Int. J. Engng Ed. Vol. 16, No. 6, pp. 544-552, 2000
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2000 TEMPUS Publications.

Menu-driven Graphical Interface for
MATLAB Control Design*

E. K. ONG and F. L. TAN

School Of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798.

E-mail: mfitan@ntu.edu.sg

This paper describes a method of integrating various approaches to controller design into a single
menu-driven graphical software interface for MATLAB. For convenience sake, the graphical
interface is referred to as CADICS (Computer-Aided Design Integration of Control System). The
CADICS application package was developed under a Window-based environment to assist
engineering students in designing control systems using MATLAB, but who do not have detailed
knowledge of MATLAB commands. Two methods of the control system design that are normally
taught in engineering undergraduate control courses are incorporated into the program. In the first
method (Classical Control), the plant can be compensated by PID, lead or lag compensators.
Users choose the type of compensator required and the compensator parameters are automatically
determined by the system so as to fulfil the design specification. In the second method (State Space
Regulator), control is effected by state feedback, with or without a full-order observer. The paper
highlights the program environment and the data storage structure. A case study is described using
the developed software (CADICS). The software helps to relieve the load on students to be familiar
with MATLAB commands. When used in a laboratory session to illustrate control principles,

students will thus have more time to concentrate on the control theory rather than on the design

tool, i.e. MATLAB.

SUMMARY OF EDUCATIONAL ASPECTS
OF THE PAPER

1. The paper discusses materials/software for a
course in dynamics and control.

2. Third-year university students of the Mechani-
cal Engineering Department are taught in this
course.

3. The mode of presentation is in the form of a
regular laboratory session.

4. The hours required to cover the material is 3
hours in laboratory with 6 hours homework.

5. The novel aspects presented in this paper relate
to the formulated concept and approach in
devising an autonomous intelligent controller
designer.

6. The standard text recommended in the course,
in addition to author’s notes, is Dynamics and
Control Systems by Nise, which covers the text
described.

INTRODUCTION

THE EXCELLENT control system design tool,
MATLAB [1] has enabled users to solve chal-
lenging problems and compare different design
techniques [2]. MATLAB commands are easy to
learn. However, with the introduction of more and
more new toolboxes in MATLAB, e.g., the LQG
toolbox, the H,, toolbox, etc., there have been
complaints from students in laboratory design
sessions that too much time has been spent in

* Accepted 29 October 1999.

going through the manuals in order to select the
appropriate commands. As a result, they are not
able to devote sufficient time to understanding the
more important design principles and theories.

As an example, to illustrate the tedious design
process, consider the Ziegler-Nichols method of
designing a PID controller. MATLAB can design
the controller for a system represented by a trans-
fer function whose numerator and denominator
are denoted by ng and dg respectively. If K, is
the gain at which the close loop system starts to
oscillate, and w,, is the oscillation frequency, then
the individual P-I-D gains can be computed as
follows [3]:

Ky and k; = Kytom

Wmn ™

ky = 0.6k, kg =

The result can be achieved through the following
MATLAB commands:

>>rlocus(ng,dqg),grid,

>> [km,pole]l=rlocfind(ng,dqg) ;
>> pause

>>pole2=pole(2,1);
>>wm=imag(pole2) ;

>> kp=o0.6*km;kd=kp*pi/

(4*wm) :ki=kp*wm/pi;

>>nk=[kd kp ki]

>>dk=[10];

As can be seen, the procedure requires a good
understanding of the command syntax of
MATLAB. If a user decides to examine the step
responses or re-tune the design, the process will
become more time consuming. Those unfamiliar

Menu-driven Graphical Interface for MATLAB Control Design 545

with MATLAB commands have to spend lots of
time going through the manuals.

To overcome these problems, Visual Basic
programming is used to create an attractive and
useful program that fully exploits the graphical
user interface. The existing MATLAB toolboxes
are automated and integrated into one user-
friendly environment that allows students to
experiment with the various control systems
design algorithms.

MATLAB control toolboxes allow various
methods to be employed. They include:

® classical control;

® state space regulator;

e digital control;

® algebraic design (RST controller);

® linear quadratic regulator and H,, control.

In many engineering undergraduate control
courses, however, only classical control and state
space regulator methods are included. This paper
therefore focuses on these methods as a foundation
for future development to expand into other design
methods.

PROGRAM DEVELOPMENT

This section describes the concepts in the devel-
opment and highlights the features available in the
CADICS program.

(o)

The overview

Visual Basic 3.0 is used to develop a Window-
based environment which serves as an interface
between user and MATLAB control system tool-
box. Communications between the two are carried
out via ‘m’ files which are machine independent.

Either Borland C++ or Visual Basic can be used
as the programming language for the graphical
interface. For the present application, Visual
Basic is deemed to be more suitable as it has the
following features.

® Visual Basic objects include forms, controls, and
special objects such as App, Clipboard, Debug,
Printer and Screen. Each object has an asso-
ciated set of properties, events and methods.

® The on-line help with built-in examples makes
programming easier.

® Interfacing with other software, e.g. Math-
works’ MATLAB, is also easier.

Figure 1 shows an overview of the CADICS
program. The existing program 1is developed
based on modular design and is menu-driven. It
has three menus, namely File, Method, and Help.
Under the Method menu, two control design
methods have been implemented as individual
modules, namely the Classical Control Design
module and State Space Regulator Design
module. More modules can be added in the
future to expand the control design methods.

METHOD

(LASSTCAL (OVTROL
MSiav

|

STATE SPACE
REGULATOR
MSiay

Future Expansion of New
Modules

Module 1

Components of Module 1:
+Data Storage

+input

+Output

+Compensation
+Algorithm

Module 2

+Data Storage
+Input

+Output
+Compensation
+Algorithm

Components of Module 2 :

Fig. 1. An overview of the CADICS program.

546 E. Ong and F. Tan

Fig. 2. Classical Control menu.

Special considerations that are taken into account
during the development process are described
below.

Firstly, the program is ‘menu-driven’ as opposed
to direct keying of commands into MATLAB. It
simply requires a user to be able to understand or
to recognize the available options, instead of
having to learn and to recall the MATLAB
command and argument structure. The menu-
driven feature guides the user step-by-step by
suggesting viable options.

Secondly, the program is built up by modules.
The program has a set of options, displayed on the
screen, where the selection and execution of
the options results in a change in the state of the
interface. It consists of a File menu, a Help menu
and a ‘Method’ menu. The ‘Method’ menu caters
for different controller design algorithms. Each
method is classified under one module and
includes various components that have specific
purposes in the program. The modular structure
allows flexibility for future inclusion of new
modules (methods of controller design) without
affecting the operation of the existing program.

The module structure
For ease of programming and further expan-
sion, every module is built with the same structure:

(a) Data storage is a buffer created for data to be
stored and retrieved for processing. Input
from the user to the program is performed
through input boxes. Once the user has
entered the necessary input data, the program
will write and save the data into a file. The
data is then loaded to MATLAB via ‘.m’ files
for processing.

(b) The input format comes in two forms. They are
the ‘input boxes’ form which accepts numeri-
cal values and the ‘input by option’ form
which allows the user to select one of the
several options that are available in the
program.

(c) Different design algorithms can be coded into
the controller design techniques section, such
as Classical Control, State Space Regulator
Control method and LQG.

(d) Output format refers to the intermediate or
final results obtained in running the appli-
cation. It exists in two display modes: the
graphical display mode which includes step
response, root locus plot, bode plot, and the
numerical values display mode which shows
system parameters and the transfer function.

CADICS GRAPHICAL INTERFACE

Various functions are built into the CADICS
program. As shown in Fig. 1, two control method
modules were included; the Classical Control
module and the State Space Regulator Control
module. Upon selecting the Classical Control
menu, the classical menu would appear as shown
in Fig. 2.

The menu allows the user to choose between
time and frequency response. The input is in
polynomial expression form as shown in Fig. 3.

The Proceed button opens the input boxes
for the user to enter numerical values based on
the format of the expression given as shown in
Fig. 4.

The parameter button only appears when the
program has detected a second-order system input.

Menu-driven Graphical Interface for MATLAB Control Design 547

Fig. 3. Polynomial expression form.

This activates a system parameter menu as shown
in Fig. 5.

Clicking the PID button activates the PID
compensator menu as shown in Fig. 6. There are
two design options: Ziegler Nichols and Analytical
method. Upon clicking MATLAB Link button,

the MATLAB Command Window would be acti-
vated followed by a display of the output plots.

Similarly, the lead/lag compensator sub-menu is
designed following a ‘user-friendly approach’. The
procedures for a lead compensator design are
highlighted as shown in Fig. 7.

Fig. 4. Input boxes.

548 E. Ong and F. Tan

Fig. 5. System Parameter menu.

® Select the compensation method from Root ® Graphs will be plotted and parameters will be
Locus Design section. displayed.
¢ (S)elifgntlslgctriz%umd output plot from the Plot Selecting the State Space Regulator Design Menu
o EII: ter the desi o specifications will bring up Fig. 8. Plant parameters can be
gn Spe entered either as a transfer function polynomial
® Select MATLAB Link.

or as a state space regulator equation.

Fig. 6. PID compensator menu.

Menu-driven Graphical Interface for MATLAB Control Design 549

Fig. 7. Lead/lag compensator menu.

If an observer is required, clicking the appro-
priate icon will lead to a full-order observer-based
menu. The following menu shown in Fig. 9
requires the user to enter the compensator poles
as well as observer poles.

The plot options in the program allow plotting
of the root locus, Bode diagram and time response
of compensated systems.

CASE STUDY

In order to illustrate the usefulness of CADICS
in the learning process, a comparison was made
between design using MATLAB and design using
CADICS for the following plant:

400
G =V
() = =735 1 200)

To compute and plot the step response from ¢ = 0
to t = 10s, the commands to be entered in
MATLAB are as follows:

>>ng=400; nk=[132000];
>>t=1[0:0.1:10]"; y=step(ng,nk,t);
plot(t,y)

For frequency response calculation, the syntax for
the bode command is:

>>Dbode (ng,nk)

However, if the user wishes to view the root locus
plot, the following command is needed:

>>rlocus(ng,nk)

Upon obtaining the response of the system, if the
plant requires any compensation, the user will have
to decide the type of compensator to be used (PID,
lead or lag).

550 E. Ong and F. Tan

e

e

e
-
.

i

e
e

e

e
G
prviee

e
.

Fig. 8. State space regulator design menu.

In the Ziegler Nichols method, users can deter-
mine the gain parameters K, K; and K; using
familiar equations, however, users are required to
deduce the crossover gain (K,,) and crossover
frequency (w,,) first. This can be achieved by the
rlocus and rlocfind commands as below:

>>rlocus(ng,nk) ;

>> [km,pole] =rlocfind(ng,nk) ;
>> pause

>>m=imag(pole) ;

The following commands are entered to calculate
the gain parameters. The conv command is used to
merge the transfer function with the compensator

hserver Poes

P

. .

-
4

e

o
:

.

transfer function to obtain the compensated
system:

>>kp=0.6xkm; kd=kpxpi/(4x (m);
ki=kpx (m/pi;

>>nk = [kdkpkil;

>>dk=1[10];

>> num = conv (ng,nk) ;

>> den = conv(dg,dk) ;

The closed loop step response for the compensated
plant can now be plotted using:

>> [ngc,dgc] =cloop(ng,dg,-1);
>> [ABCD] =tf2ss(ngc,dgc);
>>t=[0:0.01:2];

Fig. 9. Full-order observer-based menu.

Menu-driven Graphical Interface for MATLAB Control Design 551

>>Ct =step(A,B,C,D,1,t);
>>plot(t,Ct)

In the Analytical method, the calculations for the
gain parameter are different. Users have to enter
the equations to calculate the gain parameter. The
syntax are as follows:

>>ngv =polyval(ng,j*wgc) ;

>> dgv =polyval(dg,j*wgc) ;

>> g=ngv/dgv;

>> thetar = (dpm - 180) *pi/180;
>>ejtheta=cos(ejtheta)
+j*sin(thetar);

>>eqn = (ejtheta/g)+j*(ki/wgc) ;
>>x =1imag(eqn) ;

>>real(eqgn)

>>kp=r;

>>kd =x/wgc;

>>if ki ~=0,

>>dk=1[10]; nk=[kdkpki];
>>elsedk=1; nk=[kdkp];

To perform lead/lag compensation, MATLAB
commands and the equations have to be entered
as follows:

>> [ABCD] =tf2ss(ngc,dgc);

>>Ct =step(A,B,C,D,1,t);

>>ngv =polyval(ng,s_1);

dgv =polyval(dg,s_1); g=ngv/dgv;
>> theta=angle(qg);

>> if theta > 0; phi_c =pi-theta;end;
>> if theta < 0;phi_c =-theta;end;
>>phi=angle(s_1);

>> theta_z =real(phi+phi_c)/2;
>> theta_p=real(s_1)-imag(s_1)/
tan(theta_z);
>>z_c=real(s_1)-imag(s_1)/
tan(theta_z);
>>p_c=real(s_1)-imag(s_1)/
tan(theta_p) ;

>>nk=[1-z_c];

>>dk=[1-p_c]l;

>> num = conv (ng,nk) ;

>> [numc,denc] = cloop
(num_all,den_all);

From the above, it is obvious that users have to
go through long and tedious procedures to obtain
the compensated system. Further, the students
have to be proficient with the MATLAB
commands and require memorising the large
number of commands. Very often, the students

have to resort to flipping through the MATLAB
manual to find the appropriate commands and
syntaxes. Thus, this will slow down the students
in a laboratory session. The same process,
however, can be carried out through a few
‘clicks’ on the menus (similar to those menus
shown in earlier section) in CADICS to achieve
the same compensated system. As a result, students
are able to spend more time investigating the
characteristics of control systems without the
burden of memorizing MATLAB Commands.
The objective of the CADICS program is to
emphasize the designing of a control system
using MATLAB software and to investigate the
characteristics of the designed system. The learning
of the MATLAB commands will not be necessary
through the use of the menu-driven graphical
interface. The use of the CADICS interface to
design the control system still require a good
fundamental knowledge of the control system
which is covered in the lectures of any engineering
undergraduate course. The menu-driven interface
will help to understand the detailed process in
designing a control system.

CONCLUSION

A Window-based program (CADICS) that
integrates various methods of controller design
into one environment has been developed and
described in this paper. The program can be used
to speed up the process of controller design by the
Classical Control or the State Space Regulator
method. The completed program is menu-driven,
which allows users to easily understand and recog-
nize the various options. It also guides the user,
step by step, suggesting viable options. These
advantages, together with the ability of the
program to generate different types of plots,
make the menu-driven interface an even more
attractive option compared to using the
command-based MATLAB interface. The user
time is thus more effectively spent on learning
control system design rather than learning
MATLAB commands. The program could be
further developed by including other controller
design methods such as LQR, LQG, Digital
Control to the program.

REFERENCES

1. The Mathworks Inc. MATLAB Reference’s Guide, MathWorks Inc. Natick, Mass. (1992).
2. Bahram Shahian and Michael Hassal, Control System Design Using MATLAB, New Jersey:

Prentice-Hall (1993).

3. Norman D. Nise, Control System Engineering, Benjamin Cummings Publishing Company, Canada

(1991).

4. The Mathworks Inc, 1990 Control System ToolBox User’s Guide, MathWorks Inc. Natick, Mass.

(1990).

5. Microsoft Visual Basic Programmer’s Guide, Microsoft Corporation.

552

E. Ong and F. Tan

Eng Kian Ong was born in Singapore, 1959. He received his B.Eng in mechanical
engineering from the University of Tokyo in 1984 and his MS degree in both mechanical
engineering and electrical engineering from the University of Michigan, Ann Arbor in 1989.
He is currently the principal of the Institutute of Technical Education, Dover, Singapore.
Prior to his current post, he was a senior lecturer in Nanyang Technological University. His
research interest is in the area of automation, dynamics and control and robotics.

Fock-Lai Tan was born in Singapore, 1959. He received his B.Eng in mechanical
engineering from the National University of Singapore in 1984 and his MSME degree in
mechanical engineering from Rensselaer Polytechnic Institute, Troy, New York in 1992. He
is currently a Associate Professor at the School of Mechanical and Production Engineering
in Nanyang Technological University, Singapore. His primary research interest is in the
area of solidification and melting heat transfer. He has also been actively involved in the
development of multimedia coursewares for university teaching and distance learning.

