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Computational Fluid Dynamics is now used daily in scientific and engineering practices. The
computations themselves are now based on commercially available software. Personal computers
are widely utilized elsewhere these days and many people are using spreadsheets as well as word
processors. It is now well known to the scientific and engineering communities that spreadsheets can
be used, not only for statistics and data processing calculations, but also for matrix inverse,
iteration in a finite difference equation, and for special functions of mathematics. This situation
allows us to realize SFD, i.e., Spreadsheet Fluid Dynamics. The authors have demonstrated that
the fluid dynamics equations could be solved efficiently by using a spreadsheet. The cells in the
spreadsheet are viewed as either natural grids in CFD or elements of a matrix. The computational
domain corresponds to the real physical shape and/or the computational space by grid generation.
The result can be visualized on the same spreadsheet with inherent graphics. The pre- and post-
processors are all in one in SFD.

AUTHOR'S QUESTIONNAIRE

1. The paper describes software/hardware/simula-
tion tools which are suitable for students of
the following courses: Aerodynamics, Fluid
Mechanics, Gas Dynamics, Heat and Mass
Transfer.

2. The level involved is for undergraduates (third
and fourth year) and masters degree students.

3. New material covered by this paper includes
spreadsheet applications to general aero-
dynamic and/or fluid dynamic problems from
conventional calculations to the NS finite
difference solutions.

4. The material is presented by means of classroom
demonstration and homework assignments;
samples are obtained via the Internet.

5. The following texts accompany the presented
material:
Misner, C. W. & Cooney, P. J., Spreadsheet
Physics, Addison-Wesley, 1991.
Gottfried, B. S., Spreadsheet Tools for
Engineers, McGraw-Hill, 1996.
Walkenbach, J., Excel 97 Bible, IDG Books,
1996.
Morishita, E., Spreadsheet fluid dynamics, J.
Aircraft, 36, 4, 1999, pp. 720±723.
Morishita, E., et al., AIAA Paper 2000-0804,
38th Aerospace Sciences.

6. SFD is now being tested in the classroom
(potential flow and gas dynamics). Findings to
date:
± almost free from computational literacy

problems;

± concentration on the subjects themselves;
± quick understanding and progress in the

numerical procedure;
± animation by graphics very useful.

7. People who are not specialized in the numerical
method are also benefited from this technique.
A lengthy program can be replaced by a very
simple spreadsheet in some cases.

NOMENCLATURE

A � coefficient matrix
b � vector
Cd � drag coefficient
Cl � lift coefficient
Cm � moment coefficient
Cp � pressure coefficient
CQ � torque coefficient
CT � thrust coefficient
c � chord
K � transonic similarity parameter
L � lift, length
l � panel length
M � Mach number
m0 � lift slope
N � numbers of blades
n � rps
p � pressure
R � propeller radius, residual
r � radius
s � distance
u; v � velocity component
V � velocity vector
V � flight velocity* Accepted 20 August 2000.
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Vi � induced velocity
VR � relative velocity
x; y � coordinate
z � complex variable

� � angle of attack
� � blade pitch angle
� � potential, effective-pitch angle
ÿ � circulation

 � vortex strength, specific heat ratio
� � efficiency
� � density
� � solidity (� Nc=��R�)
� � thickness ratio
! � angular velocity, relaxation factor
�; � � transformed coordinate
� � complex variable

suffixes
cal � calculation
c.p. � center of pressure
exp � experiment
i � induced
i; j � i; j node
inf � infinity
n � n-th iteration
th � theoretical value
0 � zero lift, leading edge
2-D � two-dimensional
1 � infinity

INTRODUCTION

THE SPREADSHEET is a very powerful engin-
eering tool and it is used widely for scientific and
engineering calculations [1±4]. One of the authors
proposed using a spreadsheet for aerodynamics
problems [4]. The emergence of computational
fluid dynamics enables us to obtain detailed infor-
mation on flow fields. Our experience in comput-
ing was that it took a very long time to learn
computer languages and it was sometimes very
hard to obtain proper results in a limited time.
The spreadsheet, however, is rather easy to use and
almost instantaneous numerical simulations are
possible.

A Spreadsheet Fluid Dynamics (SFD) function
is to solve aerodynamic and fluid dynamics
problems by using a spreadsheet. There are typically
three types of SFD:

Type I: conventional spreadsheet calculation,
including the use of engineering func-
tions.

Type II: matrix inverse and vector product.
Type III: iteration in a finite difference equation.

Type I calculation was used for a propeller calcula-
tion [5, 6] in this paper. This method can be used
for complex potential calculations like a potential
flow around a circular cylinder [7] and an airfoil.
Conventional spreadsheet calculations can also
handle the numerical integration of ordinary
differential equations by the Runge-Kutta

method so that the self-similar boundary layer
equation [8±10] is solved.

In Type II, matrix inversion by spreadsheet is
a very powerful function for engineering appli-
cations. In aeronautical problems, the panel
method [11, 12] involves the solution of linear
simultaneous equations. The two-dimensional
solution is obtained instantly by a spreadsheet.
The choice of airfoil is also very easy. The numeri-
cal technique for a three-dimensional wing is also
possible. The lifting line theory [12, 13] and the
vortex lattice methods [14] both involve the matrix
inverse and these types of problems are solved
quite easily.

Type III seems to be the most important one in
SFD. The iteration and the circular reference
functions of spreadsheets [3] make it possible to
solve finite difference equations. The cells in the
spreadsheet are recognized as grids in CFD. The
procedure used to solve the transonic small
disturbance equation [15±18] is presented in
detail in the present paper. The Laplace [4], the
Euler [19±21], and the Navier-Stokes equations
can be handled by SFD III. The classical method
of characteristics [22±24] is also included in
this category. Fluid dynamic instability [4, 25±29]
is also one of the interesting subjects relating to
SFD III.

SFD I ± CONVENTIONAL CALCULATION

SFD Type I is when the conventional spread-
sheet calculation is applied to aerodynamic and
fluid dynamic problems. Here, we introduce the
procedureusedtocalculatepropellercharacteristics.

The characteristics of a propeller can be
predicted rather well by the classical momentum-
blade element theory [5]. The aerodynamic perfor-
mances at each radius are compiled to obtain
its complete characteristics. Figure 1 shows the
cross-sectional view of the propeller blade [5].

The sectional lift, defined as normal to the local
flow direction is given by:

dL � 1

2
�V 2

RClcdr �1�

Therefore, the potential thrust component
becomes:

dT � dL cos��� �i� � 1

2
�V2

RClcdr cos��� �i�
�2�

The momentum theory predicts the induced
velocity in the far wake and has a value of
2Vi cos��� �i�. The momentum change across
the propeller must be equal to equation (2), i.e.

dT � 2�dr��V � Vi cos��� �i�� � 2Vi cos��� �i�
�3�
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From equations (2) and (3), the induced angle of
attack �i in Fig. 1 is derived as follows [5]:

�i � � ÿ �ÿ �0

1� 8
r

R

sin�

�m0

�4�

Equation (4) is the first-order approximation and
the more accurate second-order approximation is
also obtainable. From equation (4), we obtain the
sectional thrust dT and the torque dQ of the
propeller as follows:

dT �N�dL cos��� �i� ÿ dD sin��� �i�� �5�
dQ �N�rdL sin��� �i� � rdD cos��� �i�� �6�

Although we assume the potential flow to derive
an induced angle of attack �i, we include the
viscous effect in equations (5) and (6). We can
show that equations (5) and (6) become [5]:

dCT

dx
� �

2cNx2

8R

cos2 �i

cos2 �

��Cl cos��� �i� ÿ Cd sin��� �i�� � �
3�x2

8
�T

�7�
dCQ

dx
� �

2cNx3

16R

cos2 �i

cos2 �

��Cl cos��� �i� � Cd sin��� �i�� � �
3�x3

16
�Q

�8�
Equations (7) and (8) can be numerically inte-
grated (actually summed) by a spreadsheet.

The theory was compared to the experiment,
R & M 829 No. 5 blade shape, a 4-blade wooden
propeller [6]. We opened a spreadsheet and first
specified the advance ratio V=nD as shown in cell
C12 in Table 1. The value was chosen from Ref. 6
for the comparison. Six radial locations (row 14
in Table 1) were chosen after the R & M 829 [6].
The chord c, the zero-lift angle of attack �0

and the number of blades N were obtained from
Ref. 6 (rows 15-18 in Table 1). We calculated
� � V=�R!� in row 19 of Table 1. The solidity
� is calculated in row 20. The blade angles �
were specified from Ref. 6 (rows 21 and 22 in
Table 1).

The effective-pitch angle � was calculated
from:

� � tanÿ1 V

r!
� tanÿ1 �

x
�9�

For the cell C23, equation (9) was expressed:
=ATAN(C19/C14). The two-dimensional airfoil
characteristics were employed in the momentum-
blade-element theory and the lift slope m0 was
assumed to be 2� in the present calculation
(row 25 in Table 1). The induced angle of
attack �i was the obtained from equation (4)
(rows 26 and 27 in Table 1). The sectional lift
coefficient was then calculated as follows (row 28
in Table 1):

Cl � m0�� ÿ �ÿ �0 ÿ �i� �10�
We assumed the sectional drag coefficient Cd to
be 0.015 to take the viscous effect into account
(row 29 in Table 1). We then calculated �T and
�Q in equations (7) and (8) (rows 30 and 31 in
Table 1). The thrust and torque radial gradients
were also obtained from equations (7) and (8)
(rows 32 and 33 in Table 1 ). The torque and
trust coefficients were calculated approximately
by:

CT �
X dCT

dx
�x �11�

CQ �
X dCQ

dx
�x �12�

where �x � 0:15 was employed for simplicity
(C35 and C36 in Table 1). In C35, the spread-
sheet command: =SUM(C32:H32)*0.15, was
employed to calculate equations (11). Equation

Fig. 1. Propeller section.

Table 1. Propeller calculation (R&M829 4-blade wooden
propeller [6])
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(12) was calculated similarly. The efficiency of the
propeller was calculated by (C37 in Table 1):

� � CT

2�CQ

V

nD
�13�

We repeated the calculation for each experimental
advance ratio [6] to get a comparison and the
results are shown in Fig. 2. Although a small
difference is observed at a smaller advance ratio
V=nD, the agreement is quite satisfactory in spite
of the simplicity of the theory. The difference at the
smaller advance ratio may be attributed to the
constant sectional drag coefficient and the first-
order approximation in the induced angle of
attack. We recognize the negative thrust near the
root for the given advance ratio in Table 1 and this
happens at the off-peak efficiency operation. The
variable-pitch propeller can minimize this type of
loss and keep the optimum efficiency at a wide
range of the advance ratio. The thrust and torque
are both reduced at higher advance ratios because
the average effective angle of attack is also
reduced. When we further increase the advance
ratio, we finally reach the point where neither
thrust nor torque is produced.

SFD II ± MATRIX INVERSE

One of the most convenient tools of spread-
sheets is the function of matrix inverse, where a
command `MINVERSE' is employed [2]. The
panel method [11, 12 pp. 260±288] is a typical
example of SFD Type II.

The panel method is efficient for handling
the lifting problem of a two-dimensional airfoil.

We use the vortex-based panel method and the
potential is obtained for a flow around a two-
dimensional airfoil as follows [11, 12]:

��x; y� �U1�x cos�� y tan��

�
XN

j�1

�
Panel j

ÿ 
�s�
2�

�ds �14�

where the linear vortex distribution [11, 12] is
assumed along a panel in the present calculation,
i.e.


�s� � 
j � �
j�1 ÿ 
j� s

lj
�15�

� � tanÿ1 yÿ y�s�
xÿ x�s� �16�

We introduced the spreadsheet procedure to
handle the panel method. First we specified the
angle of attack as 10 degrees, and we converted it
to radians as (H3 in Table 2(a)): =RADIANS(H2).
We then specified the coordinate �xj ; yj� of the j-th
panel of the airfoil. The initial j � 1±5 is shown
Table 2(b). A Karman-Trefftz airfoil [11] was used
because the exact analytical solution was available.
The transformation is given by:

� ÿ 1

� � 1
� zÿ 1

z� 1

� �k

�17�

The complex number represents a base circle that
has a center at z0 � �ÿ0:1; 0:1� and passes (1,0).
k � 1:7 is in the present example. We employed 40
panels (i.e. 41 nodes) on the airfoil and the
coordinates were actually obtained from the
equally spaced points on the base circle. Care must

Fig. 2. Propeller characteristics (R&M829 4-blade wooden propeller [6]): (a) Thrust coefficient CT; (b) Torque coefficient CQ;
(c) Efficiency �.
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be taken at the trailing edge to avoid the singular-
ity in the analytical solution by the complex
potential method and we started from the point
very close to the (1,0) on the circle. The spread-
sheets commands, similar to: =IMREAL(G798),
=IMAGINARY(G798), were used to obtain �xj; yj�.
The nodes 1 and 41 were the trailing edge and the
numbering of nodes was clockwise from the lower
to the upper surface. The shape of the airfoil is
readily available by selecting the graphics tool of the
spreadsheet. We can use the chart wizard and select
the XY(scatter)2. In practice, the airfoil generation
part was included in the same spreadsheet and the
change of the airfoil was instantly possible by
changing k and z0. The airfoil is shown in Fig. 3.

The length of the jth panel lj and the coordinate
of the midpoint of the same panel were then
calculated (Table 2(b)):

li �
�����������������������������������������������������
�xj�1 ÿ xj�2 � �yj�1 ÿ yj�2

q
�18�

xmj � xj � xj�1

2
; ymj � yj � yj�1

2
�19�

We introduced the local coordinate �x�; y�� of the
panel j as shown in Fig. 4 [12].

The velocity potential due to the panel j is given
by:

��x�; y�� � ÿ 1

2�

�
lj


j � s

lj
�
j�1 ÿ 
j�

� �
� tanÿ1 y�

x� ÿ s
ds �20�

The induced velocity by the panel j at the midpoint
of the panel i is obtained from r� as follows:

u�ij �
1

2�

j � �
j�1 ÿ 
j� x

�
mi

lj

� �
�ij

� 1

2�
�
j�1 ÿ 
j� y

�
mi

lj
ln

rij�1

rij
�21�

v�ij �
1

2�

j � �
j�1 ÿ 
j� x

�
mi

lj

� �
ln

rij�1

rij

� 1

2�
�
j�1 ÿ 
j� 1ÿ y�mi

lj
�ij

� �
�22�

where

x�mi � �xmi ÿ xj� cos �j � �ymi ÿ yj� sin �j �23�
y�mi � ÿ�xmi ÿ xj� sin �j � �ymi ÿ yj� cos �j �24�

rij �
�������������������
x�2mi � y�2mi

q
�

��������������������������������������������������������������������������
xi � xi�1

2
ÿ xj

� �2

� yi � yi�1

2
ÿ yj

� �2
r

�25�

�ij � tanÿ1 x�mi

y�mi

� tanÿ1 lj ÿ x�mi

y�mi

�i 6� j� �26�

� � �i � j�
The original coordinate system, and the induced
velocities of equations (21) and (22) become:

uij � u�ij cos �j ÿ v�ij sin �j �27�
vij � u�ij sin �j � v�ij cos �j ; �28�

Fig. 4. Local coordinate of panel j.

Fig. 3. Karman-Trefftz airfoil: k � 1:7, z0 � �ÿ0:1; 0:1�.
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respectively. The velocity components at the
midpoint of the panel i then become:

ui�xmi; ymi� �U1 cos��
XN

j�1

uij �29�

vi�xmi; ymi� �U1 sin��
XN

j�1

vij �30�

The flow tangency condition at the midpoint of the
panel i is given by:

Uni � ui sin �i ÿ vi cos �i � 0 �1 � i � N� �31�

where Uni the normal velocity component.
Equation (31) is expressed as follows:

a11 a12 . . . . . . a1N a1N�1

a21 a22 . . . . . . a2N a2N�1

aN1 aN2 aNN aNN�1

1 0 . . . 0 . . . 0 1

0BBBB@
1CCCCA


1


2

. . .

N


N�1

0BBBB@
1CCCCA

�

b1

b2

. . .
bN

0

0BBBB@
1CCCCA �32�

Table 2(a). Angle of attack

Table 2(b). Airfoil coordinates

Table 2(c). Calculation of ri j
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Table 2(e). 41*41 matrix of panel method A, fAÂ b

Table 2(d). Calculation of x�mi

E. Morishita et al.300



where

ai1 � Ai1; aij � Aij � Bijÿ1� j � 2; 3; . . . ;N�;
aiN�1 � BiN ; bi � U1 sin��ÿ �i� �33�

Aij � C cos��i ÿ �j� �D sin��i ÿ �j�;
Bij � E cos��i ÿ �j� � F sin��i ÿ �j� �34�

C � 1

2�
ÿ 1ÿ x�mi

lj

� �
ln

rij�1

rij
� 1ÿ y�mi

lj
�ij

� �� �
;

D � 1

2�
1ÿ x�mi

lj

� �
�ij ÿ y�mi

lj
ln

rij�1

rij

� �
;

E � 1

2�
ÿ x�mi

lj
ln

rij�1

rij
ÿ 1ÿ y�mi

lj
�ij

� �� �
;

F � 1

2�

x�mi

lj
�ij � y�mi

lj
ln

rij�1

rij

� �
�35�

The last row of equation (32) represents the Kutta
condition at the trailing edge, i.e.


1 � 
N�1 � 0 �36�
To solve the flow around an airfoil, it is necessary
to construct the matrix in the LHS of equation (32)
in the spreadsheet. The matrix was constructed
step by step. To calculate rij in equation (25), we
prepared 40� 40 cells, a section of which is shown
in Table 2(c).

In cell I87 we have equation (25) as follows:

=SQRT((I$84-$F87)^2+(I$85-$G87)^2).

We copied the equation onto the rest of the cells.
When we refer to row 84, we use the $ symbol [3],
which is called the absolute reference, or otherwise
the alphabet and the numbers are changed auto-
matically corresponding to the location of the cells
(relative reference [3]). We made 40� 40 cells also
for rij�1.

The midpoint of the panel i is obtained from
equations (23) and (24) in the local coordinate of
panel j. The upper left 5� 5 cells out of the
40� 40 cells for x�mi is shown in Table 2(d).
Similar 40� 40 cells were prepared for y�mi. We
further proceeded to prepare several 40� 40 cells
in the same spreadsheet for ln�rij�1=rij�, �ij , C, D,
E, F , Aij and Bij based on equations (25), (26),

(34) and (35). We could finally prepare equation
(32) with the 41� 41 matrix based on equation
(33) (Table 2(e)).

The most interesting part of this spreadsheet
calculation is the solution procedure of equation
(32). Equation (32) can be expressed symbolically
as:

A
 � b �37�
and the solution is given by:


 � Aÿ1b �38�
Aÿ1 in equation (38) is expressed in this calcu-
lation: =MINVERSE(I677:AW717). Then the
solution 
 � Aÿ1b is obtained as (column AY):

=MMULT(MINVERSE(I677:AW717),
BA677:BA717).

To enter MINVERSE and/or MMULT command
in the spreadsheet, we have to follow the particular
key procedure for the software we use [2] (for
example: input the equation in a cell, return key,
select matrix and or vector area to input, set cursor
at the end of the equation in the input area, then
control + shift + return).

Once the vortex distribution is determined, the
tangential velocity Uti at the midpoint of the
panel i is calculated from equations (27)±(30) as
follows:

Uti � ui cos �i � vi sin �i �1 � i � N� �39�
Another (and more efficient) approach [12] may
be:

Uti � �i�1 ÿ �i

li
� 
im � 
i � 
i�1

2
�1 � i � N�

�40�
Equations (39) and (40) are compared in Fig. 5,
and give nearly the same value.

The pressure distribution is obtained from:

Cpi � 1ÿ U2
ti

U21
�1 � i � N� �41�

Fig. 5. Tangential velocity Uti, �
i � 
i�1�=2.
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The aerodynamic characteristics are obtained from
equation (41) as follows:

Cl �
XN

i�1

�ÿCxi sin�� Cyi cos�� �42�

Cd �
XN

i�1

�Cxi cos�� Cyi sin�� �43�

Cm0 �
XN

i�1

yi � yi�1

2c
Cxi ÿ xi � xi�1

2c
Cyi

� �
�44�

xc:p:

c
� ÿCm0

Cl
�45�

where

Cxi � yi�1 ÿ yi

c
Cpi; Cyi � ÿ xi�1 ÿ xi

c
Cpi �46�

A simpler alternative method to calculate the lift
coefficient is:

Cl � �U1ÿ
1
2
�U21c

� 2ÿ

U1c
�

2
XN

i�1


i � 
i�1

2

� �
lj

U1c
�47�

Several solutions for this airfoil at different angles
of attack are shown in Fig. 6. The lift coefficient
Cl � 2:1 and the center of pressure 43% from the
lading edge were obtained at � � 10 degrees based
on the approximate chord length c � 2. The angle
of attack was changed in a cell of a spreadsheet
and the solutions seen in Fig. 6 were obtained one
after another while we were viewing the graph.
(This can be done via a PC projector in the class-
room and it is not surprising that students are
impressed not only by the aerodynamics but also
by the spreadsheets.)

The validity of the panel method was checked
against the conformal mapping method of the

complex potential for the same airfoil (Cp_th in
Fig. 6). The agreement is found to be quite
satisfactory. (It has to be mentioned that the
conformal mapping was also conducted on the
same spreadsheet including the complex variable
calculation.)

Care must be taken to avoid an airfoil with a
very thin trailing edge which sometimes makes it
difficult to obtain accurate solutions due to the
interactions between singularities in the present
panel method.

SFD III ± ITERATION

Partial differential equations are solved numeri-
cally in discretized forms. Solutions are obtained
via either relaxation or by a time-marching pro-
cedure. These require iterations during the process.
SFD Type III handles these problems, i.e. most
typically the numerical solution of finite difference
equations [4]. The SFD technique was also
extended to the more complicated transonic
problems [15] by using the transonic small distur-
bance equation (TSDE) [12 (pp. 399±423) 16±18]:

K ÿ �
 � 1�M2
1
@�

@�

� �
@2�

@�2
� @�

@�2
� 0 �48�

where

K � 1ÿM2
1

�2=3
; � � x

c
; � � y

�
;

� � c

�1=3
; � � �0

U1L
�49�

where K is called the transonic similarity para-
meter, �0 represents the disturbance potential with
dimensions. The airfoil is given by:

y�x�
c
� �f

x

c

� �
�50�

Fig. 6. ÿCp of Karman-Trefftz airfoil: k � 1:7, z0 � �ÿ0:1; 0:1�. (a) � � 0 deg; (b) � � 5 deg; (c) � � 10 deg; (d) � � 15 deg.
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and the non-dimensional flow tangency condition
on the airfoil is:

@�

@�
� df

d�
ÿ �
�
�� � �0� �51�

The far-field boundary condition is given by:

� � 0 �52�

The Murman-Cole method [12, 15±18] to solve
equation (48) is:

�1ÿ �ij�Pij � �iÿ1jPiÿ1j �Qij � 0 �53�

where

Pij � K ÿ �
 � 1�M2
1
�i�1j ÿ �iÿ1j

2��

� �
� �i�1j ÿ 2�ij � �iÿ1j

��2

Qij � �ij�1 ÿ 2�ij � �ijÿ1

��2

�ij � 1 for Aij < 0 �Mij > 1�
� 0 for Aij � 0 �Mij � 1�

Aij �K ÿ �
 � 1�M2
1
�i�1j ÿ �iÿ1j

2��
�54�

Equation (53) implies that the upwind differencing
is to be used at the supersonic point. The iterative
solution may be obtained from:

�
�n�1�
ij � ��n�ij � C

�n�
ij �55�

where we define:

C
�n�
ij � !���n�1�

ij ÿ �n
ij� � !���n�ij �56�

Note that �
�n�1�
ij in equation (56) is a temporal

value for the n� 1 iteration except for ! � 1. We
may have from equations (54):

Pij � K ÿ �
 � 1�M2
1
�
�n�
i�1j ÿ ��n�1�

iÿ1j

2��

" #

� �
�n�
i�1j ÿ 2���n�ij � ���n�ij � � ��n�1�

iÿ1j

��2

�P
�n�
ij ÿ

2

��2
A
�n�
ij ��

�n�
ij �57�

Piÿ1j � K ÿ �
 � 1�M2
1
�
�n�
ij ÿ ��n�1�

iÿ2j

2��

" #

� �
�n�
ij � ���n�ij ÿ 2�

�n�1�
iÿ1j � ��n�1�

iÿ2j

��2

�P
�n�
iÿ1j �

1

��2
A
�n�
iÿ1j�

�n�
ij �58�

Qij �
�
�nÿ1�
ij�1 � ���nÿ1�

ij�1 ÿ 2���n�ij � ���n�ij � � ��n�ijÿ1 � ���n�ijÿ1

��2

� Q
�n�
ij �

��
�nÿ1�
ij�1 ÿ 2��

�n�
ij � ���n�ijÿ1

��2
�59�

P
�n�
ij , P

�n�
iÿ1j , and Q

�n�
ij are Pij , Piÿ1j, and Qij at �� � 0

in equations (57), (58) and (59), respectively. The
updated values (n+1th iteration) are also used
in equations (57)±(59). Updated values are
automatically used in real calculations. Here we
use �

�n�
ij in the bracket of equation (58) instead of

�
�n�
ij � ���n�ij for simplicity and this assumption is

different from Ref. 12. Similarly:

A
�n�
ij �K ÿ �
 � 1�M2

1
�
�n�
i�1j ÿ ��n�1�

iÿ1j

2��

A
�n�
iÿ1j �K ÿ �
 � 1�M2

1
�
�n�
ij ÿ ��n�1�

iÿ2j

2��
�60�

P
�n�
ij , P

�n�
iÿ1j, and Q

�n�
ij are expressed using equation

(60):

P
�n�
ij �A

�n�
ij

�
�n�
i�1j ÿ 2�

�n�
ij � ��n�1�

iÿ1j

��2
�61�

P
�n�
ijÿ1 �A

�n�
ijÿ1

�
�n�
ij ÿ 2�

�n�
iÿ1j � ��n�1�

iÿ2j

��2
�62�

Q
�n�
ij �

�
�nÿ1�
ij�1 ÿ 2�

�n�
ij �Q

�n�
ijÿ1

��2
�63�

Equation (53) uses equations (57)±(59) to obtain
the following:

ÿ�1ÿ �ij� 2

����2 A
�n�
ij ��

�n�
ij

� ��
�nÿ1�
ij�1 ÿ 2��

�n�
ij � ���n�ijÿ1

����2

��iÿ1j

A
�n�
iÿ1j

��2
��
�n�
ij � ÿR

�n�
ij �64�

where

R
�n�
ij � �1ÿ �ij�P�n�ij � �iÿ1jP

�n�
iÿ1j �Q

�n�
ij �65�

In the present calculation, we applied the relaxa-
tion factor ! for ��

�n�
ij of equation (57), i.e. ��

�n�
ij of

the first term in the left-hand side of equation (64).
We then obtained the following expression:

C
�n�
ij � ÿ

1

fc=�2
�C�n�ijÿ1 � C

�nÿ1�
ij�1 � � R

�n�
ij

ÿ2�1ÿ f Êij�
A
�n�
ij

!��2
� f Êiÿ1j

A
�n�
iÿ1j

��2
ÿ 2

��2

�66�
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Equation (66) is different from the solution tech-
nique in Ref. 12 (pp. 399±423). It is natural that
one may assume the positive y-direction upwards
in a spreadsheet. But the spreadsheet sweep is
from left to right and from top to bottom,
and therefore C

�n�
ijÿ1 � C

�nÿ1�
ij�1 in equation (66) may

become C
�nÿ1�
ijÿ1 � C

�n�
ij�1 in the real calculation.

The basic computational domain is shown in
Fig. 7 where ÿ1 � � � 2, 0 � � � 1:25 and the
airfoil locates 0 � � � 1, � � 0. 150��� � 25���
cells with �� � 0:02, �� � 0:05 were used. The
boundary cells were utilized in the latter part of
the calculation, and 152� 27 cells were used
ultimately.

We are now able to start the spreadsheet calcu-
lation. The conditions for the calculation were first
specified (rows 5 and 6 in Table 3(a)).

The specific heat ratio 
 � 1:4 and the Mach
number was 0.857. We used the iteration
function of the spreadsheet and it is helpful in
showing the number of iterations in cell L6. This

counter can be expressed by the spreadsheet
format as: =L6+1.

This expression is called the circular reference in
spreadsheet terminology [3] because cell L6
requires its own value, not given at the beginning.
A warning message will appear on the screen, but
we simply click the cancel button. When we start
the iteration, 0 is resumed for cell L6 and therefore
1 will appear in cell L6 after one cycle.

Following the derivation of the transonic small
disturbance equation (TSDE), we prepared the
150��� � 25��� cells of A

�n�
ij in equation (60)

(Table 3(a)). In the cell D9, A
�n�
ij is given by:

=$I$6-($K$6+1)/2/
$B$6*($E$6^2)*(E159-C159)

and we copied the equation into the rest of the
cells. The last bracket corresponds to the potential
difference. The computational area in the spread-
sheet corresponds to the physical space although a
scaling factor exists and we know the subsonic

Fig. 7. Computational region.

Table 3(a). Input conditions and A
�n�
ij
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�A�n�ij > 0� and/or the supersonic region �A�n�ij < 0�
from the spreadsheet (see Table 3(a)).

Similar regions were created for P
�n�
ij , Q

�n�
ij , and

R
�n�
ij as shown in Table 3(b). The switching func-

tions �ij and �iÿ1j are included in R
�n�
ij of equation

(65), i.e.

R
�n�
ij � �1ÿ �ij�P�n�ij � �iÿ1jP

�n�
iÿ1j �Q

�n�
ij �65�

Equation (65) is expressed in the spreadsheet as
follows:

=(1-IF(D9<0,1,0))*D39
+IF(C9<0,1,0)*C39+D69

The expression IF(D9<0,1,0) represents �ij and
it takes 1 for D9�� Aij� < 0, i.e. supersonic and 0

for D9�� Aij� � 0, i.e. subsonic or sonic.
IF(C9<0,1,0) represents �iÿ1j.

It is now possible to calculate the correction C
�n�
ij

in equation (66) (Table 3(c)). The correction C
�n�
ij at

the inflow boundary �� � 0; 0 � � � 1:25� was
set equal to zero (column D in Table 3(c)). Along
the upper boundary �ÿ1 � � � 2; � � 1:2�, it was
assumed that the derivative in the � direction is
zero, i.e. Cij � Cijÿ2 (row 128 � row 130 in
Table 3(c)).

The disturbance potential �ij was calculated
using equation (55). The inlet boundary condition
was �1j � 0 (column D in Table 3(d)) and
@�=@�j1j � 0 along � � ÿ1 (column C � column
E in Table 3(d)). Along the upper boundary, it was
assumed @�=@� � 0, and it means �ij � �ijÿ2 (row

Table 3(b). P
�n�
ij , Q

�n�
ij , R

�n�
ij
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158 � row 160 in Table 3(d)). The symmetric
boundary condition was applied along the �-axis
�� � 0� and this means that row 184 � row 182 in
Table 3(d) except on the airfoil surface
�0 � � � 1�.

The leading edge is cell BB183 and the airfoil is
in row 183 in Table 3(e). The boundary condition
equation (51) on the airfoil at � � 0 is given by:

�i2 ÿ �i0

2��
� df

d�
�0 � � � 1� �67�

We used a parabolic airfoil in Fig. 8:

y

c
� �f

x

c

� �
� �2

x

c
1ÿ x

c

� �
�68�

We obtain the following from equation (68):

df

d�
� 2ÿ 4� �69�

From equation (67), the boundary condition
becomes:

�i0 � �i2 ÿ 2��
df

d�
�70�

Equation (70) for the cell BE184 in Table 3(e) is
given by:

=BE182-2*$C$6*BE$189.

Table 3(d). Inlet �ij

Table 3(c). C
�n�
ij
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The outlet condition is given by:

d�

d�
� 0 �71�

In the finite difference form, equation (71) is given
by:

�151j � �149j �72�
In Table 3(f), this means column EX � column
EV. The pressure coefficient is obtained as:

ÿCpij � 2�2=3 @�

@�
jij � 2�

�ij ÿ �iÿ1j

��
�73�

We used equation (73) in the upwind difference
from (Table 3(g)). The pressure distribution is
shown in Fig. 9.

The present SFD result is compared to Ref. 18
for a 6% parabolic airfoil in Fig. 10. This is a
supercritical case. The shock location was about
the same, although an undesirable kink at the

Table 3(f). Outlet �ij

Table 3(e). �ij on the airfoil

Fig. 8. Parabolic airfoil � � 0:06.
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end of the shock was observed by the present
technique. The sonic condition is given by
ÿC�p � 0:286 at M1 � 0:857. It became supersonic
around x=c � 0:34ÿ 0:68. The solution as a whole
seems to be satisfactory in the present calculation,
except around the shock wave. The present
method was also applied for subcritical and lifting
cases [15].

SFD FEATURES AND DISCUSSION

CFD problems have been historically solved by
computer languages like Fortran and C. SFD can
basically handle the same problems as CFD. In
the learning stage of the numerical methods, the
lack of computational literacy leads students and
engineers to a laborious obstruction. Immature
understanding of the subject makes the situation
more difficult to carry out. SFD may be useful to
the beginners at this stage. The cells correspond to

Fig. 9. Pressure distribution ÿCp at M1 � 0:857.

Table 3(g). Pressure coefficient ÿCpij

Fig. 10. Comparison of pressure distribution ÿCp. Super-
critical M1 � 0:857.

E. Morishita et al.308



the physical and/or the computational space and
the users easily identify the computational region
and the boundary, i.e. it is relatively easy to realize
where we are working. The cells of a spreadsheet
do not accept the wrong format and we can be very
sure about the formula. The division by zero, for
example, is visible, and we can continue the
calculation after corrections are made. The
graphics are useful while we are checking the
values during the calculation and the final results.
The figures are still active after the calculation and
the effect of parameters like the Reynolds and the
Prandtl numbers can be shown quite easily simply
by changing the values. It must be noted that a
spreadsheet has Internet capability and it is even
active on a web page. Therefore, we can provide
our spreadsheet calculation via the Internet.

It is necessary to mention the drawbacks of
SFD. It was often experienced that the computa-
tional region could not easily be changed after the
spreadsheet was completed. Once we created a
20� 20 cell spreadsheet, it was rather troublesome
to increase it up to a 200� 200 cell spreadsheet. In
programming language, this can be achieved rela-
tively easily. So the initial design is important in
SFD. But if the spreadsheet can incorporate
programming languages like Visual Basic [3],
there might be a better way. It is often believed
the computational speed is slower in SFD than
that in CFD. This is true but the speed can be
faster if we do not show the numbers in the cell.
One of our colleagues once solved a three-dimen-
sional heat conduction problem in the industry by
SFD together with the Fortran coding. The
Fortran program was faster in the computation
itself, but SFD was actually more efficient when
pre- and post-processing were included. This was
because the results in the spreadsheet could be
visualized almost instantly. In the present calcula-
tion, the solution was instantaneous for the propel-
ler and the panel method. The transonic small
disturbance calculation took less than an hour
for around 20000 iterations by a conventional
400 MHz PC. The correction was C

�n�
ij <

2� 10ÿ6 after the iterations and the pressure Cp

effectively did not change when we doubled the
iterations.

The advanced software, such as Mathematica
and MATLAB, which were sometimes used with
SFD in a cooperative manner. The ordinary differ-
ential equation can be solved quite efficiently by
Mathematica. We also solved the same equation
by using a spreadsheet because the results are still
active after doing the calculations and we can

check the effect of the divisions and boundary
and/or initial conditions while we are viewing the
active graphics. The visual solution development in
time and iteration in SFD is very useful. On the
other hand the velocity vector, for example, cannot
be handled on a spreadsheet but we can utilize
the MATLAB function in this case using the
data from the spreadsheet. The advanced graphics
and the large-scale matrix inverse are not readily
available in the spreadsheet.

CONCLUDING REMARKS

In the present paper, conventional spreadsheet
calculation was used to estimate propeller charac-
teristics. Furthermore, the spreadsheet handles
complex variables, engineering functions and so
forth. This enables us to solve complex potential
problems and other analytical aerodynamic
problems with ease (SFD Type I).

The panel method was solved by the spread-
sheet. The matrix inverse is incorporated in spread-
sheets, and therefore the Prandtl's lifting line
theory and the vortex lattice method can be
solved easily. We prepared a matrix of the problem
and a spreadsheet command, such as MINVERSE
made an instantaneous solution from the equation
(SFD Type II).

The most important aspect of SFD is the iter-
ated solution of the finite difference equations of
CFD. We have shown the results for the transonic
small disturbance equation. The upwind difference
was handled effectively by the spreadsheet
command. The Laplace, Euler and Navier-Stokes
equations are also solvable by this method. The
computational domain for spreadsheets is rectan-
gular, but this does not necessarily limit our
computation to the Cartesian coordinate. The
standard grid generation procedure is also used
in SFD (SFD Type III).

In conclusion, SFD can solve most of the
important aeronautical course problems (as well
as the practical ones). The most important aspect
of SFD is that less computer literacy is required for
the user. This is particularly valuable to students
and beginners using numerical simulations, as well
as for engineers in the industry. We can mainly
concentrate on fluid dynamic problems rather
than programming problems when utilizing
SFD. SFD can be used cooperatively with
programming languages and other symbolic
programming software.
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