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The main objective of this study is to investigate how the traditional lecture format in engineering
education might be complemented and enhanced by computer-based teaching and learning methods.
We consider the development of Web-based learning modules for 2.005 Thermal-Fluids Engineer-
ing I, a second year Mechanical Engineering course at Massachusetts Institute of Technology
(MIT). These modules are the result of an initiative known as the I-Campus project which seeks to
comprehensively transform the traditional education structure. The new engineering education
methodologies that are introduced in this paper deal particularly with heat transfer interactions in
thermal-fluids systems.

INTRODUCTION

THE WORLD-WIDE WEB provides a new
means of communication between students and
faculty, and hence presents an opportunity to
bring new teaching techniques into the classroom.
Undeniably, changes are being made in the
classroom from classical teaching methods to
Web-based learning environments. Many of these
changes are the result of the development of
technology-enabled learning interfaces in the
educational environment. Web-based learning
systems are flexible with multiple learning methods
such as text, graphics, audio, video, animation,
and simulation. The present paper offers a module
format that can be used not only for other under-
graduate courses but also for graduate courses.
While this project focuses on improvements for
residence-based education, the approaches we
outline here can also be used for distance education.

Several studies of the application of com-
putational analysis of heat transfer and fluid
mechanics concepts in the classroom may be
found in the literature. In the 1970s and 80s,
Gosman of Imperial College developed compu-
ter-assisted courses in heat transfer and fluid flow
[1]. Sparrow and Abraham at the University of
Minnesota developed a thermal engineering course
that uses finite element software to allow students
to model complex systems [2]. Stubley and
Hutchinson of the University of Waterloo studied
the use of CFD in undergraduate level courses to
reinforce student understanding of complex flow
physics [3]. Ridwan, Yap, and Mannan of the
National University of Singapore developed web

portal designs for handling web-based thermal-
fluids courses [4].

The Mechanical Engineering Department at
MIT has undertaken an initiative known as the
I-Campus project to develop instructional and
learning paradigms that will revolutionize MIT's
Undergraduate Mechanical Engineering Program.
Typically, course websites have functioned as little
more than online repositories for problem set
solutions. The aim of this project is to leverage
the course website as a supplementary teaching
tool by developing new content for 2.005 Thermal-
Fluids Engineering IÐa second-year course in
thermodynamics, fluid mechanics, and heat and
mass transfer. These materials are used by the
instructor during lecture and used at home by the
students is strongly encouraged.

The 2.005 course content consists of eight basic
topics:

1. Thermal-Fluids Engineering: A Modern Tech-
nology

2. Energy and the First Law of Thermodynamics
3. Equilibrium and the Second Law of Thermo-

dynamics
4. Simple Models for Thermal-Fluids Systems
5. Work Transfer Interactions in Thermal-Fluids

Systems
6. Heat Transfer Modes and Thermal Resistance
7. Energy Conversion: Heat Transfer to Work

Transfer
8. Open Thermal Fluid Systems.

In this paper, we discuss only the web-based
learning module `Heat Transfer Modes and
Thermal Resistance' topic. Each of the web-
based learning modules is divided into six sections:
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. SimulationsÐJava-based simulations developed
for various topics covered in the module.

. Worked problems ± problems with complete
step-by-step solutions which also employ the
simulations whenever possible.

. ExercisesÐproblems for the student to solve
independently.

. Real world examples ± development of models to
describe real engineering systems.

. Reference ± supplementary materials for extra
study and review.

In what follows, each of the six sections is
described in detail. It should be noted that these
sections do not simply stand alone, but are inter-
dependent; for example, a worked problem solu-
tion might require a simulation and hence, a direct
link to this simulation is provided.

INFORMATION SECTION

This part of the module contains textbook-style
derivations that go beyond what is covered in the
lecture. This part examines the fundamentals of the
heat transfer interactions using simulations,
graphs, analytical derivations, text, and figures.
At the start of the section, a linked listing of the
available lectures and derivations is provided to

allow a student to easily access material of interest,
both text and simulations. This section covers a
number of major topics such as `modes of heat
transfer,' `thermal resistance,' `conduction in
cylindrical geometries,' etc. The text material is
based on the course reference book [11]. In the web
text, there are links to appropriate simulations that
may be run in parallel with that text. It is also
possible to run more than one simulation at the
same time. For example, Fig. 1 shows a thermal
conduction simulation program and a trans-
cendental equation solver (in the two forward-
most windows) running over a window containing
the related text material. The hyperlinks allow
the student to jump easily from the theoretical
derivations to a simulation and back again.

SIMULATIONS SETION

Computer-based simulations are one of the
great strengths of this new approach. Frequently,
the mathematical solutions of the theory are so
complicated that the physical behavior is not clear.
In addition, many physical phenomena are invisi-
ble to the naked eye and, hence, the students have
not developed an intuition for such phenomena.
Examples of these phenomena include temperature

Fig. 1. The software supports the simultaneous use of text, simulation, and calculation. This screenshot shows a text window in the
background that discusses heat transfer theory. The two windows in the foreground are a transcendental equation solver and a thermal

simulation relevant to the text.
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distributions, stress distributions in a beam, elec-
tric fields and magnetic fields. Computer simula-
tions can animate these solutions and allow the
students to directly investigate the effect of altering
several parameters on the system. Many classical
problems and physical situations lend themselves
to the simulation of the underlying mathematics
in a way that allows the student to grasp the
fundamental concept more completely. We do
not believe that the simulations should replace
the theoretical discussions but they can dramati-
cally enhance the student's intuitive understanding
of the material.

The simulations developed for this module
are based on the Java programming language.
These simulations or `applets' are supported and
executed by the student's web browser and thus
are easily integrated into any web-based learning
environment.

The Heat Transfer Modes and Thermal
Resistance module contains eighteen simulation
programs and four calculator programs. The
simulations include, for example, temperature
distribution simulations for slabs, spheres, and
cylinders immersed in a fluid, a convective heat
transfer simulation, a surface energy pulse simula-
tion, and a periodic variation of the surface
temperature simulation. There are also simulations
of the fractional energy loss versus Fourier number
as well as versus Biot number and centerline

temperature simulation versus Fourier number.
Four calculators have been developed to allow
the students to quickly calculate values that
students might need for their problem sets such
as Bessel functions and convective cooling
coefficients.

Theoretical basis of the simulations
In the Heat Transfer Modes and Thermal Resis-

tance module, the students are exposed to several
simple and standard examples of heat transfer.
These examples include the temperature evolution
of a semi-infinite solid exposed to a fixed tempera-
ture on its surface (see Fig. 2) and the temperature
evolution of a hot object immersed in a cold fluid
bath. The shapes of the objects considered in the
latter case are the slab, the cylinder and the sphere
as shown in Fig. 3. Summaries of the solutions are
given here to provide a background for the simula-
tions that will be discussed later and to make it
clear that the mathematical solutions of these
problems are sufficiently complicated that most
students do not gain significant physical insight
from them.

In the solid, the temperature distribution, T, is
determined by the one-dimensional heat equation:

@ 2T

@x2
� 1

�

@T

@ t
�1�

where � is the thermal diffusivity, x is the spatial
coordinate and t is time. The initial temperature of
the object, Ti, is assumed to be uniform. The fluid
temperature far from the object, T1, is assumed to
be constant throughout the process. The surface
boundary condition on the object requires that the
heat flux just inside the surface of the object
matches the heat flux in the fluid just outside the
surface of the object or:

k
dT

dx

����
surface

� h�Tsurface ÿ T1� �2�

where k is the thermal conductivity of the solid, h is
the heat transfer coefficient between the solid
surface and the fluid, and Tsurface is the surface
temperature of the solid.

Fig. 2. Temperature history of a semi-infinite solid with a
sudden change in surface temperature.

Fig. 3. Schematic representation of shapes of the objects considered in this section: slab, sphere, and infinite cylinder. In each of these
cases the fluid entirely surrounds the object.
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There are closed form solutions to this equation
for very simple geometries. The semi-infinite solid,
shown in Fig. 3, at uniform initial temperature that
is suddenly exposed to a hot fluid on one surface is
one of these closed form solutions. The solution is
of the form:

T�x; t� ÿ T1
Ti ÿ T1

� erfc��� �3�

where � � x=
��������
4�t
p

and erfc��� is the comple-
mentary error function defined as:

erfc��� � 1ÿ 2���
�
p

Z �

0

eÿu 2

d u �4�

In the more complicated case of an object
immersed in a different temperature fluid, the
solution can be written as an infinite series and a
transcendental equation whose roots determine a
set of parameters used in that infinite series.

For example, in the case of the slab of thickness
L (a slab) shown in Fig. 3a, the series is:

T ÿ T1
Ti ÿ T1

�
X1
n�1

eÿ�
2
n Fo 2 sin�n

�n � sin� n cos�n

� cos�� n x=L� �5�
where Fo is the Fourier number �� �t=L2� and x is
the position within the slab (the origin is at the
center of the slab). The parameters�n (n� 1, 2, 3. . . )
are roots of the transcendental equation:

�n tan�n � Bi �6�
where Bi is the Biot number �� hL=k�.

The temperature distribution for the case of a
sphere suddenly immersed in a fluid differing in
temperature, shown in Fig. 3b, can be solved in a
manner analogous to the slab calculation above.
The series solution is:

T ÿ Ti

T1 ÿ Ti
�
X1
n�1

4�sin�� n� ÿ �n cos��n��
2�n ÿ sin�2�n�

� e�ÿ�
2
n Fo� 1

��n r=R� sin��n r=R� �7�

where r is the radial coordinate, R is the radius of
the sphere and the Fourier number, Fo, is defined

as �t/R2. In this case the parameters, �n, are
defined by the roots of the equation:

1ÿ �n cot�n � Bi; �8�
where the Biot number is based on the radius of the
sphere (hR/k).

Similarly, in the case of the infinite cylinder
shown in Fig. 3c, the solution is:

T ÿ Ti

T1 ÿ Ti
�
X1
n�1

2J1�� n�
� n�J 2

0 �� n� � J 2
1 �� n��

� e�ÿ�
2
n Fo�J0�� n r=R� �9�

where J0 and J0 are Bessel functions of the first
kind, of orders 0 and 1, respectively. The Fo and Bi
numbers are based on the radius of the cylinder
and the values of the parameters �n are determined
using:

�n J1��n� ÿ Bi J0�� n� � 0: �10�
A general form of the solution for the slab,
infinite cylinder, and sphere geometries may be
written:

T ÿ Ti

T1 ÿ Ti
�
X1
n�1

An eÿ�
2
n FoFn��n ; �� �11�

where the appropriate expressions for An and Fn

are given in Table 1 [11, 12, and 13] and � is
characteristic length.

Clearly, in all the solutions presented here
(Equations 5, 7, and 9), the behavior of the
temperature field as a function of time in the
solid is not transparent to the uninitiated. Simula-
tions can be employed to animate the temperature
field for the student and give the student a visual
tool to enhance his or her understanding. It is in a
niche like this one that the simulations have great
value.

The fraction of the total energy change can be
calculated for the slab using the first law of
thermodynamics and the temperature distribution
for the slab (Equation 5). The result is:

� � 1ÿ
X1
n�1

eÿ�
2
n Fo 2 sin�n

�n � sin �n cos� n

sin �n

� n
�12�

The fractional energy loss can be expressed in a

Table 1. The constants An, Bn and the function Fn for the transient response of slabs, infinite
cylinders, and spheres.

An Bn Fn(� n �)

Slab
2 sin� n

� n � sin� n cos� n

sin� n

� n
cos�� n x=L�

Cylinder
2 J1�� n�

� n�J 2
0 �� n� � J 2

1 �� n��
2

J1�� n�
� n

J0�� n r=R�

Sphere 2
sin� n ÿ � n cos� n

� n ÿ sin� n cos� n
3

sin� n ÿ � n cos� n

�3
n

sin�� n r=R�
� n�r=R�
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generalized form for the slab, infinite cylinder, and
sphere geometries as:

� � 1ÿ
X1
n�1

An eÿ�
2
n Fo Bn �13�

where An and Bn are given in Table 1.

DESCRIPTIONS OF THE SIMULATIONS

In what follows, the simulation programs that
animate the results described above are presented
with images of their graphical interfaces. Follow-
ing this, a series of short descriptions of the
many other simulations that are part of the Heat
Transfer Modes and Thermal Resistance module is
given.

Temperature distribution simulation for slabs,
spheres, and infinite cylinders

The graphical interface for the simulation
program that calculates the temperature distribu-
tion in a slab, infinite cylinder or sphere as a
function of time is shown in Fig. 4. Once again,
the object in question is assumed to be at a uniform
initial temperature and then is plunged into a
liquid bath at a different temperature at t� 0 s.
The simulation calculates the temperature profile
evolution subsequent to t� 0 s. This program
calculates the temperature values by using the

general formula for slabs (Equation 3), for spheres
(Equation 5), and for cylinders (Equation 8).

The input/output window for this simulation is
divided into several parts. The physical parameters
part of the display (the upper left-hand corner of
Fig. 4) allows the student to input the character-
istic dimension of the object, the initial tempera-
tures of the solid and the liquid, and the heat
transfer coefficient between the solid and the
liquid. A pop-up library of twenty three materials
can be called on by pressing the `aluminum' button
in Fig. 4. In addition, this library contains a
custom entry where the student can specify the
thermal conductivity, the density and specific heat
capacity of the solid object.

The slab, cylinder, or sphere case can be chosen
by pointing and clicking on the appropriate icon
on the lower left-hand side of the window. Since
the sums in the equations contain an infinite
number of terms, the user must specify the
number of terms used to calculate the temperature
distribution in the `number of terms' box. The
simulation speed can be varied using the slider at
the top of the screen.

In Fig. 4, the simulation displays two plots of
the temperature versus position, one in non-dimen-
sional form and the other in dimensional form.
Each of these plots has three traces associated with
them. One trace corresponds to the case specified
by the physical parameters (the program shows
this trace in red). In the example shown the

Fig. 4. Temperature distribution simulation for slabs (Section 1).
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`physical parameter' trace is the top trace corre-
sponding to a Biot number of 0.2874 (Biot number
1). The other two traces correspond to Biot
number 2 and Biot number 3 specified by the
user in the corresponding input box on the left-
side of Fig. 4. This feature allows the student to
compare the spatial and temporal response of up
to three different materials.

The `Section 1, Section 2, and Section 3' menu
located above the slab, cylinder, and sphere icons
allows the student to choose the output graphs of
the simulation. The `Section 1' option shown in
Fig. 4 consists of plots of the spatial temperature
distribution that evolve with time. The output is
essentially a `movie' of the spatial temperature
distribution with a time (or Fourier number) index.

The `Section 2' option is like but replaces the
dimensionless temperature graph with a dimen-
sional graph of the centerline temperature.

The `Section 3' option consists of a dimension-
less graph of the centerline temperature versus time
and a spatial temperature distribution movie,
convenient for the small Biot number case. As
the temperature distribution in the solid is uniform
and the numerical solution is not conveniently
solved using Equations 5±10, a lumped parameter
model is used.

There is a weakness in the simulation program
described above. The user cannot specify the time
at which the temperature distribution is calculated.
This becomes an issue when the student must
develop a quantitative answer in a problem set.
The input/output window of a program that
satisfies this need is shown in the bottom right of
Fig. 1. The physical parameters as well as the time
of the calculated temperature distribution are
specified by the user in the upper left-hand
corner of the window. Pop-up menus allow the
user to choose from a library of materials and
geometries. The temperature distribution for the
specified time is displayed graphically and as an
array of temperatures in the two output fields of
the window.

Constant surface temperature simulation
This is the first of several programs that simulate

the temperature evolution in a semi-infinite solid.
In this simulation, a semi-infinite solid is assumed
to be at uniform temperature initially. At time
t� 0 s the surface temperature of the semi-infinite
solid is set to some new temperature. The simula-
tion calculates the time evolution of the tempera-
ture distribution. This semi-infinite solid model
physically corresponds to a thick wall that is
suddenly exposed to a fluid with a very large
heat transfer coefficient between the surface and
the fluid.

Constant heat flux temperature graph
The constant heat flux temperature graph is

similar to the constant surface temperature
simulation described above except that the surface
boundary condition is a constant heat flux

boundary condition. This model could be used
for the case of constant laser irradiation of a
surface.

Surface energy pulse temperature simulation
The surface energy pulse temperature simulation

simulates the temperature distribution in a semi-
infinite block after a pulse of thermal energy is
suddenly deposited on the surface. The total
energy deposited by the pulse is an input parameter
for this simulation. This simulation can be used to
model the effect of a laser pulse on the surface of a
solid.

Convective heat transfer temperature simulation
The convective heat transfer temperature simu-

lation calculates the temperature distribution in a
semi-infinite solid as a function of time. In this
case, the semi-infinite solid is assumed to be at
uniform initial temperature at time t\eqalignno
{� 0 s where is it suddenly exposed to a fluid at
temperature T1. The heat transfer coefficient, hc,
between the solid surface and the fluid is specified
by the user.

Periodic variation of the surface temperature
simulation

In this simulation, the surface temperature of the
semi-infinite solid is varied sinusoidally and the
temporal and spatial response of the temperature
field in the solid is calculated and plotted. A
physical system that can be modeled by this
simulation is the seasonal and diurnal variations
of the temperature of the earth's surface.

Temperature distribution simulation of two semi-
infinite solids in simple thermal communication

This simulation calculates the evolution of
the temperature distribution of two semi-infinite
blocks whose surfaces are brought into thermal
contact at t� 0 s. Each of the blocks is initially at
uniform temperature. The initial temperature of
each solid is specified by the user using the
simulation as shown below in Fig. 5.

Transcendental equations solver
The transcendental equation solver is the first of

a series of `calculator' programs for the student.
On occasion, the students are asked to determine
by hand several terms in the series solutions for the
temperature distributions. This program calculates
the roots of the transcendental equations that
determine the parameters, �n, in Equations 6, 8,
and 10.

Bessel functions calculator
The Bessel functions are usually not discussed at

length in an undergraduate course. However Bessel
functions do appear in the solution of the cylind-
rical geometry discussed above (Equations 9 and
10). Hence, an appendix discussing Bessel
functions and a calculator is included in the
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module. The calculator determines values for
Bessel functions of the first and second kind and
modified Bessel functions for orders zero and one.

Error function calculator
This calculator calculates the complementary

error function (Equation 4) necessary for semi-
infinite solid model calculations.

Convective cooling constants calculator
The series solutions (Equations 5, 7, and 9)

converges rapidly for long times. For Fo> 0.2,
only the first term of series needs to be retained
for 98% accuracy. However, in many engineering
systems, we are interested in very short times
(Fo< 0.2) for which the one-term approximation
is insufficiently accurate. This program allows the
user to calculate the constants An, Bn, and Fn to
determine the convective cooling of slabs,
spheres, and cylinder geometries using the general
formulation given as Equations 11 and 13.

Heat conduction chart simulations
In the heat transfer and thermodynamics litera-

ture, graphical representations illustrate the func-
tional dependence of thermodynamic quantities by
variation of an index parameter such as the Four-
ier or Biot number. Two cases which typically are
employed are the fractional energy loss and the
centerline temperature for the slab, cylinder, and
sphere geometries. The `chart simulations' we have
developed have two advantages over the graphical
representations found in texts. First, the user is not
limited by the given values; he or she may choose a
specific value of interest and this value may have

additional significant figures over those available
in the textbook chart, for example 0.5 versus 0.533.
Second, the user may compare between the three
different geometries on the same plot, rather than a
separate plot for each of the geometries.

These chart simulations cover three cases:

1. Fractional energy loss simulation versus
Fourier number, Fo (Fig. 6).

2. Fractional energy loss simulation versus Biot
number, Bi.

3. Centerline temperature simulation versus
Fourier number, Fo by unsteady thermal
conduction (Fig. 7).

Temperature distribution simulation for different
initial functions

This simulation allows the user to simulate the
temporal evolution of a temperature distribution
for several different initial spatial temperature
distributions. These initial spatial distributions,
T(x), include T(x)� {1, x2, sin(x), sin(x) cos(x),
x sin(10x)}. In most undergraduate treatments of
the heat conduction equation the students are not
exposed to the time evolution of temperature
distributions in a solid. Through the use of the
simulation, students are able to see that high-
spatial-frequency components of the temperature
field are quickly `smoothed-out' by unsteady
thermal conduction.

WORKED PROBLEMS SECTION

These problems focus on the transient analysis
of heat transfer between a solid and a fluid

Fig. 5. Two-infinite solids in simple thermal communication.
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environment and transient heat transfer to a semi-
infinite solid. The solutions to these problems
include an analytical solution followed by a
solution that uses the appropriate simulation

program. In the worked problem section, shown
in Fig. 8, the student is instructed on the use of the
simulation program and interesting features of the
solution that may not be apparent in the analytical
solution are identified and discussed.

EXERCISES

The exercise section of the module contains
several problems designed to test understanding
of the topic. The module includes simulations and
calculators such as temperature distribution
simulations for different geometries, Bessel func-
tions calculator, transcendental equation solver,
etc. connected via hyperlinks in order to help to
the students solve the exercises included in the
problem statements.

REAL WORLD EXAMPLES

The ability to model `real' engineering systems
and devices is an important skill that is often
underdeveloped in typical engineering courses
due to the vast amounts of technical information
instructors must convey. The Real World Exam-
ples Section is designed to bolster students' skill in
this area by walking the student through the
modeling process for a few different cases relevant
to the material covered in the module. Another
critical area these examples address is the ability to
make appropriate approximations. It is common
for a student to become so caught up in the

Fig. 6. Fractional energy loss simulation versus Fourier
number. The student is able to compare between the different

geometries side by side and for a specific value of interest.

Fig. 7. Temperature distribution simulation for different initial conditions shown with an initial temperature distribution of
T(x)� |x2 sin(10x)|.
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mathematics and accuracy of his or her solution
that they carry a number out to four decimal
places or more when there is no basis for claiming
that degree of accuracy. Solving open-ended
problems can help highlight the difficulty of
choosing an appropriate model and what sorts of
approximations and assumptions to make.

The difference between the worked problems
and real world examples lies in the goals of the
problem. In the former, it primarily is to gain
confidence and familiarity with some common
types or classes of problems and to learn how to
apply the theoretical equations introduced in class.
The real world examples section, however, focuses
on growing accustomed to making difficult model-
ing decisions and demonstrating how theory is
applied by engineering professionals, not neces-
sarily on the numerical answer itself. Thus, the

real world examples are typically more conversa-
tional and less rigid, taking on the style of a
recitation or tutorial rather than a lecture.

For example, the lead shot tower example is
shown in part as Fig. 9. A rather ingenious
method for cooling molten lead into spheres of a
specific diameter was developed when it was recog-
nized that dropping molten lead through a sieve
from a sufficiently large height would cause the
lead to solidify due to the convective cooling action
of the air during free fall. In this presentation of
the particular design employed in the Phoenix Shot
Tower built in 1828 in Baltimore, Maryland, the
design features and steps involved in calculating
the required height are discussed. Hence, by
presenting a practical application of the theory,
the student is able to develop both proficiency in
the use of important thermodynamic relations as

Fig. 8. Discussion of a mathematical feature of the simulation important to an understanding of the solution produced using the
simulation.
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well as competency and intuition in the application
of simplifying assumptions and models.

REFERENCE SECTION

This section includes some tables, calculators,
and formulas related to heat transfer interactions
in thermal-fluids systems and are arranged identi-
cally to the information section. Generally this
part can be thought of as an appendix of the
topic as the student can find supplementary mate-
rials related to the module topics in this section.
Examples of topics covered include the general
form of the solution of the dimensionless tempera-
ture distribution for slabs, cylinders and spheres,
coefficients in the one-term approximation for
convection cooling of slabs, cylinders, and spheres,
the first six roots values of the transcendental

equations for slabs, cylinders, and spheres,
complementary error function values, Bessel func-
tions values. In addition, this part contains four
calculators such as a transcendental equation
solver, complementary error function calculator,
Bessel function calculator, and convective cooling
constants calculator. This part also includes one
chart simulation called the Centerline Temperature
Simulation which allows the user to obtain the
dimensionless temperature values versus Fourier
number.

FUTURE WORK AND
RECOMMENDATIONS

This research is part of the I-Campus project
and is still under development for several topics
covered in 2.005 Thermal-Fluids Engineering I and

Fig. 9. Real world examples section. This image shows a brief introduction and description of the lead shot tower example as it appears
on the I-Campus website.
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2.006 Thermal-Fluids Engineering II. As a next
step, the heat transfer interactions in thermal-
fluid systems module will be introduced in the
classroom in lecture and recitation hours as
supplementary lecture materials for the coming
school term. No formal assessment of these tools
has been made; although, initial faculty reaction to
these tools has been positive. The impact of these
web-based tools will be more formally assessed at
the end of the year's use in the classroom.

Additionally, new technologies are being
examined for their applicability to Web-based

education. Currently, the most promising of these
are the use of fluid mechanics experimental movies
and lecture movie series, online lectures, and
Macromedia's Flash. Development of animations
or short online `recitations' illustrating and illumi-
nating classical problems that might defy simula-
tion methods such as those described above is in
progress.
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