
Teaching Creativity in a Technological
Design Context*

KEES VAN OVERVELD, RENEÂ AHN, ISABELLE REYMEN and MAXIM IVASHKOV
Stan Ackermans Institute, Centre for Technological Design, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: k.van.overveld@wxs.nl

We want to teach creativity techniques to prospective technological designers in a domain-
independent way. To facilitate this, we adopt a format and nomenclature that is close to the
terminology used by engineers. Central notions are concepts, attributes and values. A crucial role is
played by, what we call, productive attributes: attributes that come with a set of values that can
easily be enumerated. In this paper we show how this format supports several creativity techniques
and how it allows engineers to explore option spaces in a structured manner. We briefly discuss
some practical experiences with our approach.

INTRODUCTION: PROBLEM STATEMENT

THE STAN ACKERMANS INSTITUTE (SAI)
is a subsidiary of Eindhoven University of Tech-
nology [1]. It has been established in order to
organise various postgraduate programs in
advanced technological design. In order to enrol
in these programs, candidates possess a completed
masters degree in some technical discipline; after
successful completion of an SAI program, they
receive the title MTD (Master of Technological
Design): a degree that is certified by the Dutch
Institution of Engineers (KIVI).

The current SAI programs specialise each in one
technological discipline: software design, informa-
tion and communication technology, mechatronic
design, product and process design, and others.
The intention of these programs is to educate
prospective designers in skills and attitudes that
should be complementary to the mere technical,
discipline-related topics that are commonly taught
in graduate programs in science and technology.
These skills and attitudes include communication,
process management, and business orientation, as
well as skills related to designing, like creativity,
modelling and decision-making. In 2000, SAI has
started efforts to teach design skills in an inter-
disciplinary, i.e. domain-independent manner. One
possible benefit of such an approach is that
designers in various disciplines would be capable
of speaking the same language. In particular in
early design stages, where crucial decisions are
often being made that cannot easily be justified
from within one technical discipline, designers with
various backgrounds have to collaborate. A
common vocabulary helps to avoid confusion,
delay and inefficiency.

ANALYSIS

We focus on the following problem: `How to
teach creativity techniques in interdisciplinary
design for post graduate technological design
programs'.

Even when dealing with design problems that
offer ample opportunity for an innovative
approach, novice designers and students in tech-
nological design very often fall back to conven-
tional, and frequently sub-optimal textbook-type
solutions. Few students consider using creativity
techniques. Even those that do so, rarely use more
advanced methods than brainstorming (with the
possible exception of TRIZ, [2] ). Despite much
literature on creativity (see below), technological
designers rarely use creativity techniques. This may
relate to the fact that creativity techniques are
relatively unknown to technological designers.
However, a more fundamental problem may be
that the existing creativity techniques are not
appropriate for use in a technological context
due to a mismatch between the playful attitude
that belongs to for example, metaphorical thinking
or mind mapping, and the more formal style of
argumentation that is taught in most forms of
scientific education. In this paper we hope to
tackle this problem. We believe that our approach
has the additional benefit that it encourages precise
communication, helps to be explicit about assump-
tions, and provides additional structure during
design assignments. The format that we propose:

. invites explication of the concepts and assump-
tions used in design processes;

. invites structured searching for alternatives;

. matches with the line of thinking that is familiar
to technologists;

. deals with technical and non-technical issues
using the same vocabulary;

. uses no other terminology than the most* Accepted 24 May 2002.

260

Int. J. Engng Ed. Vol. 19, No. 2, pp. 260±271, 2002 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2002 TEMPUS Publications.



common terms from logic and undergraduate
math;

. interfaces well with existing technological
methods and formalisms (e.g. physics, computer
science, mathematics).

Interestingly, we find that the use of such a format
does not only help us to introduce creativity
techniques to engineers, but also helps us to reflect
on these techniques, and to improve and extend
them in several ways.

RELATIONS TO EARLIER WORK

Creativity research has been performed all over
the world, as shown in [3]. Creativity has also been
studied from several viewpoints, like a psycho-
logical viewpoint [4, 5] or an educational view-
point, like [6, 7 or 8]. Also the relation between
creativity and designing (engineering) has received
attention, like in [9±14]. Our approach differs from
the general literature about creativity in the sense
that we use notions and a terminology that can
be understood by engineers in several design
disciplines.

We can position our work as follows. According
to Amabile [15] there are three basic ingredients to
creativity:

. domain skills

. creative thinking skills

. intrinsic motivation.

In our work, we focus on creative thinking skills.
Creative thinking skills according to [16] include
seeking novelty and diversity, being independent,
being persistent, and having high standards. In this
taxonomy, our work regards seeking novelty and
diversity. Our work, as in [16, 17], tries to foster
creativity in an engineering curriculum. This is
however, not easy. According to [18] it can be
both daunting and time-consuming. We hope to
mitigate some of these problems by stimulating
students to unify creative exploration with the
pursuit of clarification and structure. We think
that this can be accomplished by borrowing ideas
from data modelling in object-oriented software
design [19]. For brevity's sake, we refer to [20, 21]
for further relations between our work and earlier
literature.

PROPOSED APPROACH

In teaching creativity techniques to our students,
we try to convince them that these techniques lead
to useful results that can be incorporated within a
technically oriented design and development
culture. To do so, we have adapted these creativity
techniques, related them to technical concepts, and
translated them into formal and technical terms
that are close to an engineering culture. This has
the added benefit that the structure of the design

problem comes out more clearly, and that the
relations between the various techniques are
more transparent.

We formulate a creativity technique as follows.
We consider a domain of interest (for instance:
solutions to a design problem; stakeholders; risks;
use cases; . . . ). This domain, which we call the
option domain, is characterised as follows:

. it is large;

. it has no a priori metric (structure);

. it contains an element S (`start') that can be
easily found according to standard thought
patterns (`textbook methods');

. it contains an element T (`target') that is to be
considered as highly relevant, highly advanta-
geous, highly beneficial . . .

Most often, T 6� S. Creativity techniques are tech-
niques that increase the chance for getting from S
to T.

According to most writers in the field, one of the
reasons why it is difficult to get from the start S to
the target T, is that our brain tends to follow
known pathways, and once S is found, it requires
considerable effort to deviate from S. This inspires
to randomised techniques such as brainstorming.
We agree with this observation, but we think that,
in particular in technological context (where often
quite some structure exists, albeit not obviously
visible) randomness is only part of the solution: we
think that exploiting the structure is at least the
other half. We believe that the format that we
propose allows us to express and exploit this
structure.

To help students to explore the option domain,
we propose a number of different techniques,
which we present to the students within a formal
framework that is inspired on developments in
object oriented software engineering.

Use of concepts
In our format we use a common term,

`concepts', to refer to both points and regions in
the option space. Information about concepts can
be expressed through the `attributes' of a concept.
Attributes are functions, that, when applied to an
option, yield a certain value. As designers, we add
information, when we constrain the value of an
attribute for a certain concept.

Symbolically, we write this as:

A(C)�V, e.g. shape(hole)� square

A(C1,C2)�W,

e.g. distance(pump, valve)� 12 cm

Values can also be tuples, sequences, etc. For
example:

A(C)�hV1,V2i e.g. location(station)

�h5183 012 00 lattitude, 3482 012 00 longitudei
In our view the attributes are used to represent
relevant knowledge about a certain concept. In

Teaching Creativity in a Technological Design Context 261



design situations, we very often have the case that
attributes are applied to concepts that denote large
regions of the option space, rather than distinct
unique elements. As a consequence, the value of
these attributes can be underdetermined. For
instance, if we are designing a vehicle, we may
have an attribute `energy source' that is under-
determined as long as we haven't made a particular
decision:

energy source (vehicle)

2 {electricity, petrol, diesel}.

The value of an attribute may be one of a set of
alternatives (as in the above example of energy
sources); it may be a procedure, or it may be a
concept in its own right. For instance, in the
context of designing, say, the ICT-infrastructure
of a building, a first design session may result in
the conclusion that the most relevant concept is
`IT infrastructure'. A first attribute can be
`contains( )', with `contains(ICT-infrastructure)�
husers, computers, managementi'. A next design
session may reveal that users, a concept in its own
right, come in types, with `types-of(users)2 {staff,
customers}', where `staff ' is a next concept. This
concept `staff ', according to the design team, has
as relevant attributes `number', `training level' and
`desired service'. The types of the values are,
respectively, one of a set of known values
(namely, the positive integers); an operational
procedure (namely, a test to assess the training
level); and a next concept in its own right. And so
on.

Notice that the stepwise refinement of concepts
entails an invitation to be more and more explicit,
until no further new concepts occur, and every-
thing is sufficiently operational. This is reminiscent
to the way data models are constructed using
inheritance, attribute relations and refinement in
object orientation [19].

Having introduced the above terminology, we
subsequently use this format to acquaint our
students with various creativity techniques. The
used format allows the students to express the
progress that they make during design sessions,
and cannot only be used with the more traditional
creativity techniques, but also with variations on
such techniques. In the next section we illustrate
how we can introduce various techniques through
examples and exercises using our format.

CREATIVITY TECHNIQUES

Use of brainstorming
Brainstorming, together with brain writing, and

other collective idea-generation techniques, are the
best known (and for many designers: the only
known) methods to creatively explore the option
domain. A model of brainstorming, in our termi-
nology, is a process of random sampling the
domain, scattering it with concepts. Apart from

some problems, like the occurrence of clustering
and various forms of social censorship, there are
two main problems with traditional brainstorming.

If we call the number of explicitly formulated
degrees of freedom the `dimension' of a sample (a
sample here is a suggested concept), then most
samples will be 0-dimensional. Of course, the
option domain has many degrees of freedom
(although these are not formulated explicitlyÐin
fact, they are often not known in the beginning),
and with brainstorming, we are therefore attempt-
ing to cover a high-dimensional domain with 0-
dimensional samples. This is likely to be inefficient.
Here, a degree of freedom is an attribute that can
take on multiple values. For instance, in a brain-
storm about various means for transportation, one
can suggest `a diesel train'. The value `diesel' is a
value for the attribute `energy source', applied to
the concept `train'. A `diesel train' is then a
0-dimensional sample, whereas `a train with some
given source of energy, namely diesel, electricity or
steam' is a 1-dimensional sample. We give further
examples later.

Most authors agree that some form of clustering
is recommended afterwards, as in [6], but in
general no real techniques are suggested to do
this. In fact, clustering amounts to replacing
some samples by a single one, which destroys
information and reduces the number of samples
even further. The option domain is covered even
less dense. In terms of covering efficiency, this
seems a bad idea.

Dimension lifting
A first remedy to the problems with brainstorm-

ing, outlined above, is deliberately searching for
samples with dimension higher than 0. We give two
examples. First a more academic one, of the kind
often used in warming-up events for creativity
sessions:

Suppose you are the managing director of a produc-
tion plant of sugar cubes. You have a large supply of 5
million sugar cubes, but suddenly the market col-
lapses. How can you avoid to go bankrupt?. Most
often, suggestions such as `convert the sugar cubes to
confectionery', or `dissolve the sugar cubes to produce
sugar syrup' are soon proposed. At this point, one
may observe that these suggestions are different with
respect to the aggregation state: confectionery is solid,
sugar syrup is liquid. But if the aggregation state is an
attribute, its values are easily enumerated: solid,
liquid, and . . . gas! So what about gas-like substances,
for instance spray-cans with castor sugar or candy-
floss. Also, a suggestion might be: `use sugar cubes as
bricks for temporary buildings. This makes use of the
physical properties of sugar: it is nearly incompres-
sible. But `physical' is a value of the attribute `type of
property used for this application'. Other values are
`geometrical', `chemical', `biological', `psychological',
`social', and `economical' (we simply took items from
a list of academic disciplines). So we have now found
two (largely) independent attributes, (or parameters
or dimensions) that can be used to characterise the
solution space: the aggregation state and the type of

K. van Overveld et al.262



property used for the application. Of course, in a next
step we can set about to find applications with all
combinations: `can we think of a gaseous sugar
product with mainly psychological effect?' and so on.

Our second example is less academic:

Suppose we are designing a mechanism, and we have
to move a certain part from A to B. One suggestion
could be to use a hinge; a second suggestion is to use a
glider construction. We can unify these 0-dimensional
samples by introducing the higher dimensional
sample: `a motion that is generated by an affine
transformation'. Indeed, affine transformations are
rotations, translations, mirror reflections, scaling,
skewing, and the identity. The suggested hinge and
glider categorise in the first two classes, respectively.
A mirror reflection would inspire to a balanced
counterweight construction; a scaling corresponds to
pneumatically inflating a balloon with the moving
part being stuck to it; skewing would amount to a
parallelogram construction (maybe using elastic
deformation), and the identity amounts to question-
ing if the part has to move at all. So we see that
dimension lifting here brings four additional sugges-
tions `for free'. (In fact, a skilled designer occasionally
may find himself applying dimension lifting. We don't
claim this to be a new method; we merely identify it as
a useful pattern, see also [22] ). Also, many taxo-
nomies as published in designer's handbooks are in
fact examples of dimension liftingÐexcept that the
unifying degree of freedom is often not mentioned.

We now describe dimension lifting in our termi-
nology:

Suppose that an initial brainstorm has produced
concepts C1 and C2. When we consciously want to
attempt dimension lifting, we search for an attribute
A that applies to both C1 and C2: A(C1)�V1,
A(C2)�V2. In the mechanical engineering example,
the attribute was `the affine transformation that
corresponds to motions C1 and C2, respectively';
the two values V1 and V2 were `rotation' and
`translation'.

Now an attribute A, applied to concept C is called
productive:

. if it gives relevant information about C;

. if it produces only one value for any given C
(that is, A(C) is a genuine function of C);

. if the set of values that A can produce are easily
enumerated;

. if, in some sense, completeness of the set of
values of A can be seen.

It sometimes happens that an attribute in itself is
not productive, but that it can be made productive
without much effort. For instance, consider an
exercise to find new products for a production
unit for paper objects:

Assume that two concepts have been proposed: kites
and mail envelops. One attribute that seems to be a
candidate for dimension lifting is `target customers'.
Indeed, kites are for children, and mail envelopes are
for adults. In our jargon, we write `target customers
(kites)� children' and `target customers (mail
envelops)� adults'. The attribute `target custo-
mers( )', however, is not immediately productive: we

cannot be sure that we can enumerate all categories of
customers. It has a more complex structure, because it
is a concept in its own right. This means that we can
interrogate `target customers( )' by introducing addi-
tional attributes, for instance `age', or `amount of
money to spend', or `cultural background'. The first
two are productive; the latter again is a concept in its
own right and may require further attributes in order
to become operational or even productive. (The
process of introducing further attributes to make the
information contents of a concept explicit, given the
purpose of the designer, is called operationalisation.)
The two attributes `age' and `amount of money to
spend' are productive. Age for instance gives rise to
the set of values `0±2 years', `2±5 years', `5±12 years',
`12±20 years' and `20 years and over'.

Returning to our initial problem, we can see
suggestions for paper products being generated
such as:

. `diapers' (for the 0±2 years category);

. `toddler's napkins' (for the 2±5 years category);

. `kites' (one idea that we started with, for the
5±12 years category);

. `fancy coloured CD self-adhesive labels' (for the
12±20 years category);

. `mail envelopes' (the other initial idea, for the
>20 years category).

A similar exercise for the productive attribute
`amount of money to spend' is left to the reader.

We summarise our dimension lifting method:

. start with a regular brainstorm to get some
0-dimensional samples;

. search for a productive attribute that applies to
at least two of these samples;

. if a potentially suitable attribute is not yet
productive (because it is a compound concept
in its own right), operationalise it with further
productive attributes;

. generate the values for the productive attribute;

. use these values to generate new concepts.

This is one reason why productive attributes are
interesting: they serve as generators for concepts
rather than concepts proper. A second, even more
relevant reason is, that they can serve to partition
the option domain, which is a more powerful way
to explore it than sampling. We study partitioning
in the following two subsections.

Hierarchy
In a metaphorical sense, we can view the

option domain P as a high-dimensional manifold
with a complicated topological structure. With
brainstorming, we sample this manifold with
0-dimensional points; with dimension lifting we
have slightly improved our efficiency by sampling
it with 1-dimensional `curves' or even higher
dimensional `surfaces' or `hyper surfaces'. An
attribute then plays the role of a coordinate. But
we are still sampling, and not covering the option
domain. In general, there is no guarantee that we
will be able to cover the entire manifold. (Compare
this with the observation that also in geometry, we

Teaching Creativity in a Technological Design Context 263



are in general not able to use one coordinate
system for an entire manifold: we typically have
to split the manifold in sub-manifolds where every
sub-manifold has its own coordinate system.
Special care has to be taken to make sure that in
the seams, consistent coordinates can be found.)
That is because the productive attributes are not
likely to apply to all concepts. In this and the
following technique, we attempt to search produc-
tive attributes that are indeed capable to cover the
entire manifold, and that therefore can produce a
partition (instead of a sampling) of P.

We start again with a regular brainstorm, and
we obtain a list of concepts, C1, C2, C3 . . . Next
we search for a productive attribute A, which
applies to all these concepts, but which yields
different values for some of them.

We can now partition our option space P with
respect to the different values of A(Ci), the distin-
guishing attribute. For instance, suppose that the
option domain (partition P) contains transporta-
tion methods. The initial list of concepts, obtained
from brainstorming is, say, `freight train', `bicycle',
`walking', `jumping', `conveyor belt', and `taxi'. To
create a hierarchy, we need to come up with an
attribute (a distinguishing attribute) that is applic-
able to everything in P, and which serves to split P
in two or more sub-partitions.

In this case, a possible distinguishing attribute,
that is operational but does not produce one
unique value for all concepts in P, could be: `the
type of load( )', with values `goods' and `passen-
gers'. (We ignore for now the other two values,
`both goods and passengers', and `neither goods
nor passengers'.) The `goods'-partition, say P1,
contains `freight train', `conveyor belt', and the
`passengers'-partition, P2, contains `bicycle',
`walking', `jumping', and `taxi'.

Notice that the partitions P1 and P2 are repre-
sented or inhabited by sets of concepts, namely the
concepts that came about in the original brain-
storm. The partitions now also become (abstract)
concepts in their own right. So P1 is the abstract
concept `methods to move goods', inhabited by the
brainstorm concepts `freight train' and `conveyor
belt'. Similar P2 is the abstract concept `methods
to move passengers', inhabited by `walking',
`jumping', etc. In general, this method generates
abstract concepts (corresponding to regions in the
option space), where every abstract concept has a
number of operational attributes with unique
values and others with multiple (i.e., underdeter-
mined) values.

We can now iterate this process on one of the
resulting partitions, using one of the attributes
with multiple values. For instance, we can distin-
guish between a freight train and a conveyor belt
on the basis of the attribute `mobility of the
device'. In this way, we can create partitions P3
and P4 that contain the conveyor belt and the
freight train, respectively.

Of course, when we iterate this process, for
instance to subdivide P2, we are now allowed to

introduce attributes that are applicable in P2 only.
An attribute that is only operational for P2, is `role
of passengers during transportation', with values
`active' and `passive'. This attribute does not
produce one and the same value for all concepts
that are sub-concepts of P2, but it is operationally
defined because P2 only deals with moving passen-
gers. Applying this attribute gives rise to the two
subclasses (partitions) in P2, one (P5) being repre-
sented by the concepts from our original brain-
storm `bicycle', `walking', `jumping', the other one
(P6) being represented by `taxi'. The first three are
now representatives of the concept P5: `methods to
move passengers actively'. The `taxi' is a represen-
tative of a new partition, P6, `methods to move
passengers passively'.

Notice that the most important thing that
happens here is that we build a hierarchy from
partitions; every partition is represented or inhab-
ited by a subset of concepts from the initial brain-
storm, but in virtue of explicitly identifying the
operational and unique attributes, we also
promote every partition into a concept in its own
right. These (abstract) concepts form an added
value: they are a structural hierarchy on the
option domain.

The added value of such a structure becomes
apparent, in cases where some of the partitions
turn out to be empty.

This may well indicate that we have over-
looked certain possibilities during our initial
brainstorm.

The resulting hierarchy is one of increasing
abstraction. A concept P is more abstract than a
concept P1 if every attribute Ai that is operational
for P, is also operational for P1 and yields the
same or more restricted values for P1, while
there is at least one attribute Aj that is operational
and unique on P1 which is not unique
(� underdetermined) on P. Ai is called the distin-
guishing attribute. The different values that are
yielded give rise to specialisations of P, to be
called sub-partitions. Notice that this hierarchy is
comparable to the `is-a' (i.e. inheritance) hierarchy
that is used in object orientation. Schematically,
we depict the process as follows:

For the example at hand, the hierarchical parti-
tion looks as in Fig. 2. (Notice we have not fully
elaborated the structure. In a complete structure,
no abstract partitions exist that are inhibited by
more than one item. Indeed, there is no need to
introduce an additional attribute if no items need
to be distinguished.)

In order to ensure that the hierarchical structure
is not too much dependent on the coincidental
outcome of the initiating brainstorm, we may
want to work with two teamsÐboth build the
hierarchical structureÐand next attempt to clas-
sify the concepts of the other team into their own
structure. This avoids a bias towards setting up a
structure that is too much dedicated to the current
set of brainstorm concepts.

If we commit ourselves to the following rules:

K. van Overveld et al.264



. All attributes are operationally defined for the
entire partition of the option domain that they
should work upon.

. All attributes should be complete, in the sense
that the resulting values span all possibilities for
that attribute (if this is not attainable, we can
always include an auxiliary value, `others').

. All attributes should be true functions, in the
sense that a concept produces only one value. If
this is not attainable, we can usually solve this
by simple combinatorial arguing. For instance,
an attribute `usage' with values `serious usage'
and `fun usage' can return both values when

applied to some concepts. A remedy is here to
make it a four-valued attribute: `serious usage',
`fun usage', `both serious and fun usage', and
`neither serious nor fun usage'.

. Partitions at the lowest level contain precisely
one concept.

Then we can be assured of the following:

. the hierarchic structure is a structure on the
entire option domain;

. if we decide to reject a partition corresponding
to a particular value V1 of a certain attribute
A1, all sub-partitions of that partition will be

Fig. 1. The process of building a hierarchic partitioning of abstract concepts.

Fig. 2. An example of a hierarchical partition of an option space.

Teaching Creativity in a Technological Design Context 265



rejected as well (because A1 is defined opera-
tionally for all concepts in that partition, and it
returns V1 on all these concepts);

. the hierarchic structure captures all nuances
that were present in the original brainstorm
output, as opposed to the often recommended
clustering technique, that essentially eliminates
these nuances.

It is, of course, possible to build several hierarchies
on the same option domain: ultimately, the
purpose of exploring the option domain will deter-
mine the adequateness of a particular hierarchy.

Orthogonal structures
For a hierarchic partition, it is sufficient to have

one attribute that is operational (and preferably
productive) for the entire option domain. All
subsequent attributes only have to work for smal-
ler and smaller sub partitions. Suppose, however,
that we can find several operational (and produc-
tive) attributes that work for the entire option
domain. Then we can build an orthogonal struc-
ture. Finding productive attributes that are all
mutually orthogonal and that are operational on
the entire option domain is obviously a more
demanding task than just finding operational attri-
butes for the subsequently decreasing partitions in
the hierarchy. On the other hand, it has serious
benefits (for simplicity, we only consider binary
attributes in the sequel):

. With N binary attributes, we can distinguish 2N

partitions. Conversely, if we fully want to
distinguish M concepts (the results from our
brainstorm) with an orthogonal structure, we
ideally need only round(log(M)� 1) orthogonal
attributes.

. In most cases, the number of concepts that is
found in an initiating brainstorm is not an
integer power of 2. For instance, for M� 17,
we need at least 5 orthogonal, binary attributes.
But then we can distinguish 32 partitions. So at
least 32ÿ 17� 15 partitions are empty: these
partitions refer to segments of the option space

we didn't think of in the brainstorm. Often it
pays to investigate these cells: they have been
overlooked, but they could contain promising,
new ideas.

We typically want to achieve the advantages of
fully orthogonal structures, but it may be too
difficult to actually find sufficiently orthogonal
attributes. (Figure 3 refers.) Two hybrid compro-
mises between hierarchical structures and ortho-
gonal structures exist:

. if only one productive attribute can be found
that works for the entire set of initial concepts,
we start with building a hierarchy. It may be
possible, however, that one or more of the
partitions of this hierarchy admits an orthogo-
nal structure.

. if more than one productive attributes can be
found, but not enough to assure that all parti-
tions are occupied with only one concept, the
crowded partitions (� partitions inhabited by
more than one concept) can be endowed with
hierarchical structures.

Dialectics
The structuring devices that we saw thus far

(hierarchies, with orthogonal structures as a
special case) require an initial collection of
concepts. This is not always convenient. Many
innovation projects start with the question:
`What variations could be conceived of C?' where
C is an existing concept. We already saw the use of
productive attributes, and we recommended
searching for productive attributes; here we will
use productive attributes again to create a dialectic
structure. The term dialectics goes back to Hegel
and Fichte (see [23] ). It refers to the three-fold
relation between notions: thesis, anti-thesis and
synthesis. We use it in the following context:

Let C1 be an initial concept, which plays the role of
the Hegelian thesis. Let A be a productive attribute
(say, a binary attribute for simplicity). Let
A(C1)�V1. The concept C2, with A(C2)�V2,
obviously plays the role of the anti-thesis with respect

Fig. 3. Schematic depiction of simple orthogonal structure. This is equivalent to two hierarchical structures, one with the attribute A( )
as the distinguishing attribute for the root (� top level) node and B( ) in the child notes, and one with B( ) in the root node and A ( ) in
the child nodes. In general, every orthogonal structure with n attributes can be seen as hierarchies in n! ways: one hierarchy corresponds

to every permutation of the attributes.

K. van Overveld et al.266



to attribute A. Further, a second attribute A 0 with
A 0(C1)�V 01 can be used to introduce a second anti-
thesis, say C 02 with A 0(C 02)�V 02. So for a given
thesis, we allow multiple anti-theses. Also, multiple
anti-theses arise if an attribute can yield more than 2
different values.

A more abstract concept C3 for which A(C3) is
defined, but has an underdetermined value, is the
synthesis. C3 is one level more abstract than C1
and C2. We recommend putting effort in explicitly
formulating this more abstract concept, because
this will probably reveal some new attributes of C1
(and C2)Ðwhich may be productive attributes. We
give an example:

Let C1 be a pencil. One attribute is `deposited
material( )', with value `deposited material(pencil)�
carbon'. An alternative value is `ink', and it takes little
effort to find that C2 might be a pen. Now the
synthesis should encompass both pen and pencil. An
attempt to explicitly define this abstract synthesis
could read: `a hand-held device to put visible material
onto a planar surface with the purpose of creating
linear shapes (letters or drawings)'. Indeed, we sud-
denly have a host of values that immediately relate to
new (thus far `hidden' attributes, that already existed
in the starting concept `pencil'):

. `hand held' as value of the attribute `connection
to a user( )' (as opposed to e.g. `foot-held', for
writing devices for usage by people who miss the
usage of their hands)

. `put' as value of the attribute `direction of
material flow( )' (as opposed to e.g. `take-
from', for writing devices that operate by cutting
out letter silhouettes from paper, as in early day
stencils)

. `visible' as value of the attribute `visual quality

of produced traces( )' (as opposed to e.g. `invi-
sible' for writing devices with invisible ink as
used in espionage)

. `material' as value of the attribute `nature of
produced traces( )' (as opposed to e.g. `electro-
magnetic energy' for laser pens that scorch
traces into heat-sensitive material)

. `planar' as value of the attribute `surface quality
of the carrier for the traced lines( )' (as opposed
to `rough' for drawing devices that are designed
to draw onto non-smooth surfaces)

. `surface' as value of the attribute `topologic
genus of the carrier for the traced lines( )' (as
opposed to `volume' or `1-dimensional variety'
for writing devices that, respectively, work by
squirting free-standing, plastic serpentines into
free air to create 3-D constructs, or writing
devices designed for labelling electric wires as
e.g. in telephone cables)

. `purpose' as value for the attribute `reason for
being( )' (as opposed to `useless' for writing
devices that serve as artistic objects, decoration
material in shop windows, or props in theatre)

. `creating' as value for the attribute `direction of
communication( )' (as opposed to `sensing' for a
hand-held scanner or an electronic widget that is
able to sense signatures etc., or `erasing' for a
pencil-shaped eraser)

. `linear' as value for the attribute `quality of the
created traces( )' (as opposed to `fractal' for
devices with build-in modulators to create artis-
tic effects, or `broad' for paint brushes).

Of course, this is only a selection of the millions of
a priori hidden productive attributes of a pencil. In
order to see dialectics at work, we select the first
attribute (`connection to a user') and follow the

Table 1. Table of theses and anti-theses of the pencil-example

Thesis Anti-thesis
Distinguishing

attribute value 1 value 2 Synthesis

pencil pen deposited material carbon ink hand-held device for
[ . . . ]

hand-held device for
[ . . . ]

foot-held device for
[ . . . ]

body extremity that
holds the pen

hand foot writing device that is
directly controlled
by body movements
for [ . . . ]

device that is directly
controlled [ . . . ]

device that is indirectly
controlled [ . . . ]
(e.g., mechanical
typewriter)

way of control direct indirect (i.e.,
via
mechanical
means)

writing device that is
controlled by body
movements

writing device that is
controlled by body
movements

writing device that is
controlled by other
autonomous agent

the controlling agent human other
autonomous
agent (e.g., a
computer
printer)

writing device�device
that produces
written text

device that produces
written text

device that reads
written text

direction of
communication

output input device that conveys
written text

device that conveys
written text

device that conveys
visual info, other
than written text

type of visual
information that is
conveyed

text non-text device that conveys
information

device that conveys
information

device that stores
information

type of manipulation
with the associated
information

conveying storing device that
manipulates
information

device that
manipulates
information

device that
manipulates matter

what is manipulated information matter device

device non-device ? ? ? everything

Teaching Creativity in a Technological Design Context 267



abstraction in upward direction in the subsequent
rows of Table 1.

This table shows some aspects of using dialectics
in design practice:

. Notice that in this table, at every subsequent
row the new thesis equals the previous synthesis.
This is conforming Hegel's formulation of dia-
lectics. In every new row, one new (thus far
`hidden') attribute is introduced, and one pre-
vious attribute looses its distinguishing value.

. It is very tempting to wander off into abstrac-
tion. Soon, however, one arrives at a concept
labelled `everything', i.e., no attribute has a
distinct value anymore. The lower most few
rows of the table, however, won't be relevant
in any practical context. The art (and the chal-
lenge!) of using dialectics is to use small steps of
abstraction, and to keep a constant eye on the
purpose. In the current case we didn't mention
this purpose before hand; a possible purpose
could be the extension of a product portfolio
of a pencil manufacturer. Obviously, it then
depends on the existing expertise, the production
facilities, the market situation, etc., which
abstractions are meaningful and which are not.

At any time, we have the choice to proceed in three
directions:

. into increasing abstraction (as with the sub-
sequent rows in the above table; in the diagram
below, these are the upwards arrows in Fig. 4);

. explore at the same level of abstraction (i.e.,
consider as much as possible hidden attributes

of the current formulation of the concept, as we
did in the bullet list above the table. In Fig. 4,
these are the sideways arrows); or

. to decrease the abstraction by considering the
current concept as the root node of a hierarchy
(in Fig. 4, they would correspond to recursive
hierarchical partitioning according to the
method under Hierarchy).

. We observe that a hierarchic structure is a
special case of a dialectic structure. (Indeed, a
hierarchical partitioning is strictly top-down,
whereas a dialectic structure allows expansion
in all directions. Further, notice that a hierarch-
ical structure doesn't necessarily requires a
brainstorm as bootstrapping device. After
some experience has been gained by hierarchi-
cally ordering the results from a brainstorm, one
can start to suggest hierarchically ordered
attributes, instead of proposing concepts in a
brainstorm session, right away).

We schematically depict part of the result of a
dialectic session in Fig. 4. Compare this with the
hierarchical partitions as discussed above. Notice
that here nodes in the network refer to individual
concepts, similar to the abstract concepts that were
associated to the partitions under Hierarchy.
Again we have a hierarchical (abstraction) relation
between `synthesis'-nodes and the underlying
`thesis'- and `anti-thesis nodes'.

Summary of the structured creativity methods
The method of dimension lifting is mainly a

didactic introduction to the usage of productive

Fig. 4. schematic view of dialectics as a means to (partially) cover the option domain with a network of attributes and concepts.
Concepts on one layer (say, level� n) are at the same abstraction level. One layer higher, say n� 1, means one abstraction level higher
(�one more degree of freedom). Attributes that are introduced in layer n have an underdetermined value in that layer; they have
unique values in all layers hn, and they do not apply in layers in. For simplicity, we only give one anti-thesis per thesis; in general,
however, there will be multiple attributes, and for any attribute, multiple values that all generate anti-theses. Also, expansion can occur

in top-down direction.

K. van Overveld et al.268



attributes. Productive attributes form the kernel of
our approach. They are exploited in hierarchical,
orthogonal and dialectic exploration. In order to
facilitate the choice between the various techniques
in a given circumstance, we summarise the merits
and disadvantages of hierarchical methods, ortho-
gonal methods and dialectics in Table 2.

SOME PRACTICAL EXPERIENCES

The authors have been involved in setting up the
format for teaching creativity in technological
design contexts and in applying it in courses
about interdisciplinary design methodology for
SAI. Although the courses are still in their infancy,
and statistically reliable results are still lacking,
their may be some merit in early dissemination of
the underlying ideas: first, to solicit comments,
criticism and additional ideas from the design
education community; second, other teachers in
the field may want to experiment with similar ideas
so that a larger number of prospective designers is

exposed to these ideas, which could accelerate the
process of getting insight in their usefulness in the
practice of technological design.

The populations in Table 3 have been exposed to
the above techniques:

Since the courses are still under development, we
have not yet performed in-depth quantitative
investigations including, among other things,
control-group setups. A more stringent test of
our approach would be measuring the use of
other than only brainstorming techniques in
design tasks performed by students that learned
our methods. A test could also measure the
creativity of designers applying our techniques,
using, for example, the model suggested in [24].
The estimated benefits are only based on indivi-
dual comments. `Very high' means that more than
an estimated 90% of the students in a discipline
claim to believe that structured creativity techni-
ques helps them to consistently gain better under-
standing of the problem area and generate ideas.
`High' means that is the case for more than 80%;
`Average' means that about 2/3 of the students

Table 2. summary of the structured creativity methods

Orthogonal structures Hierarchical structures Dialectic structures

is a special kind of . . . hierarchical structures dialectic structures Ð
partitioning? yes yes no
difficulty . . . difficult to find sufficient

operational attributes on
the entire option domain

not so difficult as orthogonal,
because subsequent
attributes have to be
operational on increasingly
smaller sets of brainstorm
items

easy: at any node, there are
three directions to proceed
(more abstract, less
abstract, or at same
abstraction level with other
attributes)

needs for a start . . . Brainstorm brainstorm can start from single concept
number of attributes needed O(log N) for N concepts O(N) for N concepts O(N) for N concepts
generates empty cells (with

possible innovative ideas
thus far overlooked)

yes not necessarily in general not

way to proceed for every new proposed
orthogonal attribute, top
down

strictly top down in arbitrary directions. One
typically starts with bottom
up. Pitfall: one may wander
off into impractical
abstraction

Table 3. Experiences with creativity teaching

Discipline Nr subjects Prevailing backgrounds

Setting (C: classroom
exercises; D: design

assignment; P:
professional design

project)

Estimated benefit, as
based on informal

interviews

Software engineering O(100) subjects, 5
courses

Computer science C,D Very high

Chemical process
design

O(25) subjects, 2
course

Chemistry, physics,
mech. Engineering,
earth science,

D Average

Mechatronic design O(4) subjects, 1 course Computer science,
mech. Engineering

C, D (High, but very small
group)

Interaction design O(40) subjects, 3
courses

Computer science,
cognitive psychology

C,D High

Others (in-house
trainings in
industrial settings,
mixed populations)

O(130) subjects, 7
courses

Various technical
disciplines

C,P Very high

Teaching Creativity in a Technological Design Context 269



have this opinion. Notice also that software engin-
eering students have the best score. An explanation
could be that the idea of productive attributes is
most familiar to software engineers.

Further, our evaluation seems to indicate that,
whereas for initial classroom exercises dialectics is
often considered to be abstract and difficult, it is
the most favoured one in design assignments.
Apparently, once some experience has been
gained, it becomes usefulÐin particular because
it can start with only one initial concept. This was
found consistently for software engineers and
interaction designers. The popularity of the
`Hegelian' approach may be related to the fact
that it is very natural: it works by introducing
modifications to existing systems. The same
mechanism can be recognised in evolution,
software lifecycles etc.

DISCUSSION AND FUTURE WORK

Using concepts, attributes, and values, together
with some structuring devices such as hierarchies,
orthogonality and dialectics, in teaching various
design-related creativity techniques to engineers
seems to be able to bridge the gap between
technological and more artistic forms of creative
thinking. This may be due to the fact that the use
of concepts, attributes and values is actually
common practice in much of technological think-
ing; it is only the strong emphasis on explication
and manipulation of the attributes and concepts
that may be new. The principles that inspired to
our notions (most noteworthy, object orientation

and data modelling) have proven to be extremely
versatile in a vast variety of problem areas.
There are, however, some inherent risks in over-
enthusiastic adoption of these concepts:

. It is an illusion that panaceas exist: there are
undoubtedly design situations for which our
approach is not at all a natural one, and a
designer will, in these cases, be more flexible
and versatile if he is familiar with a variety of
techniques. It even has some didactic benefits to
teach some techniques that are not immediately
compatible with each other in order to stimulate
the designer's own critical and common sense-
style of thinking.

. Our methodology looks mathematical, but in the
form presented here, it lacks a rigorous mathe-
matical foundation. This could lead to overly
optimistic expectations or even to false claims
regarding the alleged quality of a design process
that is based on it.

Observing the above criticisms, we see that a lot of
work still should be done. The most important
tasks are:

. Tool support: since we stress explication, the
amount of information that will be admini-
strated is quite large. The designer should not
be bothered by doing this by hand.

. Probably more important: we should collect a
number of more or less realistic design assign-
ments that show our ideas at work. Prospective
designers are helped much more by one convin-
cing and inspiring example than with twenty
sophisticated, but incomprehensible guidelines.

REFERENCES

1. Information about the SAI: http://www.sai.tue.nl
2. J. Teminko, A. Zusman and B. Zlotin, Systematic Innovation, Ideation International Inc.

Southfield, Mich. (1998).
3. M. Raina (ed.), Creativity Research: International Perspective, National Council of Educational

Research and Training (1980).
4. J. Glover, R. Ronning and C. Reynolds (eds.), Handbook of Creativity, Plenum, London (1989).
5. J. L. Adams, Conceptual Blockbusting, Norton, New York (1980).
6. E. de Bono, Lateral Thinking, Penguin Books, London (1970).
7. E. de Bono, Serious Creativity: Using the Power of Lateral Thinking to Create new Ideas,

HarperCollins, London (1993).
8. H. Lytton, Creativity and Education, Routledge and Kegan Paul, London, UK (1971).
9. R. Baily, Disciplined Creativity for Engineers, Ann Arbor Science, Ann Arbor, USA (1978).

10. H. Christiaans, Creativity in Design: The Role of Domain Knowledge in Designing, Ph.D thesis,
Lemma, Delft, The Netherlands (1992).

11. S. Dasgupta, Creativity in Invention and Design: Computational and Cognitive explorations of
technological originality, Cambridge University Press, Cambridge (1994).

12. J. Gero, and M. Maher (eds.), Modeling Creativity and Knowledge-based Creative Design, Lawrence
Erlbaum, Hillsdale (1993).

13. S. Isaksen, K. Dorval and D. Treffinger, Creative Approaches to Problem Solving, Kendal & Hunt,
Dubuque (1994).

14. T. Rickards, Creativity and Problem Solving at Work, Gower, Aldershot (1990).
15. T. M. Amabile, The Social Psychology of Creativity, Springer-Verlag, New York (1983).
16. L. G. Richards, Stimulating Creativity: Teaching Engineers to be Innovators, 28th Frontiers in

Education Conference, 3: 1034±1039 (1998).
17. S. Ghosh, Architecting a Course for Engineering Design, Critical Inquiry, and Creativity, 30th

Frontiers in Education Conference, 1: F1C/24 (2000).
18. K. L. Kitto, Using TRIZ, Parametric Modeling, FEA Simulation, and Rapid Prototyping to Foster

Creative Design, 30th Frontiers in Education Conference, 2: S2E/14±S2E/18 (2000).

K. van Overveld et al.270



19. B. Mayer, Object-oriented Software Construction, ISE Inc./Prentice-Hall, Santa Barbara, Cal.
(1997).

20. I. M. M. J. Reymen, Improving Design Processes through Structured Reflection: A Domain-
independent Approach, Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands (2001).

21. M. Ivashkov and K. van Overveld, An Operational Model for Design Processes, Proc. Int. Conf.
Engineering Design, Glasgow, UK, 2: 139±146 (2001).

22. Z. Kogan, Essentials in Problem Solving, Arco, New York (1956).
23. W. van Dooren, Dialectiek (in: Grote Winkler Prins Encyclopedie. Elsevier, Amsterdam, NL

(1973) ).
24. C. Redelinghuys, A model for the measurement of creativity: relating expertise, quality and

creative effort, Int. J. Eng. Educ., 13(1), 1997.

Kees van Overveld (1957) obtained a M.Sc. (1981) and Ph.D. (1985) in physics at the
Eindhoven University of Technology. Also in 1985, he joined the computing science
department of the faculty of Mathematics and Computer Science of EUT as a university
lecturer; since 1990 as associate professor. From 1989 to 1998 he was head of the Computer
Graphics group. From November 1996 to June 1998 he was also employed as a Senior
Researcher at Philips Research; he continues working for Philips Research as a consultant.
In May 2000 he joined the Stan Ackermans Institute (SAI) to teach and research design
methodology.

Rene Ahn (1956) graduated at the Eindhoven University of Technology, in 1982. From 1982
until 1988 he worked as a researcher at Philips Research Laboratories, mainly in the area of
computer aided systems design. In 1988 he joined the language and computer science group
at Tilburg University. Here he was involved in research on semantics and knowledge
representation, as well as the design and development of intelligent user interfaces. In 1998,
he joined the Centre for User-System interaction, at Eindhoven University of Technology.
At present, he is employed as an assistant professor within the User-Centred Engineering
group of the faculty of Technology Management.

Isabelle Reymen (1973) graduated in June 1996 as Civil Engineer Architect at the Faculty of
Applied Sciences of the Katholieke Universiteit Leuven, Belgium. In September 1996, she
started a Ph.D. at the Stan Ackermans Institute (SAI), Centre for Technological Design at
the Technische Universiteit Eindhoven, The Netherlands. She received her Ph.D. degree, in
April 2001, with a thesis entitled `Improving Design Processes through Structured
Reflection, A Domain-independent Approach'. Since February 2001, she is working at
the SAI as a post-doc. She performs design research related to reflection and teams and is
involved in design education for the SAI programs.

Maxim Ivashkov (1975) graduated from the physics department of the Belo Russian State
University in Minsk in 1997. He spent 1.5 years working for the branch of Invention
Machine Corporation in Minsk. There he became acquainted with TRIZ and other
strategies of solving technical problems. In 1999, he joined the Technical University of
Eindhoven in the Netherlands to begin the program of Mathematics for the Industry. Since
May 2000 as a Ph.D. student, Maxim is doing research focused on understanding of
existing design processes and improving them with respect to the structure, operationality
and traceability.

Teaching Creativity in a Technological Design Context 271


