
A Self-Checking Interface For MATLAB-
Based Interactive Exercises*

BRIAN L. F. DAKU
University of Saskatchewan, Department of Electrical Engineering, 57 Campus Drive, Saskatoon,
Saskatchewan, S7N 5A9, Canada. E-mail: daku@engr.usask.ca

Effective computer-based educational learning tools must engage the student with significant
questions to deepen understanding of the subject. These tools should also provide immediate
feedback to the student and, if necessary, direct the student into remedial work. This paper
describes the construction of a self-checking interface that can be used to evaluate student answers
to challenging questions in an interactive computer-based educational tool. This self-checking
interface has been implemented using MATLAB. An example exercise, taken from a computer-
based tutorial that uses this self-checking interface, demonstrates how the interface operates.

INTRODUCTION

THE DELIVERY of educational material using
computer-based methods is being explored in a
number of areas [1±4]. Typically, this computer-
based approach is used as a presentation tool, with
little or no reinforcement of the material through
exercises. If a computer-based educational tool is
to be effective, the student should answer questions
to reinforce the material covered. Immediate feed-
back should also be provided to maintain the
student's interest. An example of a feedback
approach to reinforce concepts using multiple-
choice questions has been proposed [5]. If the
student is to obtain a deeper understanding of
the material, more complex and significant
problems must be solved. This, of course, makes
the task of evaluation and providing feedback
more complex.

Solving a more challenging problem requires the
use of a computer-based math tool. One example
of such a tool, used to solve scientific, financial,
engineering or math problems, is MATLAB [6].
MATLAB is a computer programming environ-
ment that is used to perform and visualize numeri-
cal computations. MATLAB's ease of use relative
to traditional programming languages has made it
very popular in academic and industrial environ-
ments. An example of its popularity is the large
number of textbooks that make use of MATLAB
[7]. Thus MATLAB appears to be a good choice
for integration with interactive computer-based
educational products.

MATLAB provides the student with an ideal
tool for solving complex and significant reinforce-
ment problems. In a computer-based educational
product, there must also be a way of evaluating the
solutions to these problems to provide feedback to
the student. One way this can be done is to use

MATLAB in conjunction with the system program
to evaluate the solution. This is an ideal approach,
with little extra overheads if MATLAB is already
being used to solve the problem.

This paper describes a unique system, referred to
as a self-checking interface, that uses MATLAB to
evaluate student answers to challenging questions
in an interactive computer-based educational
product. The student uses MATLAB to solve
reinforcement problems and then MATLAB is
used by the system to evaluate the student
solutions. The paper presents the approach used
and illuminates what one needs to consider
when constructing a self-checking interface using
MATLAB. An example is presented demon-
strating how the self-checking interface could be
used in a computer-based tutorial. This example
has been taken from a MATLAB tutorial that uses
the self-checking interface. This tutorial, M-Tutor:
An Introduction to MATLAB, has been published
as a CD-ROM by Prentice-Hall [8], and a further
description of the tutorial is available in articles by
Daku and Jeffrey [9,10] or at the website [11].

SYSTEM DESCRIPTION

A computer-based educational product is a soft-
ware program that runs on a computer. This
program can be generated using programming
languages such as C, or it can be produced using
an authoring package [12]. In this paper, the main
software program which implements the com-
puter-based system will be referred to as the
Computer-based System Program (CSP).

Extending a computer program that delivers
the educational material, from a presentation
tool to one with interactive MATLAB exercises,
is relatively straightforward, since MathWorks,
the company that produces MATLAB, has
provided a number of interface routines. These* Accepted 15 March 2001.

580

Int. J. Engng Ed. Vol. 17, No. 6, pp. 580±587, 2001 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2001 TEMPUS Publications.



interface routines can be used to directly access the
MATLAB computational engine through the
operating system, without using the standard
command window interface.

The basic structure of the proposed exercise
interface, using the MATLAB engine, is shown
in the system block diagram of Fig. 1. The Student
Exercise window provides a physical interface for
the student to solve problems using MATLAB.
The MATLAB commands, entered in the Exercise
window by the student, are executed by the
MATLAB Engine. The MATLAB command
execution is performed using custom Dynamic
Linked Library (DLL) routines within the
MATLAB Engine Interface block of Fig. 1.
These DLL routines use a built-in access feature
that allows MATLAB to be used within other
computer-based systems [13].

The evaluation of the student solution is
performed by the Self-Checking Module, shown
in Fig. 1. This module consists of a number of
MATLAB functions that are used to compare the
student solution to the correct solution. These
MATLAB functions are executed by the
MATLAB Engine, using the MATLAB Engine
Interface routines.

A detailed system block diagram, focusing on
the Self-Checking Module and the MATLAB
Engine Interface is shown in Fig. 2. The
MATLAB workspace, shown at the bottom of
the figure, contains a set of Student Variables
that are the student solution to the problem.
These variables are produced by the student by
solving the problem in the Student Exercise
window. The workspace also contains another set
of variables, referred to as Solution Variables.
These are the pre-calculated solution variables
that are loaded into the workspace by a Self-
Checking Module function.

The MATLAB Engine Interface block contains
a number of custom DLL routines that provide the
background interface to the MATLAB engine.
These routines will be described in the section
`MATLAB Engine Interface'.

The Self-Checking Module block, at the top of
Fig. 2, contains a number of MATLAB functions
that are used to compare the workspace Solution
Variables with the Student Variables to determine
if the student solution is correct. These functions
are executed using the DLLs in the MATLAB
Engine Interface to access the MATLAB Engine.
The Self-Checking Module is described in more
detail in the following subsection.

Self-Checking module
The Self-Checking Module contains a number

of MATLAB functions that are used to compare
variables in the MATLAB workspace. Basically,
the comparison functions are used to check the
student solution to an exercise to determine if it is
correct. There are three basic types of comparison
functions: one to evaluate text-based solutions,
one for graphic-based solutions and one to
permit custom functions for non-standard solu-
tions. A precompiled exercise database is used to
determine the type of solution for the present
exercise.

This paper will only describe the comparison
function used for text-based solutions, since this
function is relatively short and easy to understand
and thus will provide the best insight into the Self-
Checking Interface. The text-based function is
called EvalText and a pseudocode representation
of the EvalText function is given in Algorithm 1.

Fig. 1. Exercise interface system block diagram. Fig. 2. Detailed system block diagram.

A Self-Checking Interface For MATLAB-Based Interactive Exercises 581



Algorithm 1 EvalText( )

comment: This MATLAB function is used to
evaluate exercises that produce
alphanumerical text-based
solutions.

function correct�EvalText

comment: Determine student-generated
information.

VarNames  The names of all student-generated
variables in workspace

NumVars  Number of variables in VarNames

comment: Load previously calculated solution
into workspace.

AnsNumVars  Number of different answers in
the solution

AnsMatrix  Matrix containing all of the
AnsNumVars answers for the exercises

AnsDim  Matrix containing the dimensions of
each of the answers in the AnsMatrix

comment: Compare all student-generated
variables with solution answers,
recording the number of correct
answers in numcorr.

numcorr  0
for i  to AnsNumVars

do

AnsCurrent Portion of AnsMatrix defined

by i th row of AnsDim

for j  1 to NumVars

do

NameCurrent j th variable name in

VarNames

if The variable in NameCurrent and

the AnsCurrent variable

are the same matrix size

then

if jNameCurrent variableÿ
AnsCurrentj < eps

for all matrix elements

then numcorr numcorr� 1

8>>><>>>:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:
comment: If there is a set of student-

generated variables in the
workspace that is correct, return
yes, else return no.

if numcorr�AnsNumVars
then correct  yes
else correct  no

The function is executed with no arguments and
a binary result (yes or no) is returned in the
variable correct, indicating whether the student
solution is correct or incorrect.

EvalText is executed after the student, using an
Exercise window interface such as the one
described in Fig. 1, has solved a MATLAB
exercise, producing a set of student variables in

the workspace. The function compiles the names
of each of the student-generated variables and
places this list in the variable VarNames and the
number of names in this list is placed in
NumVars. The previously calculated solution is
then loaded into the workspace. This solution
could consist of a number of matrices of arbitrary
size. Since all variables are compared, knowledge
of the number of solution variables, the matrix
size of each variable and the solution content is
required. This is implemented using three solution
variables: AnsNumVars, a scalar, which contains
the number of answers in the solution; AnsMa-
trix, a matrix, which contains all of the answers;
and AnsDim, a matrix, which gives the matrix
dimensions of each of the answers present in
AnsMatrix.

The comparison of the student solution to the
actual solution is performed using the two for
loops in Algorithm 1. The AnsNumVars answers
in the precalculated solution are compared with
the NumVars variables in the student solution. The
number of matching comparisons are recorded in
numcorr. Note that eps is a MATLAB variable
defining the floating point relative accuracy and it
is used in the comparison to handle possible
truncation error.

Finally, if numcorr is equal to the number of
answers, AnsNumVars, then the student solution is
correct and this is indicated in the return variable,
correct. The EvalText function is implemented as a
MATLAB script that is placed in the file Eval-
Text.m. The code for this MATLAB script is given
in the Appendix.

MATLAB engine interface
The variable comparison function EvalText,

described in the previous subsection, is a
MATLAB script that is executed using a custom
DLL routine in the MATLAB Engine Interface, as
described in Fig. 2. This DLL routine is called
ExNoResult and a pseudocode representation of
this routine is given in Algorithm 2.

Algorithm 2 ExNoResult(MatlabCommand)

comment: This function is used to execute
MATLAB commands that do not
return a value.

comment: engOpen is a MATLAB DLL
function that starts the MATLAB
engine.

ep  engOpen(NULL)

if ep does not contain a unique engine identifier
then Display the message,

`Error starting MATLAB engine!'

comment: engEvalString is a MATLAB DLL
function that executes the
MatlabCommand using the
MATLAB engine specified by the
ep identifier.

B. Daku582



eval  engEvalString(ep,MatlabCommand)

if eval indicates that the MATLAB engine is not
running
then Display the message, `Error evaluating the

command!'

This routine can be used to execute any
MATLAB command, though it will not return
any results, as the name implies. For example,
if the student solution is being checked, the
Computer-based System Program (CSP) executes
ExNoResult(IsCorrect�EvalText'). The first step
in Algorithm 2 is to start MATLAB using the
engOpen routine. This is an Application Program-
ming Interface (API) routine supplied with
MATLAB [13]. Once MATLAB has been started,
the MATLAB command IsCorrect�EvalText is
executed using engEvalString, which is another
API routine supplied with MATLAB. This will
use the MATLAB engine to execute EvalText and
place the result in the variable IsCorrect. The CSP
must now retrieve the IsCorrect result from the
MATLAB workspace to determine if the student
solution is correct. The result can be retrieved
using another DLL routine called GetResult, and
a pseudocode representation of this routine is
given in Algorithm 3.

Algorithm 3 GetResult(VariableName)

comment: This function is used to retrieve the
contents of a variable in the
MATLAB workspace.

comment: engOpen is a MATLAB DLL
function that starts the MATLAB
engine.

ep  engOpen(NULL)

if ep does not contain a unique engine identifier
then Display the message, `Error starting

MATLAB engine!'

comment: engGetArray is a MATLAB DLL
function that copies the contents of
the workspace variable
VariableName to a mxArray
structure and returns the address
location of this structure. mxGetPr
returns the contents of the newly
created mxArray as a real number,
which is then converted to an
integer and placed in the return
variable answer.

answer_location engGetArray(ep, VariableName)
real_answer  mxGetPr(answer_location)
answer  real_answer converted to an integer

if answer is not a binary value, 1 or 0
then Display the message, `Error getting result!'

return(answer)

For example, GetResult(`IsCorrect') will
retrieve the contents of the IsCorrect variable

from the MATLAB workspace. This information
can then be used by the CSP to inform the students
if their solution is correct or incorrect.

One more DLL routine is required to execute
MATLAB commands entered in the Student
Exercise window described in Fig. 1. This DLL
routine, called ExecCmd, executes the student-
entered command and places the response
produced by MATLAB in a file. The contents
of this file are then displayed in the Student
Exercise window by the CSP. A pseudocode
representation of the ExecCmd routine is given
in Algorithm 4.

Algorithm 4 ExecCmd(MatlabCommand,
FileName)

comment: This function is used to execute the
command, MatlabCommand, and
place the result in the file
FileName.

Allocate BUFFER_SIZE memory locations for
variable buf fer.

Fill the BUFFER_SIZE memory locations of
buffer with null characters.

comment: engOpen is a MATLAB DLL
function that starts the MATLAB
engine.

ep  engOpen(NULL)

if ep does not contain a unique engine identifier
then Display the message, `Error starting

MATLAB engine!'

comment: engOutputBuffer is a MATLAB
DLL function that specifies a
memory buffer, buffer, of size
BUFFER_SIZE, for the MATLAB
engine specified by the ep
identifier. engEvalString is a
MATLAB DLL function that
executes the MatlabCommand using
the MATLAB engine specified by
the ep identifier.

engOutputBuffer(ep,buffer,BUFFER_SIZE)
eval  engEvalString(ep,MatlabCommand)

if eval indicates that the MATLAB engine is not
running
then Display the message, `Error evaluating the

command!'

if there is something in buffer
then Write the contents of buffer to the file

FileName

For example, if the student entered the
MATLAB command, whos, in the Student Exer-
cise window, the CSP would execute ExecCmd
(`whos',`OutFile'). This would execute whos and
the list of workspace variables would be writ-
ten to the file OutFile. The CSP would then
display the contents of this file in the Exercise
window.

A Self-Checking Interface For MATLAB-Based Interactive Exercises 583



IMPLEMENTATION EXAMPLE

The self-checking interface described in this
paper has been implemented in the computer-
based tutorial, M-Tutor: An Introduction to
MATLAB [8]. An exercise from this tutorial is
described here to demonstrate how this self-
checking interface functions. The Student Exercise
window described in Fig. 1 has been implemented
as a specially designed Exercise window, which is
the physical interface for the student to solve the
MATLAB-based exercises. An example of this
Exercise window, showing an exercise to be
solved, is given in Fig. 3. The exercise problem to
be solved is displayed in the top left-hand sub-
window. The user can select the Hints button,
which displays a list of hints to aid the student in
solving the problem. The student solution to the
problem is entered in the center subwindow, which
is labeled Enter MATLAB Commands Here. This
window has close to the full functionality of the
MATLAB Command window, including previous
command access using the arrow keys. The student
enters a MATLAB command and hits the Return
key and the result is displayed in the MATLAB
Response subwindow. This response is the exact
response you would see if the command were
executed in the actual MATLAB Command
window. This is implemented, as described in the

section `MATLAB Engine Interface', by evalu-
ating the commands using the MATLAB engine
through a DLL interface. Once the solution has
been entered, the student selects the Evaluate
button and a correct or incorrect indication is
displayed. The evaluation method uses the
MATLAB engine to compare the workspace
contents and object variables of a correct solution
with the student solution. The student can access
an example of a correct solution from the Hints
menu after using the Evaluate button.

A detailed description of the process used to
initialize, enter and evaluate the student solution is
given in the following section.

Student solution
The student opens the Exercise window after

covering the associated material in the tutorial.
Prior to opening the Exercise window, the CSP
uses a DLL routine from the MATLAB Engine
Interface to initialize the workspace. For the
exercise in Fig. 3, the following command is
executed: ExNoResult(`X� pascal(3);'). This
command generates a Pascal matrix of order 3.
The variable, X, is now in the MATLAB work-
space ready for the student to use to produce the
solution to the exercise problem in Fig. 3.

Solving the problem involves entering the
appropriate commands in the Exercise window.

Fig. 3. Exercise window from the MATLAB tutorial.

B. Daku584



In this case the variables V and D can be generated
by entering the command, [V,D]� eig(X), and
executing the command by hitting Enter or Return
on the keyboard. The CSP takes the entered
MATLAB command and produces the DLL
command, execcmd(`[V,D]� eig(X)',`reply.txt'),
to execute the command in the MATLAB engine
and place the resulting response in the file
reply.txt, which is then displayed in the Exercise
window. The result of this operation is displayed in
the Exercise window of Fig. 4. This figure also
shows the solution in the upper right subwindow,
below the Hints menu. This solution is only
accessible to the student after the student selects
the Evaluate button, which performs the evalua-
tion procedure that is described in the next section.

Exercise evaluation
The procedure to determine whether the student

solution is correct is started when the Evaluate
button in Fig. 4 is selected. The MATLAB
function EvalText, described in the section `Self-
Checking Module', is executed using the DLL
command ExNoResult(`IsCorrect�EvalText').
This command uses the MATLAB engine to
execute EvalText, placing the result in the work-
space variable IsCorrect. Reviewing Algorithm 1,

the first step is to enumerate the student Solution
Variables. This will result in the following vari-
ables being placed in the workspace:

VarNames �
`D'

`V '

" #
NumVars � 2

The solution variables, which are in the file
filename.mat, are loaded into the workspace
using the DLL function ExNoResult. The solution
variables and their content are:

AnsNumVars � 2

AnsDim �
1 3 1 3

4 6 1 3

" #

AnsMatrix �

0:5438 ÿ0:8165 0:1938

ÿ0:7812 ÿ0:4082 0:4722

0:3065 0:4082 0:8599

0:1270 0 0

0 1:0000 0

0 0 7:8730

2666666666664

3777777777775

Fig. 4. Exercise window with the exercise completed. The answer is shown below the Hints menu. The answer can be displayed using
the Hints menu once the Evaluate button has been selected.

A Self-Checking Interface For MATLAB-Based Interactive Exercises 585



EvalText compares each of the solution vari-
ables with each of the student-generated variables
in the workspace. The contents of all of the
solution variables are stored in a single matrix,
AnsMatrix, and these are individually accessed
using the indices that are stored as rows in the
AnsDim variable. For example, for i = 1, AnsCur-
rent�AnsMatrix(1 : 3, 1 : 3), which is the matrix:

AnsMatrix�1 : 3; 1 : 3�

�
0:5438 ÿ0:8165 0:1938

ÿ0:7812 ÿ0:4082 0:4722

0:3065 0:4082 0:8599

2664
3775

Basically, EvalText compares the contents of
the student variable D with the matrix AnsMa-
trix(1 : 3, 1 : 3) and with AnsMatrix(4 : 6, 1 : 3); if
there is a match, numcorr is incremented by one.
Similarly, the content of V is compared with the
same two matrices in AnsMatrix, and numcorr is
incremented if there is a match. Finally, if the
content of numcorr is equal to AnsNumVars, the
variable correct is set and the function completes
returning the value of correct.

SUMMARY

This paper describes the construction of a self-
checking interface that can be used to solve and
evaluate exercises in computer-based educational
tools. A unique feature of this system is that it uses
MATLAB both to evaluate the student-generated
solution to the exercises and provide feedback to
the student. This self-checking interface has been
implemented in a computer-based tutorial that is
used to learn MATLAB and an example exercise
has been taken from this tutorial to demonstrate
how this interface works.

The main advantage of this self-checking
interface is that it is a powerful method for
effectively reinforcing material covered in compu-
ter-based tutorials. This was demonstrated in a
recent (January 2001) evaluation of the M-Tutor
tutorial by second year Electrical Engineering
students. A group of 79 students were required to
learn MATLAB on their own, though they did not
have to use the M-Tutor tutorial. A further 71
students used the tutorial and 52 of these did the
exercises, of which 42 felt the exercise interface was
very useful for reinforcing the MATLAB concepts.
Though these results are subjective, it does imply
that the self-checking interface is a useful approach
that should be pursued.

APPENDIX

The following is the MATLAB code that is used
to implement the EvalText function. This code is
placed in the file EvalText.m.

function correct=EvalText

%EVALTEXT

% x=EvalText
%
%This function is used to evaluate the
%exercises that produce
%alphanumerical text-based solutions.
%The programmer must ensure that the
%appropriate solution
%variables to the exercises have been
%generated and saved in
%'filename.mat', as described in the
%programmers' documentation.
%The value returned is a 1 if correct and
%a 0 if incorrect.

VarNames=evalin(`base','who');
NumVars=length(VarNames);
correct=0;
load filename
numcorr=0;
for i=1:AnsNumVars
AnsCurrent=AnsMatrix(AnsDim(i,1):
AnsDim(i,2),AnsDim(i,3):
AnsDim(i,4));

for j=1:NumVars
NameCurrent=char(VarNames(j));
if all(size(evalin(`base',
NameCurrent))==size
(AnsCurrent))
if all(all(abs(evalin(`base',
NameCurrent)-AnsCurrent)<eps))
numcorr=numcorr+1;
break

end
end

end
end
if numcorr==AnsNumVars
correct=1;

end

AcknowledgementsÐThe author would like to thank the Peter
N. Nikiforuk Innovative Teaching and Learning Centre at the
University of Saskatchewan and the Canadian Industrial
Research Assistance Program (IRAP) for financial support in
the development of the M-Tutor tutorial. The author would like
to acknowledge Karl Lehmann, who implemented most of the
software, and Ron Bolton for help in implementing the DLLs.

REFERENCES

1. R. Shiavi, Learning signal processing using interactive notebooks, IEEE Transactions on
Education, 42(4) (1999).

2. S. E. Fisher and E. Michielssen, Mathematica assisted web-based antenna education, IEEE
Transactions on Education, 41(4) (1998).

B. Daku586



3. S. Pomeranz, Using a computer algebra system to teach the finite element method, The
International Journal of Engineering Education, 16(4) (2000) pp. 362±368.

4. H. S. Hinton et al., A technology-enhanced learning environment for a graduate/undergraduate
course on optical fiber communications, Frontiers in Education 2000 (2000) pp. F1E-1 to F1E-6.

5. T. W. Ng, Creating a multiple-choice self-marking engine on the internet, International Journal of
Engineering Education, 16(1) (2000) pp. 50±55.

6. MathWorks Inc., Mathworks website for MATLAB, http://www.mathworks.com
7. MathWorks Inc., MATLAB Based Books for use with MATLAB, Simulink, Toolboxes, and

Blocksets, http://www.mathworks.com/books
8. B. L. F. Daku, M-Tutor: An Introduction to MATLAB. Prentice-Hall, Canada, ISBN 0-13-083396-7,

CD-ROM (1999).
9. B. L. F. Daku and K. D. Jeffrey, Development of an interactive cd-rom-based tutorial for teaching

MATLAB, IEEE Transactions on Education, 44(2) (2001).
10. B. L. F. Daku and K. D. Jeffrey, An interactive computer-based tutorial for MATLAB, Frontiers

in Education 2000 (2000) pp. F2D-2 to F2D-7.
11. B. L. F. Daku, M-Tutor website, http://www.m-tutor.usask.ca
12. J. Siglar, Multimedia Authoring FAQ, http://www.tiac.net/users/jasiglar/faz-index.html
13. MathWorks. MATLAB Application Program Interface Guide, MathWorks Inc. (January 1998).

Brian Daku received his B.A.Sc degree in Electrical Engineering from the University of
Waterloo, Waterloo, Ontario, in 1980 and his M.Sc. and Ph.D. degrees in Electrical
Engineering from the University of Saskatchewan, Saskatoon, Saskatchewan, in 1987 and
1990 respectively. He worked for SED Systems Inc., Saskatoon, from 1980 to 1984, where
he was involved with microprocessor applications in satellite receivers and industrial
products. In 1986/87 he was a Visiting Research Scholar at the University of Edinburgh,
Scotland. He joined the University of Saskatchewan's Department of Electrical
Engineering in 1990. His research interests are in microseismic fault localization, wireless
communication systems, and digital signal processing.

A Self-Checking Interface For MATLAB-Based Interactive Exercises 587


