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The distinction between reversible and irreversible compression of an ideal gas in a cylinder with a

frictionless piston is analyzed quantitatively. Reversible compression is achieved by moving small
masses appropriately distributed vertically onto the piston as it descends and compresses the gas. In
the past, this example has been used pedagogically in qualitative form only. Reversibility is
demonstrated in several ways, most notably by showing the equality of the work done on the system
and the work done by the surroundings.

INTRODUCTION

OF ALL THE CONCEPTS in thermodynamics,
the one that most distresses students in university
courses on this subject is reversibility of a process
and its counterpart irreversibility. Many of the two
dozen or so textbooks dealing with engineering
thermodynamics that have been published in the
past three decades treat this topic qualitatively,
mainly by listing common sources of irreversibility
(friction, unrestrained gas expansion, heat
exchange over a non-zero temperature difference,
etc.). Also noted as conditions for reversibility are:

® A limitation on the speed at which a process
takes place: change must be sufficiently slow
that the system maintains internal equilibrium
at all times.

® Returning the system from its final state to its
initial state by the same path must leave both
system and surroundings unchanged.

® Work done by (or on) the system must be equal
to the work done on (or by) the surroundings.

Other texts describe irreversibility as a feature of a
process that increases the entropy of the system
and its surroundings, with equilibration of an
initially non-equilibrium vapor/liquid mixture in
an isolated vessel and free expansion of an ideal
gas into a vacuum as common examples. A third
method, favored by texts intended for mechanical
or chemical engineers, defines irreversibility as the
difference between the work that a process could
have produced had it been conducted reversibly
and the work actually produced. The portion of
the entropy change produced by irreversibilities is
replaced by reversible entropy added to the system
as reject heat from an imagined ideal heat engine
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receiving heat from a reservoir at some arbitrary
temperature T,. The work done by the imaginary
heat engine represents the irreversibility of the
actual process.

The purpose of this paper is to analyze a simple
process used in many textbooks to illustrate rever-
sible and irreversible paths between fixed initial
and final states. Specifically, the process is
described quantitatively rather than qualitatively,
which has been the approach heretofore. The
quantitative analysis presented here may be too
detailed for undergraduate thermodynamics
courses, but it will at least deepen the instructor’s
understanding of the process.

Wang’s extension of the classic Carnot theory of
heat engines (1) is a different example of an
advanced thermodynamic analysis intended for
pedagogical use.

ISOTHERMAL COMPRESSION OF AN
IDEAL GAS

The process referred to above takes place in a
cylinder with a frictionless piston. The system
contained in the cylinder consists of a simple
substance such as water or an ideal gas. The
surroundings provide a fixed external pressure
and a means of changing the force on the piston,
usually by adding or removing weights. The
thermal surroundings may be cither a temperature
reservoir for isothermal processes or thermal
insulation for adiabatic processes.

Several authors have used this device as a means
of demonstrating the distinction between reversible
and irreversible processes with common initial and
final states [2—-5]. Figure 1 depicts the reversible
and irreversible methods of compressing an ideal
gas between specified initial and final volumes. In
[2-5], the discussions of these two versions were
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Fig. 1. Isothermal compression of an ideal gas.

qualitative. The objective of the present paper is to
quantitatively demonstrate the following features
of the process:

1. In the reversible version, the work done by the
surroundings is identical to the work done on
the system.

2. The work done by the surroundings in the
irreversible process is numerically compared to
the work performed in the reversible process.

In both cases shown in Fig. 1, a total mass M is
added to the top of the piston. The only difference
between the two methods is the way that the mass
is placed on the piston’s pedestal. In the reversible
process, the mass M is divided into a large number
N of small masses m such that M = Nm. The small
masses are slid on to the piston one at a time from
shelves at different elevations. In the irreversible
version, the entire mass M is placed on the piston
at once.

In both cases, the cylinder contains » moles of
and ideal gas and is immersed in a constant-
temperature bath. The thermal reservoir removes
heat as the small weights are added to maintain the
gas at temperature 7 during the entire reversible
process. In the irreversible process, only the
initial and final states are at temperature 7
these are equilibrium states of the gas whereas
the state depicted in the lower middle panel of
Fig. 1 is not.

Reversible compression

Sliding a small mass onto the pedestal causes the
piston to very slightly compress the gas in the
cylinder. Each addition of a small mass approx-
imates an infinitesimal equilibrium stage so that
the overall process is reversible. At all points in the

compression process, the conditions of external
equilibrium, namely:

T = Ty and P = Psurr +]mg/A (1)

are satisfied. In equations (1), 7%, and py,,.. are,
respectively, the constant temperature and
constant pressure of the surroundings. The
number of small masses added to the piston is
denoted by j (0 <j < N), g is the acceleration of
gravity, and A is the cross-sectional area of the
piston. The p-V work done on the ideal gas during
the reversible, isothermal compression from initial
and final volumes V, and V7 is:

0 VO
Wiey = J pdV =nRT In (—) (2)
2 Vy

The work done by the surroundings consists of the
sum of the p-V work on the piston by the external
pressure and the loss to gravitational potential of
the small masses:

Wowrr = psurr( Vo — Vf) + AE‘I’ (3)

AE, is calculated by summing the changes in the
potential energy of each small mass as it is slid
horizontally onto the stack on the pedestal.
Detailed calculation of AE), given in the appendix
shows that W, = Wy, so a criterion of
reversibility is satisfied for this process.

In addition, the process can be reversed by
sequentially sliding the small masses off the pedes-
tal at their original elevations. When the initial
state is recovered, exactly the same amount of heat
that was released by the compression process will
have been absorbed during the expansion process.
Both system and surroundings will have been
restored to their original states.
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IRREVERSIBLE COMPRESSION

When the entire mass M is placed on the piston,
as in the bottom of Fig. 1, the system is not in
equilibrium with the surroundings. The piston
rapidly descends, oscillates as the gas acts as a
spring, and eventually settles down to the final
elevation. Although equation (2) does not apply to
this situation (because the process is not internally
reversible), equation (3) does. In this case, the
potential energy loss AE, is easily determined
from the elevation change of the large mass, which
is directly related to the volume change of the gas
by Ah = (V, — Vy)I/A. The work done by the
surroundings in this irreversible process is:

I/Virr :psurr(Vo - Vf) + Mg( VO - I/f)/A

(Strictly speaking, the p-}V work term in this
equation does not apply because of internal
irreversibililties in the atmosphere of the surround-
ings as the piston oscillates to its final resting
position. However, the final results are a reason-
able representation of the work done to the extent
that pr > pgur.)

At the final equilibrium state, the force balance
on the piston gives:

Pf — Psurr = Mg/A

Combining these two equations and using the
ideal gas law yields:

Vo
W=V~ 1) =¥y (52 1)
f

Comparing this equation with equation (2) for
Vo/Vy = 3 (as an example) shows that the ratio
of the reversible work of compression to the
irreversible work is:

Wiy In3

Wm—3_1:O.55

That is, the surroundings need to supply only
about one half as much work for the reversible
process as it does for the irreversible process.
Finally, simply sliding the large mass off the
piston in the final state in the lower portion of
Fig. 1 returns the system (gas plus piston) to its
initial state but leaves the surroundings with the
large mass at a lower elevation than it was initially.
Both of these consequences are characteristic of an
irreversible process.

CONCLUSIONS

Reversible compression of an ideal gas in a
piston-cylinder apparatus by the distributed
weight method has been analyzed quantitatively.
The objective was to add an analytical structure to
this often-used pedagogical tool to aid students in
thermodynamics courses to better grasp the
concepts of reversible and irreversible processes.
For the reversible compression process, the
equality of work done on the system with that
done by the surroundings is demonstrated. The
ratio of the reversible and irreversible work
requirements for the isothermal version of the

B Vo process is determined as a function of the
- nRT({/f - 1) (4) compression ratio.
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APPENDIX

Proof of the Identity of W,., and W,,.

e Piston displacement on adding small weights.

With no weights on the pedestal, and neglecting the masses of the piston and the pedestal, the initial volume

V, is given by the ideal gas law:

Vo = nRT/psurr (Al)
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When j small weights of mass m have been added to the pedestal, the pressure in the gas is given by equation
(1) of the text and its volume is:

RT RT
e R (A2)
P Pun+jmg/A

Downward displacement of the piston after j weights have been added is:

V,—V nRT 1 V 1
X;i = ° = 1 surr — 5 = 1- . A3
! A A < P Dsurr +]mg/A> A ( 1+ ﬁ]) ( )
where
mg
= A4
ﬁ Apsurr ( )

e Potential energy loss due to adding weights to the pedestal.

The small masses are placed on shelves spaced vertically according to equation (A3). From these shelves,
they can be slid horizontally onto the pedestal when the latter reaches the appropriate height.

When the first weight is added to the pedestal, the loss of potential energy (PE) is mgx;. When the second
weight is added, the first weight drops to height x, and the second weight (which is slid on to the pedestal at
height x) loses PE by an amount mg(x, — x;). Addition of the third weight at height x, causes weight #1 to
experience a cumulative PE loss of mgxs, weight #2 has a cumulative loss of mg(x; — x;), and weight #3
experiences a PE loss of mg(x3 — x,). After N weights have been moved from their shelves to the pedestal,
the total potential energy loss of the distributed mass M is:

N N
AE, =mg Z(XN — Xj_1) = Nmgxy — ngxj,l (AS)
J=1 J=1
where, using equation (A4):
N N-1 1 N-1
V, 5 V, 5 1
=2 - N-—-1- —_— A

0 is very small (because m is small), and N is very large, so that the product SN is of order unity. Therefore,
the sum in equation (A6) can be approximated by an integral:

= 1 (™' & I[I+B(WN=1)] _In[l +5N]
Yo vE (A7)

Combining equations (A5)—(A7) and using N > | gives the total PE loss of the distributed weights:

AE, = Nmgxy — mg% <N - w) (A8)

® Work done by the surroundings on the system.

Dividing equation (A2) for j = N and V' = V, by equation (Al) gives:

Ve 1
A A
Vo 148N (A9)
Substituting equation (A8) into equation (3) of the text and using equation (A9) yields:
; In(1

Substituting equation (A9), expressing mg in terms of [ using equation (A4), eliminating p,,,.. using
equation (Al), and xu from equation (A3) simplifies equation (A10) to:

Wi = nRT In(1 + BN) (A1)
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Finally, substituting equation (A9) into (All) yields:
Wiur = nRT In(V,/ Vy) (A12)

which is identical to W,., given by equation (2) of the text.
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