
Graphical Simulation of an Analog
Computer Using Spreadsheets*

ALI EL-HAJJ, SAMI KARAKI and KARIM KABALAN
Electrical and Computer Engineering Department, Faculty of Engineering and Architecture,
American University of Beirut, P.O. Box 11±0236, Riad El Solh Beirut 1107 2020, Lebanon.
E-mail: kabalan@aub.edu.lb

This paper presents a spreadsheet method for the graphical simulation of analog computers (AC)
used in control systems. It is based on simulating basic AC blocks like adders, integrators,
potentiometers, inverters, and nonlinear devices. To make the simulation simple and user friendly,
the construction of an AC system is done graphically, whereby blocks are drawn at the simple clicks
of buttons. Blocks can then be easily connected using a built-in graphical interface. The
initialization and running of a given system is fully menu-driven and done using toolbars and
buttons. The simulation of a system allows the calculation and plotting of its time response for any
input signal. This toolbar-customized simulation is characterized by its low cost, flexibility, and
simplicity. The procedure for building the graphical symbols and toolbars is briefly described,
and illustrative examples are presented to show the capabilities of the developed simulation system.

INTRODUCTION

SPREADSHEETS were initially conceived to
solve problems in business and accounting appli-
cations. Their flexibility and wide availability have
also made them well established in mathematics,
physics and engineering, primarily for educational
purposes [1±3]. More recently they were also used
to simulate engineering systems, such as logic
networks and control systems [4]. In simulating
engineering systems, basic building blocks are
developed and connected together using spread-
sheet formulas. In logic circuits, the basic blocks
are logic gates, flip-flops, clocks, and MSI circuits,
which are used to simulate combinational, sequen-
tial, synchronous and asynchronous networks.
In linear control systems, the basic blocks are
essentially adders, and integrators. Any transfer
function can be simulated in the s domain by
connecting together a number of integrators and
adders with appropriate scaling coefficients. An
overall control system is consequently simulated
by connecting together the constituent transfer
functions.

Nonlinear control systems are also simulated by
using nonlinear elements in some of the basic
blocks. Sampled data control systems are also
simulated using the delay zÿ1 as a basic block.
By connecting a number of zÿ1 blocks using
appropriate scaling coefficients it is possible to
simulate any transfer function in the z domain.
This simulation allows the calculation of the time
response of the control system for any input signal.

In this work, a specially developed toolbox is
described to graphically simulate the usual

components of analog computers used in control
systems. This toolbox was constructed by follow-
ing the simulation method introduced in [4] and
summarized in the next section. The toolbox inter-
face makes use of toolbars and click-on buttons to
make the simulation simple and user friendly. The
basic blocks used are adders, integrators, potenti-
ometers, inverters, and some nonlinear devices.
Each of these basic blocks can be inserted in a
system design by clicking at a corresponding
button of the toolbar. Additional toolbar buttons
allow the connection between blocks. Other
buttons are added to initialize the system or to
run it for a certain number of iterations.

This method has primarily the following
advantages:

1. It is of low cost since spreadsheets are basic
software packages widely available in many
institutions.

2. It is easy to learn by users familiar with spread-
sheet programs.

3. It allows the user to build an insight into the
behavior of a system, and to determine the
effect of changing one or more parameters on
this behavior.

4. The graphical display of the results via the chart
toolbar provides the user with a quick feedback
needed in the repetitive analyses of a design
exercise.

The process of generating the basic blocks and
connecting them using spreadsheet tools is first
explained in some detail. Then, the development of
the various analog computer blocks is described.
Two illustrative system simulation examples are
then presented and the results obtained from the
developed toolbox are compared to the analytical* Accepted 21 March 2002.

704

Int. J. Engng Ed. Vol. 18, No. 6, pp. 704±710, 2002 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2002 TEMPUS Publications.

ones. The method is discussed and concluding
remarks are finally given.

THE SIMULATION TOOLS

The spreadsheet tools used in the simulation are
graphics, formulas, macros, and toolbars. To
develop a basic block, the drawing toolbar is
used to graphically represent this block using its
conventional symbol usually found in textbooks.
Formulas are then used to calculate the block
output as a function of the inputs and other
parameters. These two steps are recorded and the
corresponding code is generated by Excel and
stored in a macro. The macro code, which is in
Visual Basic, is edited to ensure that all drawings
and references are relative to the current active
worksheet cell. The macro is then attached to a
toolbar button, which can be clicked to execute the
macro and cause the block to be generated at the
location of the active cell.

For example, to create an adder, the drawing
toolbar is used to draw the adder with three inputs
at cells B6, C6, and D6 and one output C9, as
shown in Fig. 1. The inputs are multiplied with
scaling factors stored at cells B7, C7, and D7, and
initialized to 1, 1, and 10. These scaling factors can
be directly modified by the user on the worksheet.
The adder output should be in the range of the
amplifiers saturation levels, which are the same for
all amplifiers and are stored in cells I2 and I3. The
formula:

=MAX(MIN(±B7*B6±C7*C6±D7*D6;I3);I2)

that relates the adder's output to its inputs is
written at cell C9. This process of drawing and
writing formulas is recorded in a macro called
`Adder'. The Adder macro code is edited to
ensure that all drawings and references are relative
to the current active worksheet cell. This macro is
linked to a button called `Adder' included in a
toolbar called `Analog Computer'. This toolbar is
constructed to graphically simulate the devices
usually found in an analog computer. In Fig. 1,
to generate the second adder, cell E11 is made the
active cell and the Adder button is clicked.

In order to manage the simulation process,
initialization and running mechanisms are imple-
mented by using some variables stored in the upper
rows of the worksheet. An initialization flag stored
in cell B1 is set to zero when no calculation is
required on the worksheet, and is set to 1 when
calculation is required. Some blocks use this flag to
reset their state to an initial condition. A counter
stored in cell B2 indicates the number of iterations
(i.e. spreadsheet calculations) that are performed.
This counter is initialized to zero and incremented
for each worksheet calculation. This is done by
writing at cell B2 the formula:

=IF(B1=0,0,B2+1).

The integration step is stored in cell B3, and the

time is calculated and stored in cell B4 using the
formula:

=B2*B3.

A spinner is used in cells F1:F2 to set the number
of worksheet calculations to be performed in a
single run. The initialization mechanism is done
using the `Initialize' button with an underlying
macro that resets the initialization flag and the
counter to zero. When this macro is invoked for
the first time in a new worksheet, it also generates
the spinner and writes the saturation cells in range
H1:I3 . Resetting is needed before starting any new
run. The running mechanism is done using the
`Go' button, which has an underlying macro to
set the initialization flag to one and recalculate the
worksheet a number of times indicated by the
spinner. It is possible to execute the `Go' macro
several times, consecutively, using different spinner
values.

The simulation of a system requires connecting
the output cell of one block (source) to an input
cell of another block (destination). This is done by
drawing a line that connects the centers of the two
cells and by writing at the destination cell a
formula equal to the source cell address. This is
done in two steps. In the first step the source cell is
made active and the `From' button is clicked. The
underlying macro calculates and saves the address
of the source cell. In the second step the destina-
tion cell is made active and the `To' button is
clicked. The underlying macro calculates the
address of the destination cell, writes in this cell a
formula equal to the source cell address, and draws
a line that connects the centers of the source and
destination cells. The `To' button has effect when
clicked directly after the `From' button.

For example, in Fig. 1, to connect the first adder
output to the second adder input cell C9 is made
active, the `From' button is clicked, then cell D11
is made active and the `To' button is clicked.

ANALOG COMPUTER BLOCKS
SIMULATION

Other AC blocks are simulated following an
approach similar to that of the adder described
in the previous section. These blocks are the
inverter, the potentiometer, the integrator, and
the relay, which is a nonlinear device.

In this simulation, the inverter of Fig. 2 is
obtained by making cell B7 active and then click-
ing the `Invert' button. The output formula at cell
B9 is `±B7'. The potentiometer in the same figure is
obtained by making cell D7 active and then click-
ing the `pot' button. The pot coefficient is stored at
cell E8 and initialized to one. This coefficient can
be directly changed by the user but cannot be set to
more than one.

This feature is implemented by using at the
output cell D10 the formula:

=D7*MIN(E8;1)

Graphical Simulation of an Analog Computer Using Spreadsheets 705

In the case of an integrator, the output y�t� is
obtained as function of the input x�t� by solving
the equation:

dy

dt
� x�t� �1�

with y�0� � y0. Many methods discussed in [5] can
be used to calculate the output sequence yi given an
input sequence xi . The trapezoidal rule is chosen
with an integration step h as follows:

yi�1 � yi � �xi � xi�1�
2

h �2�

Consider the integrator with three inputs B6, C6,
and D6 and one output C10 shown in Fig. 3. The
inputs are multiplied with scale factors stored at

cells B7, C7, and D7, and initialized to 1, 1, and 10.
These scaling factors can be directly modified on
the worksheet by the user. The initial value is
stored in cell B9 and assigned a default value of
zero when the integrator is generated but can be
directly modified to y0 on the worksheet by the
user.

The input xi�1 is calculated in cell D8 using the
formula:

=±B7*B6±C7*C6±D7*D6

Due to the row-wise calculation of a worksheet, at
every iteration the previous input value xi is stored
in cell C8, which is calculated before cell D8, using
the formula:

=IF(B1=0;0;D8).

Fig. 1. Simulation tools.

Fig. 2. Inverter, potentiometer, and relay simulation.

A. El-Hajj et al.706

Since the output yi�1 is stored at cell C10, its
previous value yi is stored in a cell C9, which is
calculated before cell C10, using the formula:

=IF(B1=0;B9;C10).

The output is obtained at cell C10 by implementing
Equation (2) as follows:

=MAX(MIN(IF(B1=0;B9;
C9+0.5*B3*(C8+D8));I3);I2)

As in the case of the adder, this formula takes into
account the saturation levels. The integrator
generation process is automated using the
`Integrator' toolbar button.

Nonlinear devices can be simulated in a similar
way. It is possible to use formulas in order to
implement an operation that is not simulated by
a block. As an example, consider the simulation of
the relay of Fig. 2 with input G7 and output G10.
The relay levels are assigned default values of ±10
and 10, which can be modified by the user directly
on the worksheet. The output formula in cell G10
is given by:

=IF(G7<0;F8;IF(G7>0;F9;0)).

The relay generation process is also automated
using the `Relay' toolbar button.

ILLUSTRATIVE EXAMPLES

Two examples are used to illustrate the simula-
tion of analog computers and compare the results
with available solutions. First, consider the linear
system shown in Fig. 4, with its spreadsheet
simulation shown in Fig. 5. Since Excel calculates
its cells row-wise from left to right, the order and

the placement and connections of devices should
be carefully done. The value of K is stored in cell
B5 and cell D11 contains the formula `=B5'. The
unit step response is calculated by applying a unit
value at the system input in cell D5. The corre-
sponding system time responses are arranged in
adjacent columns. For example, in order to
record the system output for counter values
0, 20, 40 . . . , 2400, these values are filled in the
range A22: A142. The corresponding time values
are stored in range B22:B142 by multiplying the
counter values in range A21:A142 by the step
length given in cell B3.

Successive outputs at cell D18 (named
OUTPUT) are stored in range C22:C142 by
writing in cell C22 the formula:

=IF(B1=0;0;IF(A22=B2;OUTPUT;C22))

This formula is copied to the range C23:C142. The
Excel chart toolbar is then used for plotting. The
results are almost identical with the solution
obtained and given in [6].

As a second example, consider the differential
equation y00 � 6y0 � 5y � 0 with the initial condi-
tions y�0� � 2 and y0�0� � ÿ2. A spreadsheet
simulation of this equation obtained after scaling
is shown in Fig. 6. The normalized output obtained
is ÿ2y�t�. The calculated solution, y�t�, is obtained
at cell C21 using the formula: `±C20/2'. The
calculated solution is plotted by following a similar
approach to that of the previous example. This
solution is in close agreement with the exact
solution given by y�t� � 2 exp�ÿt� and plotted on
the same graph.

DISCUSSION

The basic task facing computer simulation of
a given process is that of providing a cost-
effective facility for building the object from
one end of the system at a rate and a level of
reliability and quality that are acceptable to a
user at the other end. These key parameters are
integrated in this design process and can be
outlined as follows:

Fig. 3. Integrator simulation.

Fig. 4. A Simulation example.

Graphical Simulation of an Analog Computer Using Spreadsheets 707

1. The current simulation method relies on the
use of spreadsheets which are widely available
on most computers, definitely more than
other related simulation packages such as
MATLAB-Simulink, and are familiar to a
large range of users. Thus, no extra cost is
required and as such it is very useful when the
user has no time or means to access a

sophisticated package. It is useful in particular
in educational settings where budgets and
resources are sometimes limited.

2. Being familiar with spreadsheets, it is pos-
sible to develop this application using macros
and formulas. Excel automatically generates
the code (in Visual Basic) after recording
different tasks in macros. This code consists

Fig. 6. A second simulation example.

Fig. 5. Spreadsheet simulation of the system shown in Fig. 4.

A. El-Hajj et al.708

of a few pages that can be directly accessed
by users.

3. The size of the worksheet containing the code
and the toolbar is in the order of 80 kilobytes.
Thus only limited computer resources are
needed to run the application.

4. Furthermore, this method is easy to use and
simply requires learning the function of each of
the nine toolbar buttons.

5. For analysis and results, the spreadsheet data
processing facilities can be used, which allows
an iterative step-by-step or continuous run of
the simulated system. This procedure shows the
values at the output of any block in the work-
sheet. The outputs with different parameter
value(s) can be simply obtained and plotted
using the what-if feature of spreadsheets.

This method is also sufficiently accurate for a large
number of practical applications, since Excel
stores numbers and performs calculations using
15 digits of precision. To increase the accuracy of
the results, the integration step can be reduced or
more sophisticated formulas can be used in simu-
lating some blocks. However, reducing the integra-
tion step may lead to an increase in the number of
iterations (worksheet calculations), which makes
this method slow in simulating large control
systems.

CONCLUSIONS

A method is presented that graphically simu-
lates analog computers using modern spread-
sheet programs, which are available and
familiar to a wide audience of computer users.
The method is very convenient for a quick
simulation when one does not have the time
or means to write a sophisticated program or to
access an advanced simulation package. It is
also very useful for educational purposes to
simulate a system in a step-by-step fashion,
while recording the output values of any block
in the worksheet, and then to repeat the calcu-
lations with different parameter values. The easy
and quick plotting of results provides the user
with a good feedback when carrying out repetit-
ive analyses studies of a given design proposal.
This method is sufficiently accurate for a large
number of practical applications since Excel
stores numbers and performs calculations using
15 digits of precision. To increase the accuracy
of the results, however, it is possible to reduce
the integration step or to use more sophisticated
formulas in simulating some blocks. For
example, the trapezoidal rule used to simulate
the integrator may be replaced by a higher
order rule [5].

REFERENCES

1. M. Hagler, Spreadsheet solution of partial differential equations, IEEE Trans. Education, 30(3),
August 1987, pp. 130±134.

2. T. T. Crow, Solutions to Laplace's equation using spreadsheets on a personal computer, American
Journal of Physics, 55(9), September 1987, pp. 817±823.

3. F. R. Shapiro, The numerical solution of Poisson's Equation in a pn diode using a spreadsheet,
IEEE Trans. on Education, 38(4), November 1995, pp. 380±384.

4. A.El-Hajj, Functional simulation using spreadsheets, SIMULATION, 73(2), August 1999,
pp. 80±90.

5. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, New York: McGraw-Hill (1990).
6. R. C. Dorf, and R. H. Bishop, Modern Control Systems, Addison Wesley, 1995.

Ali El-Hajj was born in Aramta, Lebanon. He received the Lisense degree in Physics from
the Lebanese University, Lebanon in 1979, the degree of `Ingenieur' from L'Ecole Super-
ieure d'Electricite, France in 1981, and the `Docteur Ingenieur' degree from the University
of Rennes I, France in 1983. From 1983 to 1987, he was with the Electrical Engineering
Department at the Lebanese University. In 1987, he joined the American University of
Beirut where he is currently Professor of Electrical and Computer Engineering. His research
interests are numerical solution of electromagnetic field problems and engineering
education.

Sami H. Karaki is an associate professor of electrical engineering at the American
University of Beirut (AUB), Beirut, Lebanon. He joined AUB in 1991 and contributed
to the development of its Electric Power Engineering program. From 1981 to 1990 he was
with the Kuwait Institute for Scientific Research, Kuwait where he contributed to two
regionally leading projects on the power system interconnection of Arabic countries. He
obtained his BE from AUB in 1975 and his Ph.D. from the University of Manchester
Institute of Science and Technology, UK, in 1980. His main fields of interest are in
renewable energy systems modeling, power system planning, short-term load forecasting,
and artificial intelligence applications in power systems.

Graphical Simulation of an Analog Computer Using Spreadsheets 709

Karim Y. Kabalan was born in Jbeil, Lebanon. He received the B.S. degree in Physics from
the Lebanese University in 1979, and the M.S. and Ph.D. degrees in Electrical Engineering
from Syracuse University, in 1983 and 1985, respectively. During the 1986 Fall semester, he
was a visiting assistant professor of Electrical Engineering at Syracuse University.
Currently, he is a Professor of Electrical Engineering with the Electrical and Computer
Engineering Department, Faculty of Engineering and Architecture, American University of
Beirut. His research interests are numerical solution of electromagnetic field problems and
software development.

A. El-Hajj et al.710

