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A major objection to the idea of incorporating Monte Carlo methods along with other numerical
methods such as finite difference and finite element into undergraduate classes such as heat transfer
and electromagnetics is that they are only capable of calculating the potential at a single point at a
time unlike other methods which provide simultaneously the solution at all the grid nodes. This
paper shows how this major limitation is overcome using absorbing Markov chains to obtain the
transition probability. Illustrative examples are provided to show that not only is this approach
capable of providing the solution at all the grid nodes at once, the solution is more accurate than the
fixed random walk and is not subject to randomness.

SUMMARY OF EDUCATIONAL ASPECTS
OF THIS PAPER

1. The paper discusses materials/software for a
course in Electromagnetics.

2. The course is for year 2 or junior students in
Electrical Engineering or any engineering
course involving partial differential equations.

3. The mode of presentation is classroom teaching
and is offered as a regular course.

4. The hours required to cover the material is one
hour; one homework project on Monte Carlo
method (MCM) may be helpful.

5. A novel aspect presented in this paper is the
ability to use MCM to generate potential at all
nodes at once.

6. The standard text recommended in the course,
in addition to author‘s notes is, for undergrad-
uates, M. N. O. Sadiku, Elements of Electro-
magnetics, 3rd ed., Oxford University Press, or,
for graduates, M. N. O. Sadiku, Numerical
Techniques in Electromagnetics, 2nd ed., CRC
Press. The material is not covered in the text.

INTRODUCTION

NUMERICAL TECHNIQUES have become
well-established tools for solving engineering
problems. The need for including numerical
methods in undergraduate classes such as heat
transfer and electromagnetics has been expressed
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again and again [1-7]. There are several reasons for
this. First, numerical solutions provide a signifi-
cant aid in the teaching-learning process by helping
to bridge the gap between the theoretical formula-
tions and the real world in which the students live.
Second, there is an increasing availability of
computers in educational institutions and compu-
ter methods are revolutionizing the engineering
profession. Third, problems that can be solved
analytically have been solved already and students
need to learn numerical tools for solving complex
problems.

Although the pedagogical value of introducing
numerical methods such as the finite element
methods, finite difference methods, and moment
method in an introductory electromagnetic course
has been recognized, similar attempts to introduce
Monte Carlo Method (MCM) has not been well
received based on the fact that the classical MCM
[8—14] calculates the potential one point at a time.
To overcome this limitation, several techniques
have been proposed. These include the shrinking
boundary method [15], inscribed figure method
[16], and the surface density method [17], but
each of these techniques is complicated and hard
to program. This paper proposes a simple tech-
nique for whole field calculations. The technique
basically calculates the transition probabilities
using absorbing Markov chains. It places MCM
at the same footing as other numerical methods
and encourages its incorporation in undergraduate
classes.
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Fig. 1. Fixed random walk from point (x¢, yo) where the potential is to be determined.

REGULAR MONTE CARLO METHOD

The most popular Monte Carlo method is the
fixed random walk. Suppose that this method is to
be applied in solving Laplace’s equation:

V2V =0 in region R (1)
subject to Dirichlet boundary condition:
V = Vp on boundary B (2)

The region R is divided into a mesh (as in finite
difference), as typically shown in Fig. 1. Equation
(1) is replaced by its finite difference equivalent as
[18]:

V(x,9) =pxt V(X + A, p) + puV(x — A, y)
+pya V(% y + A) +py V(x,y = A)
3)
where
p’H’_pr_p){»—py—:l (4)

A probabilistic interpretation of equation (3) is
that if a walking particle is momentarily at point
(x,y), the probability of moving to (x+ A, y),
(X— Avy)’ (X,y—i—A), or (X,y - A)’ is P+s Dx—>
Dy+, O p,_ respectively.

To find the potential at a free point (xg, yo)

(where the potential in unknown), a random-
walking particle is asked to begin its walk at that
point. It wanders through the mesh according to
the probabilities in equation (4) until it reaches the
boundary where it is absorbed and the prescribed
potential V(1) is recorded. By sending out N
particles from (xg, yo) and recording the potential
at the end of each walk, we obtain:

1 N
V(x0, y0) = NZ (5)

If there are n, fixed nodes on B with prescribed
potential Vi, V3,..., V,,, equation (5) becomes:

N> N,
V AR 7 »
Nty

V(X5 ¥0) = Va, (6)

where N is the number of random walks ending at
fixed node k and Ny + N> + ...+ N,, = N. Thus:

n p

V(X0:¥0) Zpk Vi (7)

where p, = N;/N is the probability that a random
walk starting at free node (x,,y,) ends at fixed
node k. Calculating p, is the major goal of this
paper.

In the past, p, was calculated directly or
indirectly for just one point (x,,),) at a time
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using fixed random walk [14, 19], floating random
walk [1, 20], or the exodus method [21, 22]. In this
paper, we want to employ Markov chains to
calculate p, for all the free nodes in the entire
solution region at once.

ABSORBING MARKOV CHAINS

A Markov chain is a sequence of random vari-
ables X, x(U . where the probability distribu-
tion of X is determined by the probability
distribution X"~V. A Markov process is a type
of random process that is characterized by the
memoryless property [23-27]. It is a process evol-
ving in time that remembers only the most recent
past and whose conditional probability distri-
butions are time invariant. Markov chains are
mathematical models of this kind of process. The
Markov chains of interest to us are discrete-state,
discrete-time Markov chains. In our case, the
Markov chain is the random walk and the states
are the grid nodes. The transition probability P; is
the probability that a random-walking particle at
node i moves to node j. It is expressed by the
Markov property:

Pij = P(xp1 = X0, X150y Xn)

0,1,2

sy 4y

= P(xn+l :j|xn)aj € X,I’l = (8)

The Markov chain is characterized by its transition
probability matrix P, defined by:

Py Py Py
P P P

p_ |Fo Pu Po 9)
Py Py Py

P is a stochastic matrix, meaning that the sum of

2=0
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the elements in each row is unity, i.e.

Y Pj=1licX

jex

(10)

We may also use the state transition diagram as a
way of representing the evolution of a Markov
chain. An example is shown in Fig. 2 for a three-
state Markov chain.

If we assume that there are n, free (or non-
absorbing) nodes and n, fixed (prescribed or
absorbing) nodes, the size of the transition
matrix P is n, where:

(11)

(An absorbing node is one in which a random-
walking particle reaches and is absorbed.) If the
absorbing nodes are numbered first and the non-
absorbing states are numbered last, the n x n
transition matrix becomes:

|

i [R g]

where the nyxn, matrix R represents the probabil-
ities of moving from non-absorbing nodes to
absorbing ones; the nyxn; matrix Q represents
the probabilities of moving from one non-
absorbing node to another; I is the n,xn, identity
matrix representing transitions between the
absorbing nodes (P; =1 and P; =0); and 0 is
the null matrix showing that there are no transi-
tions from absorbing to non-absorbing nodes. For
the solution of Laplace’s equation in (1), we obtain
the elements of Q from (4) as:

n=ng+n

(12)

1
4

0, if i =j or i is not directly

if i is directly connected to j
Qi = (13)

connected to j

Pro

DPag

o- Bas

Fig. 2. State transition diagram for a three-state Markov chain.
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The same applies to R;; except that j is an absorb-
ing node. For any absorbing Markov chain, I — Q
has an inverse. This is usually referred as the
fundamental matrix

N=(1-Q

where Nj; is the average number of times the
random walking particle starting from node i
passes through node j before being absorbed.
The absorption probability matrix B is:

(14)

B =NR (15)
where R;; is the probability that a random-walking
particle originating from a non-absorbing node i
will end up at the absorbing node j. B is an nyxn,
matrix and is stochastic like the transition prob-
ability matrix, i.e.

l’lp

> By=1i=12...n (16)
j=1

If V¢ and V, contain potentials at the free and
fixed nodes respectively, then

Vy =BY, (17)
In terms of the prescribed potentials
Vi,V2,..., Va,, used in equations (6) and (7),

equation (17) becomes:

l‘l[,

Vi=> BiVj, i=ny+1,....n
j=1

(18)

where V; is the potential at any free node i. Unlike
equations (7), (17) or (18) provides the solution at
all the free nodes at once.

M. Sadiku et al.

An alternative way to obtain the solution in
equation (17) is to exploit a property of the
transition probability matrix P. When P is multi-
plied by itself repeatedly for a large number of
times, we obtain [24, 25]:

n 2 coP" = [113 :” (19)
Thus
vI=r)=Goally] e

Either equation (17) or (20) can be used to find V¢
but it is evident that equation (17) will be more
efficient and accurate. From equation (17) or
(18), it should be noticed that if N is calculated
accurately, the solution is ‘exact’.

ILLUSTRATIVE EXAMPLES

Two simple examples will corroborate the
claims above. Neither requires any computer
programming.

Example 1

Consider an infinitely long conducting trough
with square cross-section. A conducting lid is
maintained at 100V while the sides and bottom
are grounded as shown in Fig. 3.

We wish to determine the potential at the center.
Mathematically, the problem is posed as:

0V =

ViV =0 (21)
100 V
A
< OV

3

.t
0OV

Fig. 3. For Example 1.
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subject to:

V(0,y) =V(a,y) =V(x,0), V(x,a)=100

(22)

and we are to determine V(a/2,a/2). Although

one may assume that ¢ = 1, that is not necessary.
The exact solution obtained by the separation of

variables is [28]:

400 2 sin 7" sinh

Vi, y)=—» —4 4 = pn=2k-1

— nsinh nm

(23)

To apply Markov chain technique, we number the
nodes as in Fig. 3. Node 5 is the only free node so
that ny =1, n, =4. The transition probability
matrix is given by:

1 23 45
1710 0 0 0]
210 1.0 0 0

P=3{0 010 0
410 0 0 1 0
50 4 4 4 0

It is evident that:

Q=0N=(1-Q'=I

and
R=(} § § 4
Thus:
B-NR-[t | | !
and
|4
V>
Ve-BV, [} 1 4 4|}
Va4
or

Vs =1(100+0+0+0) =25.0

which agrees with the exact solution in equation
(23). Although the method gives exact solution in
this case, one cannot generalize from this simple
example. If the regular fixed random walk method
is used and we dispatch 1000 particles from point
5, we may get the numbers of particles absorbed
of boundary points as N; =252, N, =251,
N3 = 250, Ny = 247 so that:

Vs = 22100 +0 = 25.2

which is less accurate than the solution from
Markov chain and is subject to randomness.

Example 2

This is the same problem as in Example 1
except that we are now to calculate the potential
at points (a/3,a/3), (a/3,2a/3), (2a/3,a/3), and
(2a/3,2a/3).

In this case, there are four free nodes (ny = 4)
and eight fixed nodes (1, = 8) as shown in Fig. 4.
The transition probability matrix is obtained by
inspection as:

1 23 45 6 7 8 9101112

11
2 1
3 1
4 1
5 1
6 1
=y 1
8 1
9|4 Lo dho
00 & 1 1 oo !
11{o 0 0 11! !
12 [0 11 000 1 1 0]

Other entries in P shown vacant are zeros. From P,
we obtain:

123456 78

9L 0000001

Rilooiiooooo

1m{o 00001 1o

120000 11000
9 10 11 12
9f0 L L 0
o[l o o}
RRETE PR
2o 11 o

The fundamental matrix N is obtained as:

FNE
FNE

N
FNE
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Fig. 4. For Example 2.

or

A=
—_— NN
DN = 9N

(NS YNGR
RO T SR

The absorption probability matrix B is obtained
as:

1 2 3 4 5 6 7 8
ofz L L 1 1 1 1 7
24 12 12 24 24 12 12 24
lL 2 2 L 1 1 1 1
2 24 24 12 12 24 24 12
B=NR=
oL L 1 L 1 7 7 1
12 24 24 12 12 24 24 12
1mlL L 1z 7 1 1 1
24 12 12 24 24 12 12 24

Notice that equation (16) is satisfied. We now use
equation (18) to obtain the potentials at the free
nodes. For example:

Vo= Vi+5Vat5Va+5Va

1 1 1 1
+ﬂV5 +EV6+EV7+ﬁV8

Table 1
Finite Difference Markov Chain Exact
Node Solution Solution Solution
9 37.499 37.5 38.074
10 37.499 37.5 38.074
11 12.499 12.5 11.926
12 12.499 12.5 11.926

Since Vl = V2:1OO while V3: V4: e = Vg :O,

Vo = (4 +15)100 = 37.5
By symmetry, Vo = Vo = 37.5. Similarly,

Table I compares these results with the finite
difference solution (with 10 iterations) and the
exact solution using equation (23). It is evident
that the Markov chain solution compares well.

CONCLUSION

This paper has presented a means for using
Monte Carlo method to solve Laplace’s equation
for the entire solution region at once as opposed to
a single-point calculation. The approach uses
Markov chains to calculate the transition prob-
abilities. This approach is not subject to random-
ness because a random-number generator is not
required. The approach also provides a pseudo-
exact solution. The ideas presented in this paper
can be extended to solution regions that are
inhomogeneous or nonrectangular or both
[29]. All it takes is calculating the transition
probability P. The idea of Markov chain may
also be used to solve Poisson’s equation and wave
equation. It is hoped that this paper will encou-
rage the introduction of MCM in undergraduate
courses.
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