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There are different numerical techniques for computing electric fields. These numerical techniques
enable the designer to study the problems that are difficult to be solved by analytical methods.
This paper attempts to give an instructive review of different numerical techniques in electric field
analysis. These techniques involve finite difference, finite element, boundary element, charge
simulation, finite element with variable field intensity and Monte Carlo methods. The merits and
limits of the various methods are outlined. Some examples are given in which the field computations
using different numerical techniques are compared. As an example the most convenient technique
applicable to electric field computation within the tank of power transformers is introduced.

INTRODUCTION

UNTIL NOW electric and electromagnetic fields
have been regarded as probably the most abstract
and difficult part of the undergraduate electrical
engineering curriculum. This is largely due to the
fact that such fields cannot be visualized directly
[1].

Electric fields can be computed using various
methods with different precision. However, for
insulation of electrical equipment a more accurate
electric field prediction is required. With the
advent of computing power and numerical tech-
niques in recent years, it has become practical to
use different techniques to compute the electric
fields. Such numerical techniques enable the
designer to solve problems that are difficult, and
use of analytical approach with many empirical
factors is impossible.

The aim of this paper is to give a review of the
application of different numerical techniques in the
electric fields computation that is useful for an
undergraduate course. This material should enable
the graduate student to use these analyses in
graduate research as well as later in the workplace.
The authors will also give their personal views on
the field evaluation of transformers.

In two-dimensional (2D) analysis, if the field
is not time varying, the electric potential V in
the actual space is satisfied by Poisson's equation
[2]:

r2V � ÿ�=��r�0� �1�

where � is the electric charge density, �r and �0 are
relative and absolute permittivity of the free space.
In order to solve partial differential Eqn. 1, a
number of boundary conditions must be imposed.
Analytical solutions for practical boundary con-
ditions are difficult, if not impossible and
therefore, numerical techniques are necessary.

Each technique has its own merits and draw-
backs and one technique cannot be generally
preferred to others. Based on the proposed
problem, the most convenient technique must be
selected. Different numerical techniques, so far
used for the electric field analysis, are briefly
reviewed and the most convenient technique is
then suggested for electric field evaluation within
the interior space of power transformers.

BOUNDARY CONDITIONS

There are two following types of boundary
conditions that are considered in the electric field
evaluation:

1. Boundary between conducting and dielectric
materials.

2. Boundary between different dielectric materials.

From the electrical point of view, one of the
following conditions may be satisfied on the
boundaries of the first type:

a. The electric potentials of all points on the
boundary are known. This is possible if the
available conductor is connected to a fixed
potential source (Dirchlet condition).* Accepted
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b. The whole charge on the boundary surface is
known while the electric potential over different
points is unknown. This is the case when the
available conductor is not connected to a fixed
potential (floating). Normally in such a case the
whole charge on the surface boundary is equal
to zero (Neumann condition).

FINITE DIFFERENCE METHOD

Finite difference method (FDM) is the oldest
technique in the field computations that was intro-
duced by Gauss. Then Boltzman published it in his
notes in 1892. However, because of the large
amount of computations required, the extensive
use of the FDM dates back only to the event of the
computer.

Electric potential V over any region depends on
the (x, y and z) coordinates and its derivatives.
Potential of any point may be given versus the
electric potential of the adjacent points using
Tylor's expansion. For instance, consider Fig. 1
having point 0 and six adjacent points. The coor-
dinates of these points are:

P0�x0; y0; z0�;P1�x0; y0; z0 � h�;P2�x0; y0 ÿ h; z0�;
P3�x0; y0; z0 ÿ h�;P4�x0; y0 � h; z0�;
P5�x0 � h; y0; z0�;P6�x0 ÿ h; y0; z0�

For simplicity, the difference between the origin
and the adjacent points is taken to be h. Potential
of an arbitrary point P�x; y; z� may be calculated
versus potential of point P0 as follows:

V�x; y; z� �V�x0; y0; z0� � ��xÿ x0�Vx�x0; y0; z0�
� �yÿ y0�Vy�x0; y0; z0� � �zÿ z0�Vz�x0; y0; z0��=1!

� ��xÿ x0�2Vxx�x0; y0; z0�
� 2�xÿ x0��yÿ y0�Vxy�x0; y0; z0�
� 2�xÿ x0��zÿ z0�Vxz�x0; y0; z0�

� �yÿ y0�2Vyy�x0; y0; z0�
� 2�yÿ y0��zÿ z0�Vyz�x0; y0; z0�
� �zÿ z0�2Vzz�x0; y0; z0��=2!� . . . �2�

where

Vi � @V=@i; Vii � @2V=@i2; Vij � @2V=@i@j;

i; j � x; y; z; h � �xÿ x0� � �yÿ y0� � �zÿ z0�
If h tends to a very small value, the terms contain-
ing the third- and higher-order derivatives may be
ignored and Eqn. 2 can be rewritten as follows:

V1 � V0 � hVz�P0� � 0:5h2Vzz�P0�
V2 � V0 ÿ hVy�P0� � 0:5h2Vyy�P0�
V3 � V0 ÿ hVz�P0� � 0:5h2Vzz�P0�
V4 � V0 � hVy�P0� � 0:5h2Vyy�P0�
V5 � V0 � hVx�P0� � 0:5h2Vxx�P0�
V6 � V0 ÿ hVx�P0� � 0:5h2Vzz�P0� �3�X6

i�1

Vi � 6V0 � h2�Vxx�P0� � Vyy�P0� � Vzz�P0��

�4�
Solution of Eqn. 4 and substituting from Eqns. 1±2
yields:

V0 � �V1 � V2 � V3 � V4 � V5 � V6 � h2�0=��
�5�

where �0 is the electric charge density at point 0. As
shown in Eqn. 5, there is a linear relationship
between the potential of point 0 and the potentials
of the adjacent points. For the cases where differ-
ence between the point 0 and the adjacent points is
not the same or these points are within different
insulating materials, and also for rotating fields in
electrical machines, similar equations can be
derived [3, 4].

In the FDM, the proposed region is discretized
using the equations similar to Eqn. 5. Dimensions
of the meshes must be such that the approximation
is acceptable. The vertexes of the meshes are nodes
on the boundary of the region and their potentials
are known or they correspond to point 0 in Fig. 1,
enclosed by the other nodes. For the latter note
(not on the boundary), equations similar to Eqn. 5
can be written versus the potentials of the adjacent
nodes. If the number of such nodes is equal to n, n
linear algebraic equations with n unknown values
of the node potentials are obtained. Potentials of
the points inside the meshes may be determined
using different interpolation techniques.

The FDM is not capable of calculating electric
field directly at different points on the proposed
region. When the potentials of the nodes are
obtained, a numerical derivative evaluation tech-
nique is used to calculate the electric field intensity:
E � ÿrV.

Fig. 1. Point 0 and six adjacent points.
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FINITE ELEMENT METHODS

Among the various numerical techniques, the
finite element method (FEM) has a dominant
position because it is versatile, having a strong
interchangeability and can be incorporated into
standard programs [5, 6].

FEM is based on this fact that the physical
systems stabilizes at the minimum level of energy.
The general equation of energy in an electric field
is:

W � 0:5

�
v

rv��rv�dvÿ
�
�vdvÿ

�
S0
�svds

� �
�6�

where

v is the volume of the proposed region
� is the electric charge density within volume v
S0 is the boundary surface with Numman conditions
�s is the surface electric charge density within S0.

Since Eqn. 1 describes the electric potential dis-
tribution in the real systems, based on the mini-
mum energy level theorem, it is concluded that
Eqn. 1 minimizes the energy presented by Eqn. 6.

In the FEM, the volume of the proposed region
is divided into M small polyhedron elements where
their sides form a grid with N nodes. The potential
function is then approximated by:

V�r� �
XN

i�1

fi�r�Vi �7�

where r is any point on the proposed region. fi�r� is
called the shape function having the following
features:

a) fi�r� is equal to zero anywhere, except on the
subregion Wi. The sub-region Wi consists of the
elements where node i is one of their vertices.

b) fi�r� is continuous on the boundaries due to Wi,
and a polyhedron inside each element.

c) any fi�r� is equal to unit at the location of node i
and zero at the other nodes:

fi�ri� � 1 for i � j

fi�rj� � 0 for i 6� j

Vi in Eqn. 7 is equal to the potential of node i.
Substituting Eqn. 7 into Eqn. 6, the approximate
energy is presented by W� which is minimized
under the following conditions:

@W�=@Vi � 0; i � 1; 2; . . . ;N �8�
Since W� is a quadratic function of Vi, applying
conditions 8 leads to the following linear algebraic
equations:

GV � A �9�
where V is the known vector with elements Vi; A is
the known vector obtained from the volume
charge density in the proposed region and bound-

ary conditions; G is the non-singular square
symmetrical matrix.

Solution of this system of equations gives the
values of Vis and hence an approximate distribu-
tion of the potential can be determined based on
Eqn. 7.

Electric field intensity within each element is
obtained using the gradient expression as follows:

Em � �ÿrV�m � ÿ
XN

i�1

Vi:f
m
i �10�

Often the first derivative of fi is non-continuous.
Therefore, reduction of the maximum size of the
elements and tending to zero, leads Eqn. 7 to the
real distribution of the potential. In spite of this,
no continuity of the field intensity on the bound-
aries of the elements remains in force. If function fi

is considered as a complete n-order polynomial,
better results can be obtained. If h presents the
maximum size of the elements, reduction of h can
reduce the potential error with ratio ��h�n�1; and
electric field is continuous and its error is reduced
by ratio ��h�n [7].

Fig. 2 shows the meshing and equipotential lines
determined using the FEM. The FEM could be
also used where the permittivity of the proposed
region is not constant. In such a case, it is
necessary to replace ��r� with �, which shows
the position dependency. Methods have been
introduced to consider the floating electrodes
with unknown potential or different insulating
materials [7]. There are several reports for
automatic meshing of the proposed region [9±11].

BOUNDARY ELEMENT METHOD

If distribution of electric charge for every region
(including boundary surfaces) is known, electric
potential and field intensity for each point can be
computed using Coulomb's law of Gauss's law [2].
In practice, Laplacian equation is normally used.
This means that electric charge is enclosed only
inside the boundaries of the proposed region and
volume charge density inside the region is equal to
zero or negligible. The electric potential and field
intensity are:

V�I� �
� �

s

�s=�4��R�ds �11�

E�I� �
� �

s

�s�4��R2�ds:âR �12�

where I is the proposed point, S is the summary of
all boundary surfaces, �s is the surface charge
density over surface s, R is the distance of the
differential elements from point I and âR is unit
vector along R directed from differential element
ds to point I.

In practice �s is unknown and it seems that
solving Eqns. 11±12 is impossible. However, to
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overcome this difficulty, the BEM may be
employed. In this method, the boundary surface
is divided into N elements.

Figure 3 shows a typical boundary elements due
to a flat boundary surface on xy-plane. Then
taking into account the small dimensions of the
boundary elements, a general form may be consid-
ered for the surface charge density on element
j��sj�. This general form is often a polynomial
with unknown coefficients.

For instance, if it is taken to be a quadratic
polynomial as follows:

�sj � a1j � a2jx� a3jy� a4jxy �13�

substituting �sj in Eqns. 11 and 12 gives:

V�I� �
XN

j�1

� �
sj

�s=�4��R�ds

� �

�
XN

j�1

� �
sj

�a1j � a2jx� a3jy� a4jxy�=�4��R�ds

� �
�14�

E�I� �
XN

j�1

� �
sj

�s=�4��R2�dsâR

� �

Fig. 2. Computation of electric field using FEM: a) meshing, b) equipotential lines [4].
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�
XN

j�1

� �
sj

�a1j � a2jx� a3jy� a4jxy�=�4��R2�dsâR

� �
�15�

It is clear that V(I) and E(I) are linear functions of
the coefficients of the polynomials. By using the
following definitions:

P1j �
� �

sj

ds=�4��R�

P2j �
� �

sj

�xds�=�4��R�

P3j �
� �

sj

�yds�=�4��R�

P4j �
� �

sj

�xyds�=�4��R�

f1j �
� �

sj

ds=�4��R2�âR

f2j �
� �

sj

�xds�=�4��R2�âR

f3j �
� �

sj

�yds�=�4��R2�âR

f4j �
� �

sj

�xyds�=�4��R2�âR

Eqns. 14 and 15 become:

V�I� �
XN

j�1

X4

k�1

Pkjakj �16�

E�I� �
XN

j�1

X4

k�1

fkjakj �17�

In the next stage, the number of unknowns func-
tion Psj is selected on each boundary element.
Then, based on the boundary type where sj is
part of it, the boundary conditions equation for
any selected point is formed using Eqns. 16 and 17.
Therefore, a system of algebraic linear equations is
obtained which finally produces the coefficients of
the polynomial. Pkj and fkj are numerically or
analytically obtained by integration. Hence the
surface charge density distribution on all boundary
surfaces is known. Finally the electric potential
and field intensity can be determined using Eqns.
16 and 17.

Fig. 3. A flat quadrangular boundary element.

Fig. 4. Electric field calculation using BEM: a) actual electrical system, b) electric field density vectors on the sphere, c) equipotential
countors [12].
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Figure 4 presents a typical problem solved by
the BEM, where the electric field between the two
spheres having the same radius r � 1 is obtained.
Electric field intensity has been shown with a suit-
able vector. In addition, the equipotentials between
two spheres have been calculated by computation
of the electric potential in different points.

A method has been given in [13] for the curved-
shape boundary elements in order to model prac-
tical surfaces with the desirable accuracy. Bound-
ary elements with full axial symmetry have been
presented in the literature [14±16]. Input and
output data processing methods in the BEM
have been introduced in [12, 17, 18].

CHARGE SIMULATION METHOD

This method is similar to the BEM. The differ-
ence between charge simulation method (CSM)
and the BEM is the simulation of the surface
charge existing on the boundary surfaces. In the
BEM the surface charge density function on the
different surface boundaries are estimated, while in
the CSM the surface charge density is substituted
by a set of discretized linear charge distribution.
The substituted linear charge distribution is such
that the electric potential and field intensity versus
their charges are analytic known functions. Charge
distribution on an infinite length line with a
constant density, on a finite line, on a circle etc.,
are examples of the charge distribution. Different
distribution types and their equations have been
given in [4] and [19].

Electric potential and field intensity equations
due to the above mentioned charge distribution,
for the points on the charges, have singularity. To
overcome this singularity, the position of the
replaced charge simulation is considered outside
the proposed space and normally inside the elec-
trodes. The exact position and the replaced charge
distribution type are arbitrarily selected based on
the experience. Charge value or their linear charge
density is computed such that the boundary con-
ditions are satisfied on some surface boundaries, as
described in the following part.

Electric potential and field intensity due to the
replaced charge simulation in different points are
linear functions of the charge value or charge
density:

Vj�r� � Pj�r�qj �18�
Ej�r� � fj�r�qj �19�

where Pj�r� is the potential factor, fj�r� is the field
intensity factor, r is the relative position of the
proposed point and qi is the jth replaced charge
distribution. Pj�r� and fj�r� are different for differ-
ent charge distributions. There is the following
relationship between them:

fj�r� � ÿrPj�r� �20�

Since there is a linear relationship between the
electric potential (and field intensity) due to the
replaced charge distribution in different points and
charge value or charge density, for a set of such
charge distribution, the superposition theorem can
be applied to calculate the electric potential and
field:

Vj�r� �
XN

j�1

Pj�r�qj �21�

Er�r� �
XN

j�1

fj�r�qj �22�

In the CSM, the number of points selected on the
surface boundary is equal to the replaced simula-
tion charges. Depending on the selected points,
Eqns. 21 and 22 are used and the boundary
conditions for individual points are considered.
These equations are linear functions of qj. Since
the exact position of the charges and the selected
points are known, Pjs and fjs in Eqns. 21 and 22
are exactly calculated. Then only qis are the
unknown values of the above linear equations.
Therefore, computations of the electric potential
and field intensity are possible using Eqns. 21
and 22.

It is clear that in the CSM, boundary condi-
tions are satisfied only in the points selected to
write the equations. Before using qjs due to the
solution of the equations, it is necessary to study
the boundary conditions on other points of the
boundary surfaces. When qjs in the CSM is
calculated, the boundary conditions on different
surface points must be determined. If the accu-
racy is not enough, number, position and type of
the replaced simulation charges and also position
of the selected points for writing the equations
must be varied in order to obtain sufficient
accuracy.

Figure 5 shows a typical problem solved using
the CSM. The problem was computation of
the electric field between two spheres shown in
Fig. 5a. Figure 5b presents the equipotentials
lines by substituting the surface charge of each
sphere with two point-charges. Figure 5c
indicates the corresponding result when three
point-charges are substituted for each sphere, in
which the accuracy is higher. In addition, two
point-charges have been used in Fig. 5d, but the
position of charges is different with that of Fig. 5b.
Accuracy of the latter case is better than the other
two.

FINITE ELEMENT METHOD WITH
VARIABLE FIELD DENSITY

In the FEM, the main variable is the electric
potential V, while the electric field intensity is
normally the required quantity. For example, in
the design of high voltage device insulation, it is
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necessary to have the amplitude and direction of
the electric field on the surfaces of the electrodes
and insulation. In study of the discharge phenom-
enon, the path of the force lines is required which
can be determined if the electric field distribution
in the proposed space is known. In the FEM a

numerical integration technique is used in order to
calculate E that normally has error.

There is a more accurate FEM technique in
which the main variable has been taken E
instead of V [20]. If the volume charge
density in the proposed space is zero and

Fig. 5. Calculation of electric field using CSM: a) electric system, b) equipotential when two charge points used for each sphere, c)
equipotential when three charge points used for each sphere, d) equipotential when two charge points in different positions used for

each sphere.
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permittivity E is constant and isotropic, then
the Maxwell's equations for electrostatic fields
are as follows:

div D � 0 �23�
Curl E � 0 �24�

where D is the electric charge density and E is the
electric field intensity and:

D � �E �25�
Applying Eqn. 24 and using Eqn. 23 and 25 leads
to:

r2E � 0 �26�
which is the Laplacian equation. For 2D fields:

�@2Ex=@x2 � @2Ex=@y2�i
��@2Ey=@x2 � @2Ey=@y2�j � 0 �27�

But a vector will be zero if all its components are
zero:

@2Ex=@x2 � @2Ex=@y2 � 0

@2Ey=@x2 � @2Ey=@y2 � 0 �28�
For each component of the field intensity, the
FEM is used once and finally the electric field
intensity over the whole proposed region is
obtained. However, with defined boundary
conditions, the equation will have a unique
solution. In practice, the boundary conditions
on the first-type boundary versus electric poten-
tial are known but there is no idea concerning
their electric field intensity. In [20], the BEM has
been used in order to overcome this difficult; it
means that the BEM is employed on the
mentioned boundaries then finite element
method with variable field density (FEMVFD)
is applied.

Analysis has been carried out based on the FEM
and FEMVFD and the results have been presented
in Fig. 6.

The problem was computation of the electric
field in the region between the two cylinders having
potentials of 100 V and 200 V. Because of the axial
symmetry and its boundaries and infinite length,
the field has only a radial component varying in
radial direction. Therefore, analysis of the field is
possible in two dimensions. Due to the symmetry
only one-quarter of the cylinder is used for analy-
sis. Figure 6b shows the meshing for both tech-
niques and Fig. 6c presents the equi-field intensity
lines. As seen, in spite of the lower number of
meshes in the FEMVFD, the equi-field intensity
lines have a better continuity and their accuracy is
also higher. In this example, the maximum error in
solution by the FEMVFD is about 2% while this
error is 9.3% when the FEM is used.

MONTE CARLO METHOD

In the FDM, the potential of every node is equal
to the mean value of the potentials of the adjacent
nodes. When the distance between the proposed
node and adjacent nodes are the same, same weight
potentials are involved in the computation of the
mean value. Otherwise, the weights will not be
equal [4]. But the closer nodes will be heavier.
However, the sum of all weights is unity. Generally
in the FDM, potential of each node (V0� versus
potential of n adjacent nodes is as follows:

V0 �
XN

I�1

WiVi �29�

where �Wi � 1, V1 is the potential of the node
adjacent to i-th node and Wi is its weight. Value of
Wi depends on the relative distance of the i-th node
from the proposed node.

The basic equation of Monte Carlo Method
(MCM) is similar to Eqn. 29. Therefore, these
two methods are similar, except that determination
of the adjacent nodes and method of calculation of
Wi differs. In the FDM, all nodes are defined after
meshing process and at the same time adjacent
nodes of every node are determined. In Wi com-
putation, analytical relationships are used. But in
the MCM, adjacent nodes are always on the
boundaries and their exact positions are deter-
mined using a random process and Wis is obtained
using probability techniques.

In Fig. 7, Sis show boundary surfaces of the
problem. These boundary surfaces are Drichlet
type with potential Vi. Calculation of potential at
any point such as r0 is required using equations
similar to Eqn. 29. In the MCM, simulation of a
random movement is used in order to determine
each i node. Any movement begins from r0 and
after successive jumps with variable lengths and in
random directions, leads to a Sj.

Conditions governing on every random move-
ment are as follows:

a) All movements begin from r0.
b) Length of any jump is equal to the minimum

distance of the beginning point with boundary
surfaces (Sis).

c) Direction of very jump is random.
d) The end of any random movement will reach

when the minimum distance mentioned in item
b is smaller than that of the predefined value
such as 0.

At the end of a random movement, a point on one
of the boundaries with the closest distance to the
end point is selected as an adjacent point. Finally,
potential of point r0 is calculated as follows:

V�r0� �
XN

i�1

V�r�i �=N �30�

where N is the total number of the random

Instructive Review of Computation of Electric Field using Different Numerical Techniques 351



movements and r�i is the adjacent point due
to the j-th random movement. In order to
eliminate the statistical errors, it is necessary
that N becomes large enough and often several
thousands.

In Eqn. 30, all weights are apparently the same
and equal to 1/N. In fact, it is not so, because
taking into account the large number of random
movements (N), probability of several reputations
of one point exists and for relatively shorter

Fig. 6. Comparison of computed electric field using FEM and FEMVFD: a) electric system, b) meshing based on the two techniques, c)
equi-field intensity lines using both methods.
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distance from r0, this probability is larger. Suppose
constant potential Vi for any boundary surface,
Eqn. 30 can be written as follows:

V�r0� �
Xn

i�1

NiVi �31�

where n is the number of boundary surfaces and Ni

is the number of random movements ended to a
point at Si.

Although the MCM was described using the
FDM, it is necessary to note that the MCM
is itself an independent method having special

Fig. 7. Representation of the possible random movement paths for reaching from the proposed point (r0) to one of the boundary
surfaces (Si).

Fig. 8. Geometry of laboratory high voltage electrodes [7].
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fundamentals [21]. Computation of electric poten-
tial using MCM is similar to the microscopic
analysis of gas pressure where the random move-
ment of the molecules is simulated. A technique for
computation of the electric field over the spaces

consisting of different isolating materials has been
presented in [22]. In [7, 22], a number of techniques
have been introduced to speed up the calculation
using the MCM. Figure 8 shows the geometry of
the laboratory high voltage electrodes in which the

Fig. 9. Comparison of the computed electric fields of the system shown in Fig. 8 using three techniques: a) along path AB, b) along
path CD and c) along path EF [7].
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electric potential and field along line AB, CD and
EF have been estimated using the three methods:
MCM, CSM and FEM. The results are presented
in Fig. 9. It is clear that the accuracy of the
MCM is similar to the other techniques. There
are about 24000 random movements in this
simulation.

COMPARISON OF METHODS AND
CONCLUSIONS

Any numerical technique for electric field
evaluation has its own merits and drawbacks and
it is not generally possible to prefer one technique
over the others.

Structure of the power transformer indicates
that normally 3D computation of the electric
field is required because there is no symmetry in
order to ignore one dimension. In addition, numer-
ical technique must be capable of dealing with the
narrow insulating or conducting layers.

FDM and FEM in the electric field computation
have two drawbacks:

a) In determination of potential distribution using
two methods, numerical derivative techniques
must be used in order to obtain the electric field
intensity. This has considerable error that leads
to a large error in the electric field computation.
In many cases, the field is required for the
design of insulation of electrical equipment.
Meanwhile, study of some phenomena such as
electrical discharge is possible by electric field
computation.

b) In order to prevent a large electric field and its
drawbacks, the sharp edges on the different
surfaces are avoided. Therefore, the curved
surfaces are often preferred. FDM, FEM and
FEMVFD have difficulty in modeling such
curved surfaces; but CSM and BEM can be
easily adapted for such cases. On the other
hand, although FDM, FEM and FEMVFD

can theoretically compute 3D fields, there are
many problems in dealing with this matter.
One serious problem is 3D mesh generation
and its modification to approach the required
accuracy. Generally manual calculation is
cumbersome and time consuming and also
computer programming is really complicated.
Another difficulty is the large size of the coeffi-
cient matrix of the system of equations. In these
methods number of equations is proportional
to the memory required for computation while
in other methods (CSM and BEM) this number
is proportional with area of the boundary
surfaces. It means that in FDM, FEM and
FEMVFD, the coefficient matrix has one
more dimension than the coefficient matrix
due to the other above-mentioned methods.
Therefore, more computer memory and longer
computation time are required. Hence
FDM, FEM and FEMVFD may not be con-
sidered convenient techniques for electric field
computation.

MCM, at least in electric field computation, is not
so common and has no considerable progress in
recent years. At the present, application of this
method in narrow layer problems is difficult, if not
impossible.

In spite of the simplicity of computer program-
ming and high accuracy of the method, in compu-
tation of 3D electric fields having narrow layers
CSM is confronted with a major difficulty. In this
method it is necessary to consider charges within
the mentioned layers such that they have enough
distance from two sides of the layer. But the
thickness is too narrow and such an assumption
may not be correct.

Finally BEM is capable of analyzing 3D fields
and there are some reports showing its applications
to narrow layers. In conclusion, BEM may be
considered the most convenient technique for elec-
tric field computation within the interior of the
power transformer tank [23, 24].
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