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Two spreadsheet solutions of the roots of linear real-coefficient polynomials of any order are
presented. The first procedure is a combination of the Routh-Hurwitz method and the bisection
method. The second procedure is based on Bairstow's method. Both procedures are reliable in
determining the real, complex-conjugate, distinct, and repeated roots of the polynomial. The user
simply enters the coefficients of the polynomial and the initial guesses, and the n roots will be
calculated and displayed on the worksheet within specified precision. Examples are given in both
cases for illustration and for comparison.

AUTHOR QUESTIONNAIRE

1. The paper describes software tools suitable for
students of the following courses:
Numerical Analysis and control systems.

2. Level of students involved in the use of the
materials:
Junior and senior.

3. What aspects of your contribution are new?
The procedure for computing the roots of a
polynomial using the RH criterion.

4. How is the material presented to be incorpo-
rated in engineering teaching?
Can be introduced as a new numerical proce-
dure for polynomial roots computation.

5. Which texts or other documentation accom-
pany the presented materials?
The new procedure will soon be available on a
web site.

6. Have the concepts presented been tested in the
classroom? What conclusions have been drawn
from the experience?
Yes, and comparison with other numerical
solutions are obtained and explained in the
paper.

7. Other comments on benefits of your presented
work for engineering education:
The new procedure can be given as a part of the
material covered in numerical analysis courses
for solving for the roots of a polynomial. The
same procedure can be outlined in a feedback
control course when the stability of the system
is under consideration.

INTRODUCTION

BRACKETING METHODS and open methods
are the standard methods for determining roots of
polynomials. These methods are designed to
determine the value of a single root on the basis
of foreknowledge of its approximate location.
Alternatives for calculating an approximate loca-
tion of a root are very limited. One method to
obtain an approximate value for a root is to plot
the function and determine where it crosses the
x-axis. The need for a long time and large space,
and the lack of precision and reliability discounts
are drawbacks of the graphical methods.

Other alternatives are the methods that use
successive derivations to bracket the root. A real
single or multiple root of a polynomial is always
located between a maximum and a minimum of
different signs or between an extremum and infi-
nity. Therefore, in order to bracket the root, the
abscissa of the extremum points should be located.
This could be done by solving the derivative of the
initial polynomial for the extremum. Being a root
of the derivative, the extremum is bracketed within
a maximum and a minimum which abscissa values
are located by a further iteration. These methods
have two major drawbacks: The inability to get
the complex roots when they exist and their
complexities [1, 2].

Routh-Hurwitz [3] in combination with shifting
can incorporate the role of incremental search in a
short time. The incremental search is done to
determine the locations of all roots. The best way
for getting the initial guess is by locating all roots
after the first shift, in one half of the complex
plane. Once the initial guess is found, a small
increment in the shifting procedure is used. Once
the shifting is equal to the real roots or to the real* Accepted 6 September 2001.
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part of a complex conjugate pair of roots, the
Routh table displays some special characteristics.
These characteristics are closely watched and used
to display the roots of the polynomial. Repeated
application of this method, always result in closer
estimates of the true value of the roots. Such a
method is said to be convergent.

The Bairstow method divides the original
polynomial of order n by a quadratic factor of
the form: x2 ÿ rxÿ s allowing the determination
of complex roots. If this is done, the result is a
new polynomial of order (nÿ 2) with a remain-
der of the form R � b1�xÿ r� � b0. Thus, the
method reduces to determining the values of r
and s that make the quadratic factor an exact
divisor. Bairstow's method uses a strategy similar
to the Newton-Raphson approach to improve
the original guess thus obtaining the roots of
the quadratic factor or setting the remainder
term to zero.

In this paper, Excel is used to determine the
roots of a real-coefficient polynomial of order
greater than or equal to 3. Numerical examples
for a polynomial of order 8 are given for illus-
tration. The advantage of the spreadsheet method
is its generality and its use of a readily available
software tool. It is also worth mentioning that
applying a general spreadsheet program saves
time and money compared to developing a new
dedicated software package. It allows students to
have first-hand experience on design problems by
using the characteristics of the spreadsheet. Para-
meters can be changed quickly and new values
will appear immediately. It is therefore possible
to do some optimization work on specific
problems.

THE ROUTH-HURWITZ CRITERION

The Routh-Hurwitz criterion is a very powerful
method for determining the stability of a linear
control system by determining the number of roots
of the system's characteristic equation in each half
of the complex plane. As the system characteristic
equation is a polynomial of order n and of real
coefficients, this procedure turns out to consist of
several rules applied to the coefficients of this
polynomial in order to find the number of roots

in each half of the complex-plane without solving
for the exact location of these roots.

The first step in the application of the Routh
criterion is to form the Routh array from the
coefficients of the polynomial:

anxn � anÿ1xnÿ1 � anÿ2xnÿ2 � . . .

� a2x2 � a1x� a0 � 0

as follows:

n an anÿ2 anÿ4 � � �
nÿ 1 anÿ1 anÿ3 anÿ5 � � �
nÿ 2 c1 c2 c3 � � �
nÿ 3 d1 d2 d3 � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
2 k1 k2

1 l1 l2

0 m1

where:

cj � anÿ1anÿ2j ÿ ananÿ2jÿ1

anÿ1
j � 1; 2; 3; . . .

The d's are also determined similarly to c's by
using the second and third rows. The procedure
is continued down to the zero row. The Routh
criterion may be stated as follows: the number of
roots of the polynomial with positive real parts is
equal to the number of sign changes in the first
column of the Routh array. To illustrate the Routh
table, the polynomial P�x� � 2x6 � 4x5 � 2x4ÿ
x3 � 2xÿ 2 [4] is taken. The Routh table of this
polynomial will be:
To determine the roots of a polynomial, the y-axis
is shifted to the left until all roots of the shifted
polynomial lie to the right of the shifted axis.
Progressive shifts of the y-axis to the right by an
amount C are then taken and a count of the
number of roots in the right plane is obtained
after each shift. Once the axis shift produces a
change in the number of polynomial right-half
plane roots, it means that some roots have been
reached. Then a special procedure is used to
determine these roots.

X6 2 2 0 ÿ2

X5 4 ÿ1 2 0

X4 �4��2� ÿ �2��ÿ1�
4

� 2:5
�4��0� ÿ �2��2�

4
� ÿ1

�4��ÿ2� ÿ �2��0�
4

� ÿ2 0

X3 �2:5��ÿ1� ÿ �4��ÿ1�
2:5

� 0:6
�2:5��2� ÿ �4��ÿ2�

2:5
� 5:2 0 0

X2 �0:6��ÿ1� ÿ �2:5��5:2�
0:6

� ÿ22:67
�0:6��ÿ2� ÿ �2:5��0�

0:6
� ÿ2 0 0

X1 �ÿ22:67��5:2� ÿ �0:6��ÿ2�
ÿ22:67

� 5:142 0 0 0

X0 �5:142��ÿ2� ÿ �22:67��0�
5:142

� ÿ2 0 0 0
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SPREADSHEET PROGRAM FOR THE
ROUTH-HURWITZ CRITERION

The first step in this work is to compute and to
display the Routh array of a given polynomial.
This can be achieved using the procedure outlined
in the previous section. To illustrate the procedure,
the polynomial:

p�x� � x8 � x7 � 2x6 � 2x5 � 11x4 � 12x3

� 3x2 � 2x� 1

is considered. As shown in Fig. 1, two tables
(C2:J12) are formed one for computing the
Routh coefficients (C2:G12) and the other
(I4:J12) for computing the number of roots in
each half of the complex plane.

The first table also consists of two parts. The
upper part (C2:G3) displays the original coeffi-
cients of the polynomial, and the lower part
(C4:G12) displays the shifted coefficients and the
Routh array. When the shift is zero, rows 4 and 5
will be the same as rows 2 and 3. When the shift is a
given constant (C� 3 in this case), the new coeffi-
cients are computed by simply replacing x in the
original polynomial by (xÿC). These new coeffi-
cients are obtained recursively using the formula:

bnÿk �
Xk

i�0

anÿi

�
nÿ i

kÿ i

�
Ckÿi k � 0; 1; . . . ; n

�1�
In equation (1), are the shifted coefficients and are
the original coefficients. The second table consists

of two columns (Column I and J). Column I
computes the number of sign changes in the first
column of the Routh table. This can be done by
multiplying the corresponding row coefficient of
the first column of the Routh table with the
previous row first column value. This multiplica-
tion is negative if and only if there is a change of
sign. The formula used in cell I6 in this case is
given by:

� IF�C6 � C5 > 0; 0; 1� �2�
This formula is copied to the other cells of column
I. After the initial shift, the number of roots to the
right of the shifted axis is determined by the
number of sign changes, i.e. the number of 1's in
the I column of Fig. 1. This number is obtained in
Cell I13.

� SUM�I4; I12� �3�
The result obtained in Cell I13 is copied in Cell J4.
Due to the row-wise calculation available in Excel,
the difference between the previous value (Cell J4)
and the current value (I13) is obtained in Cell J13.
This index displays the number of roots crossed
after each iteration is taken. In cell B13, a differ-
ence between the order of the polynomial, 8 in our
case, and the number displayed in I13 is taken.
This value will inform the user, once incremen-
ted, of the number of roots that they have been
determined. Note that the size of the starting
shift is entered by the user in Cell B1. This
number should always be large enough so in
this example, the number 8 is displayed in Cell
I13, or 0 in cell B13; that is all roots of the
polynomial are to the right of the shift. The user

Fig. 1. Spreadsheet layout of the Routh shifting method.
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enters in Cell C1 the step size or the precision
value. Counter is introduced in Cell A2 using the
following formula:

� IF�$A$1 � 0; 0; A2�C1� �4�

As can be concluded from equation (4), A1 is an
initialization flag, C1 is the increment, (C1�A2) is
the shift after each iteration, and the shift
(ÿB1�A2) is displayed in cell B2.

The roots of the polynomial in question are
displayed in a 3-column table below the Routh
array as shown in Fig. 1. The first column of this
table displays the simple real roots, the second
column displays the real part of the complex
roots, and the third column displays the complex
part of the complex roots. It will also display real
double roots for simplicity reason as discussed
later. At start and once a correct starting shift is
entered, the values of the Cells B13 and J13 are
zeros. This indicates that all roots of the poly-
nomial are to the right of the shift introduced in
Cell B1. When a single real root is crossed, two
things will take place. The value of Cell J13 will
be equal to 1 and the value displayed in Cell B13
will also be incremented by 1. In order to display
this root, the following formula is entered in Cell
B15 and copied in the remaining cells of the first
column of the root table taking into considera-
tion the pattern of the root.

� IF�$A$1 � 1; IF�AND�MOD�$J$13; 2� � 1;

B15 � 0; B16 <> 0�; $B$2; B15�; 0� �5�

The above formula states that if the flag is 1 and
one root is crossed, the location of the shift axis B2
is displayed. Using the MOD formula in equation
(5) has also the advantage of determining triple
roots, and roots of order 5.

When double roots are crossed, the index in cell
J13 will be incremented by 2. In this case, either
these roots are real or complex conjugate roots. To
make the problem much easier, these roots are
displayed in the complex roots section with 0 in the
complex part when they are real, and similarly 0 in
the real part when they are purely imaginary roots.
The complex part of the complex-conjugate roots
is obtained from the auxiliary polynomial formed
from the s2 row of the Routh table. In this case, the
real part will be equal to the shift value. It is
determined using the following spreadsheet
formula:

� IF�$A$1 � 1; IF�AND�$J$13 � 2; I13 � 6�;
$B$2; C15�; 0� �6�

Where the imaginary part is found to be:

� IF�$A$1 � 1; IF�AND�$J$13 � 2; $I$13 � 6�;
�$D$10=$C$10�^0:5; D15�; 0� �7�

It is to note that the negative sign for the complex
conjugate roots is not introduced in equation (7)
for clarity.

THE BAIRSTOW'S METHOD

As indicated earlier, this method is based on
dividing the original nth order polynomial
f�x� � a0 � a1x� a2x2 � � � � � anxn by a quadratic
term of the form �x2 ÿ rxÿ s�. The result is
a polynomial g�x� � b2 � b3x� � � � � bnxnÿ2 of
order �nÿ 2� and a remainder R � b1�xÿ r� � b0.
Simple recurrence relationships can be used for
determining the coefficients of g(x). These are
found to be:

bn � an

bnÿ1 � anÿ1 � rbn

bi � ai � rbi�1 � sbi�2 for i � 0; 1; . . . ; nÿ 2

�8�

From (8), we may obtain:

b0 � a0 � rb1 � sb2

b1 � a1 � rb2 � sb3

�9�

Because b0 and b1 are both functions of r and s, the
above equations can be expanded using a Taylor
series leading when neglecting the high-order term
to:

b1�r��r; s��s� � b1 � @b1

@r
�r� @b1

@s
�s

b0�r��r; s��s� � b0 � @b0

@r
�r� @b0

@s
�s

�10�

Bairstow showed that the partial derivatives in
equation (10) can be obtained by a synthetic
division of the b's in a fashion similar to the way
the b's were derived.

cn � bn

cnÿ1 � bnÿ1 � rcn

ci � bi � rci�1 � sci�2 for i � 1; . . . ; nÿ 2

�11�

Using equation (11), and the fact that �r and �s
are very small, equation (10) becomes:

ÿb1 � c2�r� c3�s

ÿb0 � c1�r� c2�s
�12�

These two equations in (12) are solved for �r and
�s, and the obtained results are used to improve
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initial guess. At each step, an approximate error in
r and s can be found as:

j�rj �
�����r

r

����� 100%

j�sj �
�����s

s

����� 100%

�13�

When both estimates are less than the precision
value, the roots are then found to be:

x � r� ��������������
r2 � 4s
p

2
�14�

and the procedure continues for the polynomial
g(x). If g(x) is a first-order polynomial, the single
real root can be evaluated simply as x� ±s/r.

SPREADSHEET IMPLEMENTATION OF
THE BAIRSTOW'S METHOD

The spreadsheet program of Bairstow's method
is shown in Fig. 2. In this figure, the coefficients of
the polynomial are entered in row 7, the initial
guess for r and s are entered in cells B4 and B5, the
order of the polynomial is entered in cell H4, and
the maximum error is entered in cell J4. After each
iteration, the coefficients b's and c's defined in
equations (8) and (11) are computed in rows 10
and 11. For the b's coefficients the following
formulas are used:

B10 � B9

C10 � C9� E4 � B10 �15�
D10 � D9� $E$4 � C10� $E$5 � B10

In equations (15), E4 and E5 represent the new
values of r and s obtained after computing �r and
�s as shown later, and the third formula is copied
for the remaining elements of the row. Similarly,
the c's coefficients are obtained using the following
formulas:

B11 � B10

C11 � C10� E4 � B11 �16�
D11 � D10� $E$4 � C11� $E$5 � B11

The third formula in equation (16) is copied for the
remaining elements of this row. The next step is to
solve for the new increment of r and s. This is done
using equation (12) and implemented in rows 14,
15, 16, and 17 as shown in Fig 2.

The first equation of (12) is first obtained using
the following formulas:

c2 � B14 � IF�H5 < 3; 0;

INDEX�B11 : P11; B11; H5ÿ 1��
c3 � C14 � IF�H5 < 3; 0;

INDEX�B11 : P11; B11; H5ÿ 2��
ÿb1 � D14 � IF�H5 < 3; 0;

ÿ INDEX�B10 : P10; B10; H5��

�17�

In equation (17), the index function is used whose
objective is to return the value specified with the
given array. In a similar fashion, the coefficients of
the second equation of (12) are found in cells B15,

Fig. 2. Spreadsheet layout of the Bairstow's method.
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C15, and D15 respectively. These spreadsheet
formulas are:

c1 � B15 � IF�H5 < 3; 0;

INDEX�B11 : P11; B11; H5��
c2 � C15 � B14

ÿb0 � IF�H5 < 3; 0;

ÿINDEX�B10 : P10; B10; H5� 1��

�18�

Once these coefficients are found, now we can
solve for �r and �s using the following formulas:

�r � C16 � IF��B14 � C15ÿ C14 � B15�
� 0; 0;ÿ�C14 �D15ÿD14 � C15�
� �B14 � C15ÿ C14 � B15��

�s � C17 � IF��B14 � C15ÿ C14 � B15�
� 0; 0; �B14 �D15ÿD14 � B15�
� �B14 � C15ÿ C14 � B15��

After each iteration, the new values of r and s are
found to be:

New r � E4 � IF�OR�E4 � 0; B4 � 0�; B4;

IF�H5 � 2;ÿC10; E4� C16��
New s � E5 � IF�OR�E5 � 0; B5 � 0�; B5;

IF�H5 � 2;ÿD10; E5� C17��
�20�

Similarly, the new order of the polynomial is:

H5 � IF�E4 � B4; H4; IF�H5 � 0; 0;

IF�H5 � 1; 1; IF�AND�B19 <� J4;

C19 <� J4�; H5ÿ 2; H5���� �21�

Finally and once the error computed in row 19 is
less than the value entered in J4, the real part and
the imaginary part of each root of the polynomial
f(x) are found in rows 22 and 23 using the following
spreadsheet formulas:

real � IF�AND�$B$4 � 0; $B$5 � 0�; 0;

IF�$H$4 � 1;ÿ$C$10=$B$10;

IF�$H$4 � 2; IF��$E$42 � 4 � $E$5� < 0;

$E$4=2; �$E$4� SQRT�$E$42 � 4 � $E$5��=2�;
IF��$H$4ÿ $H$5� <> 0; B22;

IF��$E$42 � 4 � $E$5� < 0; $E$4=2;

�$E$4� SQRT�$E$42 � 4 � $E$5��=2�����
Imag �� IF�AND�$B$4 � 0; $B$5 � 0�; 0;

IF�$H$4 � 1; 0; IF�$H$4 � 2;

IF��$E$42 � 4 � $E$5� > 0; 0;

SQRT�ABS�$E$42 � 4 � $E$5��=2�;
IF��$H$4ÿ $H$5� <> 0; B23;

IF��$E$42 � 4 � $E$5� > 0; 0;

SQRT�ABS�$E$42 � 4 � $E$5��=2����� �22�

After the roots are found, the process is continued

Fig. 3. Roots of x8 � 2x6 � 2x5 � 11x4 ÿ 13x3 � 3x2 � 2x� 1 � 0 using Routh procedure.
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by replacing the values in row 9 with new values
calculated by the following formula:

� IF�AND�$B$4 � 0; $B$5 � 0�; 0;

IF�AND�$E$4 � $B$4; $E$5 � $B$5�; B7;

IF�AND�$B$19 > $J$4; $C$19 > $J$4�; B9;

IF�$H$5 < 3; B9; B10���� �23�
The above formula is copied for the remaining cells
of row 9.

EXAMPLES AND COMPARISON

Example 1
In order to check the program, the following

polynomial is considered:

x8 � 2x6 � 2x5 � 11x4 ÿ 13x3 � 3x2 � 2x� 1 � 0

The starting shift value is set to 3, and the precision
value or the step size is set to 0.000105. The roots
of this polynomial are given in Fig. 3.

Using Matlab, the following roots are

Fig. 5. Roots of x8 � 118x7 � x6 � 2x5 ÿ 2x4 ÿ 3x3 � 3x2 � 2x� 1 � 0 using Routh procedure.

Fig. 4. Roots of x8 � 2x6 � 2x5 � 11x4 ÿ 13x3 � 3x2 � 2x� 1 � 0 using Bairstow's procedure.
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obtained: 0.8902� 1.7868j, ÿ1.3716� 1.3370j,
0.6920� 0.3910j, and ÿ0.2105� 0.2528j. The
result of the same polynomial using the Bairstow's
method is shown in Fig. 4.

As concluded, the two procedures give, with
slight approximation, the accurate values.

Example 2: polynomial with a high coefficient
In this case, let us consider the following

polynomial:

x8 � 118x7 � x6 � 2x5 ÿ 2x4 ÿ 3x3

� 3x2 � 2x� 1 � 0

As we can see, the x7 coefficient is very large as
compared to others. The result obtained using this
procedure is given in Fig. 5.

In computing the roots using Matlab, the
following result is obtained: 1:0e� 002 �
�ÿ1:1799, 0:0051� 0:0027j, ÿ0:0000� 0:0054j,
ÿ0.0050, ÿ0:0026� 0:0032j]. Clearly from the
above, that for this case Matlab did not display

the real part of the complex roots as considered to
be very small comparing to other roots. Using
Bairstow's method, the results are shown in Fig.
6 for a polynomial of order 9. Results are the same
as for the Matlab.

CONCLUSION

The outlined spreadsheet solutions are capable
of determining the roots of a polynomial of any
degree. They have been tried for a polynomial
with degree 8 with high success and the results
were very much comparable with already existing
tools. The user will simply enter the coefficients
of the polynomial in the indicated cells, and
starting point, and the error size. The program,
with few iterations, will then display the roots of
the polynomial within the error specified by the
user. The procedure is easy and straightforward
and can be used for other applications.
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