: (Ajiejf) = AjiVJ{, Vi =V (Aijej) = AijVj
(16a, b)
Tij =T- (Amiein®Anje;) ZAmiAnJ’T/ (160)

Ti=T (Aimen @ Ajnen) = AinAjn Tmn  (16d)

In order to help the students recognize the
structure of these results it is important to note
that according to the definition in equation (12) of
the direction cosines Ajj, the first index of Aj; is
always connected with the primed components,
and the second index of Ajj is always connected
to the unprimed components. Moreover, it is
important to emphasize that the order of the
indices in the definition (12) represents an arbitrary
choice and could have been reversed. However,
once the definition for A;; has been made it must
be used consistently.

Next, the tensor transformation relations can
be rewritten in the more convenient matrix

notation by recognizing that the transpose AiTj of
Ajj is given by:

Af = Aji (17)

Consequently, the expressions (16a,c,d) can be
rewritten in the forms:

vi = ALv! (18a)

ij V]

Tij = A’irmT;nnAnb T;j = AimTrnn ATlJ (18b, C)
which correspond directly to matrix multipli-
cation. For example, equation (18b), states that
the components Tj; of T can be obtained by multi-
plying the matrix of components T/; on the left by
the transpose of the matrix of Aj; and on the right
by the matrix of Aj;.

Returning to the inertia tensor I, it follows
that its components Ig;; relative to e;, and its
components Iy relative to e{ become:

IBij =1Ig- (ei®ej),113ij =1Ig- (ei®ej') (19a,b)

Moreover, since the rigid body moves through
space, the region P changes with time so that
components Ip;; become functions of time. In
contrast, if e] are base vectors of a body coordinate
system attached to the rigid body, then the
components I, of the inertia tensor are constants.

Students of dynamics have difficulty realizing
that for many problems it is convenient to choose
different coordinate systems and base vectors for
simplifying different parts of the problem.
However, it is easy for students to understand
that the laws of physics cannot depend on any
arbitrary mathematical choices, like the choice of
coordinates. Consequently, by exposing students
to these basic properties of tensors it is possible
to emphasize that tensors are the proper
mathematical tools to express the laws of physics
because they automatically remain coordinate-
independent.

THE ANGULAR VELOCITY OF A
ROTATING COORDINATE SYSTEM

The base vectors (e,, eg, €,) of a cylindrical polar
coordinate system are defined relative to the fixed
base vectors e; in terms of the angle 6 such that:

e;(0) = cosfe; + sinfe,,
(20a,b)
ey(0) = —sinfe; + cosfer, e, =e;3

It then follows that for a particular particle, 6 is a
specified function of time and the vectors e, and ey
rotate counterclockwise about the e, axis with
angular velocity 6. Thus, it is reasonable to
define the absolute angular velocity vector w:

w=0le, (21)
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which is characterized by the angular velocity and
direction of rotation of the coordinate system.
Next, using (20) it can be shown that w is related
to time derivatives of the base vectors by the
formulas:

e =fey =w x ey,

¢ = —fe, = w X ey, (22a,b,c¢)

e, =0=wxe.

These results are then used to motivate the case of
a general set of rotating base vectors e; which are
characterized by the rate equations:

¢ =wxej (23)

where w is the absolute angular velocity vector. In
most undergraduate books, equation (23) is
presented without proof even though w no longer
remains in a constant direction.

The experience at Technion indicates that
students can easily understand the following
proof of (23). First, it is noted that since e are
three vectors, they contain a total of nine compo-
nents. However, since e/ are orthonormal vectors,
these nine components must satisfy the following
six independent constraints:

(24a,b)

- O O

1 0
ef-ejzéij,éij: 0 1
0 0

where 6;; is the Kronecker delta symbol. This
means that the base vectors e/ contain only three
independent components which characterize the
three degrees of freedom of rotation. Moreover,
using differentiation, these constraints can be
written in the rate forms:

é-et+e-e=0 (25)

Next, equation (23) is substituted into (25) and
the properties of the scalar triple product and the
cross product are used to write:

/ / ! ! __ / / / 1
wxe-ete wxe =w-lexe +e xe|=0
(26)

Since equation (26) is valid for any values of the
three components of w, it follows that the rate
equation (23) satisfy the constraints in equation
(25), which completes the proof.

Furthermore, for the special case of the base
vectors of a cylindrical polar coordinate system
which rotate about a fixed axis e, it can be
shown that the angular velocity vector w is also
determined by the equation:

w=¢e; X € ,w==eyXe, (nosum on r or )

(27a,b)

This suggests that w is perpendicular to the
plane formed by the base vector and its derivative.

However, for the general case where w is not in a
fixed direction, the equation for w must depend on
the rotation of all three base vectors in a symmetric
manner. Therefore, equations (27) suggest the
generalized form:

w =3 ef x &] (28)

To prove that equation (28) is valid for the
general case, the expression (23) is used together
with the properties of the vector triple product to
obtain:

slef x ] = 3le{ x (w x e])]

[SIENE STE N ST

[(ef - ef)w — (w-ej)ei]

=;Bw—-w=w (29)

Alternatively, equation (23) can be derived by
introducing an orthogonal tensor A with the
components Aj; (relative to the base vectors e;)
given by equation (12) such that:

A=¢e;@e,ATA=T1AAT =1, ¢! = Ae;
(30a,b,c,d)

Now, by differentiating the orthogonality condi-
tion (30b) it can be shown that the time derivative
of A is related to a skew-symmetric rate of rotation
tensor 2 such that:

A=0A Q=AAT=_QT (31a,b)

Then, differentiation of equation (30d) yields the
desired result:

el =0Ae; = Qe =wx e/ (32)

where the angular velocity vector w is the axial
vector of €. Although this latter proof is straight-
forward, it relies on mathematical concepts that
are not easily understood by most students in their
first course in dynamics. In contrast, the discussion
related to equations (24-26) proves the validity of
the result (23) and requires less mathematical
sophistication, but it does not derive the expression
(23) in a straightforward manner. An alternative
simple systematic development of the expressions
for the angular velocity vector and the time deri-
vatives of rotating base vectors does not yet appear
to be available.

A CONVENIENT TABULAR NOTATION

Often in describing complicated three-
dimensional motion it is necessary to use one or
more sets of rotating base vectors. In particular, let
p be an arbitrary vector that is referred to the base
vectors e/ which rotate with absolute angular
velocity w [see equation (23)]:

p=Dpie; (33)

For example, p could represent the position,
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Table 2. Tabular notation for formulating dynamics problems
1 2 3 4
! ! !
1 e} e’ [
2 w w} wh w'
3 X Y ' X
4 ox/ét X} x4 x4
5 w XX wh Xy —whxh —w) x5+ wix] w’xh —whH x|
) o o/ v 1 ! I ol / /
6 V=X Vi =X| +wsHxs —wix) V5 = X5 — W X5 +wiXx) Vi = X3 +w| X5 —wsHX)
7 bv/ét v vh v
A ! A ! ! ! ! ! ! ! ! !
8 WXV whHvE —wivh —wi vy +wivy wvh —whHvy
9 a=v al =V +whvh—wiv) ah =Vh —w| v +wiv) ay = Vi +w)vh —whv)

velocity, acceleration or the angular momentum of
a rigid body. To calculate the time derivative of p it
is necessary to recognize that both the components
p; and the base vectors e] are functions of time so

that:
p=Dpie; +pié] (34)

However, using equations (23) and the notation
in [7], this derivative can be written in the form:

. Op
P=5t
where Op/6t is called the frame derivative because it

is the time derivative of p holding the base vectors
e! fixed:

+wxp (35)

(36)

The formula in equation (35) is sometimes called
the general differential operator.

The late Professor M. Reiner at Technion
developed a tabular notation that helps organize
the formulation of complicated dynamics
problems onto a single page and Dr. B. Popper
[8] introduced this notation into the dynamics
curriculum. This tabular notation is based on the

representation of the product as the

determinant of a matrix:

Cross

ey e e;
!/ wg
P}
= (wyp5 —wips)e] — (wip; —wipy)e)
+ (w)ph —whp')es (37)
Table 2 shows an example of this tabular nota-
tion where the position vector x, the velocity v, and
the acceleration a have been calculated using their
representations relative to the rotating base vectors
e!. For convenience, the rows and columns have
been numbered. Row 1 lists the rotating base
vectors, and row 2 lists the components of the
absolute angular velocity of these rotating base
vectors. Row 3 lists the components of the position
vector, and row 4 lists the frame derivative of x.
Row 5 lists the result of the determinant of the
matrix formed by rows 1, 2 and 3 [see eqn. (37)],
and the row 6 lists the velocity v which is deter-

mined by the sum of rows 4 and 5. Similarly, row 7
lists the frame derivative of the velocity v and row

oO—>»
€
D 7 7 Y

Va A

Fig. 2. Sketch of a rolling disk with a moving particle A in the slot CA.
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Table 3. Tabular notation associated with the problem in

Fig. 2

el e el
w 0 0 w=0
XA/B S h 0
Oxa/ /6t $ 0 0
w X XA/B —wh ws 0
VA/B $—wh wSs 0
dva/p/ot §—dWh ws +ws 0
W X YA/B —w(ws) w(§ — wh) 0
aa/p §—wh—w?s Wws+2ws —w?h 0

8 lists the result of the determinant of the matrix
formed by rows 1, 2 and 6 [see eqn. (37)]. Finally,
row 9 lists the acceleration a which is determined
by the sum of rows 7 and 8. It is important to
emphasize that the components of all vectors are
referred to the base vectors in row 1 of the table.
Moreover, individual tables must be used for each
set of rotating base vectors.

The experience at Technion indicates that this
tabular notation helps the students formulate
complicated problems in dynamics because it is
very systematic and easy to check.

EXAMPLES

In order to introduce the notion of relative
motion it is convenient to consider the problem
sketched in Fig. 2. Specifically consider a circular

disk which rolls without slipping on a horizontal
surface. Particle A is constrained to move in the
slot CA which is located a constant distance h from
the center B of the disk. The motion of particle A is
determined by the function s(t). The base vectors e;
and e, are fixed in space and are chosen so that e,
is parallel to the horizontal plane. If the angular
velocity w of the disk vanishes, then it is clear that
the motion of A can easily be characterized by the
base vectors e} and e, when e/ is chosen to be
parallel to the slot CA and when the origin is
located at the point C. However, if the disk rolls
and w is nonzero, then the point C exhibits a
complicated motion.

Under these conditions, it is still convenient to
choose e/ to be parallel to the slot but it is more
convenient to refer the motion of particle A to the
center of the disk B. Specifically, the vector xa
which locates the point A relative to the fixed
origin O, can be expressed in terms of the vector
xp which locates the point B relative to the fixed
origin O, and the vector x,,g which locates the
point A relative to B, such that:

XA = Xp + Xa/B, XB = §(t) ey,
(38a,b,c)
Xa/p = s(t)e} + he)

where £(t) is the distance between O and B and,
because of the no slip condition, its derivative is
related to the angular velocity and the radius of the

Fig. 3. Sketches of two views of a disk being rotated by two motors.
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disk. The absolute velocities v and vg, and the
relative velocity va,p are given by:

VA = XA, VB = XB, Vo/B = Xa/B (39a,b,¢)
Similarly, the absolute accelerations a, and ag,
and the relative acceleration a, g are given by:

aA = VA, ag = VB, ap/B = VA B (40a, b, c)

This example helps emphasize the point that

although the choice of the coordinate system
used to formulate the problem is arbitrary, that
choice can simplify or complicate the solution.
Specifically, for this example it is easiest to differ-
entiate the vectors xg and vg when they are
referred to the fixed base vectors, whereas it is
easiest to differentiate the vectors xa,g and vasp
when they are referred to the rotating base vectors.
Once the differentiation has been performed the
resulting vectors can be expressed in terms of either
coordinate system by using the transformation
relations:

e} =cosfe; +sinfe,, e, = —sinfe; + cosbe;
(41a,b)
e; =cosfe| —sinfe’,, e; = sinfe; + cosfe;

(41c,d)

where 6 is the angle between e; and €| so that
w = 0. In particular, vz and ag become:

vg = {[cosfe| —sinfe)], ag = {[coshe| — sinfde)]
(42a,b)

Also, Table 3 shows the calculation of the
relative velocity va/p and acceleration asp using
the absolute angular velocity w of the base vectors
e’. In this regard, it should be emphasized that the
relevant physics and geometry associated with the
motion of the body is translated from the free-
body diagram into the mathematical expressions in
the first three rows of the table. The mathematical
manipulations associated with the remaining rows
in the table are purely technical and once they
have been mastered by the student, they can be
programmed symbolically.

As another example, consider the fully three-
dimensional problem sketched in Fig. 3 which
shows the same disk which is now rotated by two
motors. It is obvious that this latter problem
cannot be dealt with geometrically. Specifically,
the base of motor M, is fixed and its shaft rotates
with the angular velocity ¢ relative to its base
about the fixed vertical axis e,. The base of
motor M, is attached to the shaft of motor M;
by a joint that allows rotation about the horizontal
axis which passes through the fixed origin O. The
shaft OB of the motor M, has constant length L,
and it rotates with angular velocity 6 relative to the
motor’s base. The angle between the shaft of motor
M, and the horizontal is characterized by «(t).

Table 4. First three rows of the table for formulating the
problem in Fig. 3 in terms of the base vectors e/.

" n "
€] € €3
Q —a ¢cosa ¢sina
XA scosf —hsinf ssinf + hcosd L

Finally, the disk is attached rigidly to the shaft of
motor M, and the particle A moves in the slot CA.

For this problem it is convenient to introduce
the base vectors e; which are fixed; the base vectors
e/’ which rotate with the base of motor M,, with e’
coinciding with the shaft OB and e/ remaining in
the vertical plane; and the base vectors e/ which
rotate with the disk, with e’ coinciding with the
shaft OB (see Fig. 3). The absolute angular velo-
cities of these rotating base vectors are defined
such that:

¢/ =Qxel!, Q= gey— de (43a,b)

¢ =wxe,w=0+0e} (43¢, d)
where the angular velocity vector 2 should not be
confused with the tensor temporarily introduced in
equation (31). The expression (43b) is used to
emphasize that vectors can be added when they
are expressed with respect to different base vectors
even though components of vectors can only be
added when they are referred to the same base
vectors. Moreover, it is emphasized that the
student should first write the vectors in their
simplest forms [e.g. referring the angular velocity
¢ to the direction e, and referring the angular
velocity & to the direction e]. Any transforma-
tions to different coordinate systems can be done
afterwards as needed. This avoids complicating a
free-body diagram with unnecessary components
of vectors.

Because of the complexity of this problem, the
choice of the coordinate system used to calculate
the absolute acceleration of particle A depends to a
large extent on individual preference and is not
straightforward. For any choice there is some
compromise associated with the simplicity of the
representation of either the absolute angular velo-
city or the position vector. However, usually it is
convenient to choose an intermediate coordinate
system like that associated with the base vectors
e/. In order to use the base vectors e it is
necessary to write e, in terms of e!:

e, = cosae) +sinae) (44a,b)

Table 5. First three rows of the table for formulating the
problem in Fig. 3 in terms of the base vectors e/

!’ !

!
€ € €3
w —ccosf dsin 6 6+ $sinw
+¢cosasinf +¢cos acosf
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Similarly, in order to use the base vectors e it is
necessary to use the transformation relations:

" __ ! . I
e| =cosfe| —sinfe,,

el2, = sin 96’1 + cos 06127 (45a,b,C)

no__ .1
e, =ej;.

Table 4 shows the first three rows of the table for
formulating the problem in Fig. 3 in terms of the
base vectors e}, and Table 5 shows the first three
rows of the table for formulating the problem in
Fig. 3 in terms of the base vectors e!. In both of
these tables the vector x, locates the position of
particle A relative to the fixed origin O. From these
tables it can be seen that the angular velocity 2 in
Table 4 is much simpler than the angular velocity w
in Table 5, and that the position vector x, in Table
4 is more complicated than that in Table 5. For
either of these tables the remaining rows can be
obtained in a straightforward manner. However,
since the resulting expressions are so complicated
they are not shown explicitly.

CONCLUSIONS

The alternative sequence of topics taught at
Technion provides the students with sufficient
time and practice to master the concepts of a
rotating coordinate system. The students are chal-
lenged by this approach and they feel a great sense
of accomplishment at the end of the semester
because they know that they can formulate even
the most difficult three-dimensional problems in
dynamics. The success of this approach is deter-
mined by the fact that the students pass the final
exam which is specifically designed to test if they
can calculate acceleration of a particle in a coordi-
nate system rotating in three-dimensions, and the
rate of change of angular momentum of a rigid
body experiencing full three-dimensional motion.

Since this is a first course in dynamics, it is
important to develop physical intuition about
dynamics. Therefore, a number of two-dimensional
examples are presented and analyzed with both the
geometrical approach and the vectorial approach.

This combined approach is essential to the devel-
opment of familiarity with the vectorial approach
in a setting in which the students can check the
equations relative to the geometrical approach
with which they are more comfortable in the
beginning.

Moreover, during the course the students are
exposed to indicial notation and tensors and the
fundamental aspects of the coordinate-free nature
of tensors is emphasized. However, a conscious
effort is made to present only the bare minimum of
details related to these subjects. Our experience
indicates that undergraduate students have very
little trouble mastering the technical aspects of
tensor manipulations like those associated with
equations (14) and (16). However, it is not
expected that they will fully understand the deep
properties of tensors at this early stage in their
education. The objective here is to present them
with correct mathematical tools that will remain
valid if they pursue the subject of tensors later in
more depth.

It is our opinion, the proposed alternative
sequence of topics is appropriate for any dynamics
course which has the objective of teaching aspects
of rigid body dynamics in three dimensions. Of
course, the number of example problems and the
range of topics covered will depend on the number
of teaching hours that are dedicated to the specific
course. Although the Technion’s students have
been exposed to calculus in their senior year of
high school, they typically do not read sections of
the textbook independently at home. In contrast, it
is our understanding that a typical student in the
United States does independent reading assign-
ments. Therefore, it may be possible to adopt
this alternative sequence of topics for such students
without having to significantly increase the
number of contact hours.
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