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Cables are one of the common structures studied in a first-year engineering mechanics course
(statics), since the flexible cable is one of the usual methods of supporting loads. For example, the
suspension bridge has been used for many centuries and is perhaps the best example of the use of
cables in engineering. In this paper, we describe a simple laboratory experiment, appropriate for
undergraduate students, to analyze a cable under the action of a system of concentrated external
forces. The shape of the cable is measured using graduated rules. The resultant of the system of
applied forces and its line of action, reactions at supports and tensions in the segments of the cable
are obtained using three different procedures—experimental, graphical and analytical—with good
agreement being found between them all.

SUMMARY OF THE EDUCATIONAL
ASPECTS OF THIS PAPER

1. This paper proposes to verify the equilibrium of
a cable under the action of a finite number of
concentrated forces by means of the analysis of
a simple laboratory experiment.

. The experimental set-up is composed of very
simple elements and only easy experimental
measurements—lengths and masses—need be
made. The relations between the length,
tensions in the different segments of the cable,
reactions at the supports and applied loads are
analyzed.

. The experimental analysis of the cable is
completed and compared with graphical and
analytical studies, that allow students of statics
to understand the relation between theory and
the actual physical behavior of mechanical
systems, because understanding both aspects
of mechanics are essential.

. The system analyzed is an interesting example
to understand the equilibrium of parallel an
coplanar force systems, in which all of the
lines of action of the forces are parallel, they
lie in the same plane, while the vectors repre-
senting moments are normal to this plane.

. The laboratory project may be integrated into
an introductory engineering mechanics course
by considering both laboratory sessions as
formal lectures.

* Accepted 22 September 2002.
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6. The experiment described in this paper provides
students with not only an understanding of the
equilibrium of a cable but also a better under-
standing of the basic cencepts of statics such as
equilibrium equations, free-body diagrams,
reaction at supports, resultant of a system of
forces and its line of action, and tensions in the
segments of the cable.

INTRODUCTION

THE STUDY of the statics of cables can be found
in most undergraduate textbooks on mechanics,
together with the different topics included in the
subjects of physics and mechanics for engineering
and architecture students [1-5]. Nevertheless, less
importance is given to this topic, since it appears at
the end of the syllabus and is generally replaced by
the study of structural elements of more common
use such as trusses or beams. In addition, the
topics dedicated to the study of the statics of
cables are rarely dealt with when there is not
enough time to cover the whole syllabus. In spite
of this, the statics of cables presents some didactic
advantages over that of the other structural
elements mentioned above. It includes—as in the
case of trusses and beams—concepts such as
concentrated and distributed loads, moments,
support reactions and internal efforts [1]. In addi-
tion, it presents the didactic advantage that the
concepts can be visualized in the laboratory by
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Fig. 1. Photograph of the experimental set-up analyzed.

means of low cost, easy-to-assemble experiments
using simple materials.

Due to a unique combination of resistance, low
weight and flexibility, cables are usually used to
support loads and transmit forces in building
structures (bridges, struts, etc.) or for power trans-
mission in machines and vehicles (chains, belts,
etc). Cables are also used to transmit electricity
through the power grid and information through
the telephone network. In the latter two cases, the
only load supported by the cable is its own weight
and the shape that the cable adopts is known as
catenary [6].

In this paper we present a laboratory project

based on the analysis of an easy-to-assemble, low
cost, laboratory experiment to study experi-
mentally the equilibrium of a cable under the
action of a finite number of vertical, parallel,
concentrated, external forces. We consider that
the cable is homogenous, flexible, non-extendible
and of negligible weight. In a simple way, the shape
of the loaded cable and the reactions at the
supports are experimentally measured. The rela-
tions between the length, tension in the different
segments of the cable, reactions at the supports
and applied loads are analyzed. The experimental
analysis of the cable is completed and compared
with graphical and analytical studies.

Fig. 2. Definition of the parameters of the system.
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Fig. 3. Measurement of the horizontal and vertical distances of the cable.

From Newton’s laws, if the system is in
equilibrium the sum of the external forces
vanishes, and the sum of their moments about
any point also vanishes. These equilibrium laws
must be considered in our analysis.

EXPERIMENTAL SETUP

Figure 1 shows a photograph of the experi-
mental set-up analyzed. In this figure, the shape
of the cable under the action of three concentrated
external loads can be seen. In order to assemble the
experimental setup, a cable (such as a twisted
polyamide line used, for example, in a physics
laboratory in the mathematical pendulum experi-
ment) is fixed at its ends to two vertical rods by
means of right-angled clamps. We considered the
particular case in which the support points of the
cable lie on the same horizontal level. The general-
ization to the situation in which the support points
are at different levels is immediate. The cable
supports three vertical loads acting at different
points at which weights of 120, 120 and 160 g are
hung. The absolute error of the masses is 0.2 g.

Figure 2 shows the different parameters which
serve to characterize the cable in equilibrium:
L=140cm is the length of the cable, «=120cm
is the horizontal distance between supports A and
B (known as span), W;=1.176 N, W,=1.176 N
and W3=1.568 N are the vertical loads applied at
points Py, P> and P; of the cable, respectively, and
L;=40cm, L,=40cm, L;=30cm and L,=30cm
are the lengths of the segments of the cable. The
absolute errors of the lengths and weights are
0.1cm and 0.002 N, respectively. The shape the
cable adopts in equilibrium, supported at its
ends and subjected to a set of punctual loads at
different intermediate points, is called a ‘funicular

polygon’ [2].

Once the cable is in equilibrium, it is a simple
matter to obtain the ‘funicular polygon’ experi-
mentally. The distances x;, x, and x3, and the sags
1, y» and ys, at the load points are measured with
the aid of horizontal and vertical rules, as can be
seen in Fig. 3. With these data the angles 04, 05, 03
and 6, which the different segments of the
cable form with the horizontal line, can be easily
calculated using the following equations:

I
0 =— 1
tan 6, ¥ (1)
tanf, =221 (2)
X2
tan gy =223 (3)
X3
tan 6y = 73 4)

a—Xy—X2— X3

Table 1 summarizes the values of the measured and
calculated parameters that characterize the cable in
equilibrium under the action of the external loads
Wl, W2 and W3.

EXPERIMENTAL ANALYSIS

Measurement of the reactions at supports

It is possible to experimentally measure the
modulus R, and Ry of the reactions at the
supports. To do this, we detach one of the ends
of the cable and tie it to a pan (Fig. 4) previously
weighed on a balance. On the vertical bar, we put a
small pulley around which the cable is passed
(point B of Fig. 4). Next, weights are successively
put on the pan till the segment P4B reaches its
original length L. To do this, it is only necessary
to make a little mark on the cable in order to check
that the mark stays just at the top of the pulley.
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Table 1. Experimental measurement results of the horizontal
distances xj, X, and x3, and vertical distances y;, y, and y;,
and calculated values of the angles 6, 6,, 65 and 6.

x1=32.0£0.1 cm
X»=39.24+0.1 cm
x3=28.44+0.1 cm

y1=240=£0.1 cm
1,=32.0£0.1 cm
y3=22.0£0.1 cm

0,=36.87°£0.18°
0,=11.53°4+0.18°
63=19.40°%+0.18°
04=47.16°£0.18°

The value of Rp will be the weight of the pan
together with the masses on it. The horizontal B,
and vertical B, components of the reaction Rj at
support B can be easily obtained using the value of
0,4 initially calculated.

The experimental measurements at the supports
A and B were:

R,4=267%0.05N
Rp=3.18+0.05N

Determination of the tensions in the segments of
the cable

Once the values of R, and Ry are known, the
tensions in the segments of the cable may be easily
calculated in a similar way to that described under
Analytical resolution, taking as the initial data the
values of the loads applied, the angles calculated
and the reactions measured at the supports. In
order to calculate the tension 7,4 we consider point
B in Fig. 5 and apply the equilibrium equation
YF=0. We then consider point P; in the same
figure, and so on.

The calculated values of the tensions were:

T, =2.67+0.05N
Ty=2.18+0.05N
T3=226+0.05N
T,=3.14+0.05N

T
— T:.. PI T}ﬁ__ e
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GRAPHICAL ANALYSIS

Culmann pointed out the importance of graphi-
cal methods for the analysis of structures in engin-
eering [7]. Although the construction of the
funicular polygon and forces polygon was known
in Varignon’s time (18th century) [8], it was
Culmann who performed a systematic introduc-
tion to the use of graphical methods in the resolu-
tion of static problems [9], in particular, in the
analysis of several types of structures. He was, in
fact, the first to publish a book on graphical
statics, in which he included many original graphi-
cal solutions [10].

In the case of the cable we are analyzing, the
funicular polygon AP, P,P3B of the cable in equili-
brium can be obtained from the experimental
study (Fig. 2). It is also possible to determine
graphically the reactions R,=(4, 4,) and
Rp=(B,, B)) at supports 4 and B, the resultant
R and the position of its line of action (the central
axis, r, of the system of co-planar and parallel
external forces applied), and also the tensions 77,
T,, T5 and T, in the segments of the cable. In this
way, information about the equilibrium of the
cable may be obtained from the experimental
measurements at the supports 4 and B, and at
points Py, P> and Ps.

Resultant R and its line of action

To find the single-force resultant R of the system
of parallel forces W, W, and W3 acting on the
cable, the forces polygon is obtained from the
funicular polygon [2]. To do this, we draw the
funicular polygon with scaled relative distances,
together with the scaled applied forces Wy, W, and
W3, their lines of action passing through points Py,
P, and P; of the cable respectively (see Fig. 6).
Through a point M, an equipollent force to Wy,
MN, is traced. From point N an equipollent force
to W,, NP, and from P an equipollent force to W3,
PQ, are traced. The vector MQ, with its origin at
point M and end at point Q, will be the resultant R
of the system of forces applied. As the forces have

ulley
Ry
Ra
B.=2.16N
B.=233N
Mo, =47.16°
| Rg=318N

Fig. 4. Experimental determination of the reactions at the supports.
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Fig. 5. Relation between the reactions at the supports and tensions in the cable.

been drawn using a scaling factor, the modulus
of the resultant R may be obtained by simply
measuring the distance MQ.

In order to find the line of action r of the
resultant R and, consequently, the position of the
central axis of the system of forces, we trace a line
parallel to the segment AP; of the cable from
the point M; a line parallel to the segment PP,
of the cable from the point N; a line parallel to the
segment P, P; from the point P, and from the point
Q a line parallel to the segment P3B (see Fig. 6). All

these lines will intersect at the same point O,
known as the ‘pole’ [2]. With the aid of vectors
OM, ON, OP and OQ, which have as their origin
the point O, it may be easily determined that:

W, =ON - OM
W,=O0P — ON
W;=0Q — OP

From the funicular polygon (Fig. 6), it may be
easily verified that the force Wy is equivalent to the

=
0em 20 em
——

tg 200 g
LU (R

Fig. 6. Graphical determination of the resultant, its line of action and the reactions at the supports.
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concurrent forces ON and —-OM in the directions
of AP, and P,P»; the force W, is equivalent to the
concurrent forces OP and —~ON in the directions
PP, and P,P5; and the force W is equivalent to
the concurrent forces OQ and —OP in the direc-
tions P,P3 and P;B.

In segment PP, the forces ON and —-ON are
equal and opposite and so cancel each other out.
The same occurs in segment P,P; with forces OP
and —OP. However, force -OM in segment AP,
and force OQ in segment P3B do not cancel each
other out:

R:W1+W2+W3 = OQ—OM:MQ

These two forces, —OM and OQ, are concurrent
and they are equivalent to the resultant R passing
through the point E (see Fig. 6). This point is the
intersection of the extensions of segments 4P and
P3B. The straight line r parallel to the resultant R,
traced through the point E, is the central axis of
the system of forces (line of action of the resultant)
[2]. Because the system is composed of parallel
forces, the resultant is the algebraic sum of the
three loads applied. It therefore corresponds to an
applied mass of 400 g and so the resultant modulus
is R=3.92N.

The graphical study was carried out by hand
using a sheet. The drawings were done with the aid
of two setsquares and a graduated rule. The
distances were represented using a scale of 4cm
to 1 cm. For the sake of simplicity, when drawing
the forces we considered their value expressed in
grams instead of Newtons, taking a scale of 1cm
for each 40g. Once the different reactions and
tensions are obtained graphically, the centimeters
are converted into grams, then transformed into
kilograms and finally multiplied by g=9.8 m/s” in
order to obtain the result in Newtons. As the
smallest divisions on the rule used are of 1 mm,
with the above scales the sensitivity of the distances

measured on paper will be of 0.4 cm and that of the
masses 4 g, which results in a sensitivity of 0.04 N
for the measurements of the forces. Obviously, the
sensitivity can be increased by using a larger sheet
of paper and reducing the scale. Figure 7 repre-
sents a diagram of what was obtained graphically
on paper.

Vertical components of the reactions at supports
In order to find the vertical components of the
reactions, we are going to equilibrate the system of
vertical forces W, W, and W3 by means of two
forces A, and B,, which are also vertical and
consequently parallel to the resultant, that must
pass through points 4 and B. To do this, a parallel
line to the segment AB is traced passing through
the point O (see Fig. 6). This line intersects the
resultant R at point S yielding two forces SM and
QS which correspond to the vertical reactions at
the supports A, and B,, respectively [2]. Because
the forces were drawn using a scale, it is possible to
measure the values of 4, and B, using a rule. From
Fig. 7, using the above scale and multiplying by
g=9.8m/s% the following values were obtained:

A, =1.61+0.04N
B,=231+0.04N

Equivalent of the system of forces

Since the funicular polygon was drawn using a
scale for distances, it is possible to measure the
distance x4 between the vertical line containing the
support A and the line of action r of the resultant,
as can be seen in Fig. 6. The value obtained,
taking into account the scale for distances, was
x4=70.84+0.4cm. Next, in the experimental
setup, the three vertical loads W,, W, and W,
were substituted by the resultant R=3.92N set
at a distance x4, so the experimental funicular
polygon seen in Fig. 7 was obtained.

By

Fig. 7. Photograph of the cable under the action of the resultant of the system.
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Fig. 8. Graphical determination of the tensions in the different segments of the cable.

Tensions in the segments of the cable

In order to find the tension in the different
segments of the cable graphically, we again use
the funicular polygon. The forces we have at the
moment are the applied loads W, W, and W3, and
the vertical components 4, and B, of the reactions
at supports A and B, and all of them are drawn,
using the appropriate scaling factor, on the funi-
cular polygon. In the beginning, for instance, at
support A4 (see Fig. 8), it is easy to find the value of
the reaction R, at point 4 as its horizontal
component 4,, by simply extending the segment
PA.

The modulus of R, will be the same as that of
the tension 7. Once the tension 7 is known, and
using W we can obtain graphically the tension 75
at point P, and so on. It is easy to see that the
horizontal components of all the tensions in the
segments are the same and it can be easily shown
that the following relation holds: 4, = B,. Figure 8
shows the diagram of the results of the tensions
obtained graphically. In this figure, the scale
defined in section 4.1 was used for the distances
and for the forces (loads, reactions and tensions),

and the final results for the horizontal components
of the reactions at the supports are:

A,=2.16£0.04N
B,=2.16+0.04N

and for the tensions in the different segments of the
cable:

Ty =2.70+0.04 N
T,=220+0.04N
T3=2.3140.04N
T,=3.16+0.04N

ANALYTICAL RESOLUTION

It is possible to study the cable in equilibrium by
solving the problem analytically, starting from a
series of experimental measurements. To do this,
we use the equilibrium equations:

v
: ----._.. .IFII
T W,
'-ll— I = 'I- - I3
—

YF =0 (5)
YMp=0 (6)
RJ.I
E . N : A H H.:'
P ¥y " A
B i W,
W s

Fig. 9. Diagram of the cable analyzed.
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Fig. 10. Free solid diagrams for the support points 4 and B and the points P;, P, and P; where the external forces are applied.
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Fig. 11. Summary of the analytical solution of the problem in steps in the manner in which a student might write a homework problem.
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where P denotes the point with respect to which
the moments are calculated. The starting data will
be the experimentally measured horizontal
distances x;, x, and x3 and the vertical distances
1, ¥» and y; (Table 1), which allow us to obtain the
angles 6, 0,, 03 and 604 formed by the different
segments of the cable with the horizontal line.
Firstly, we are going to obtain the vertical com-
ponents of the reactions at supports 4 and B.
Figure 9 shows a free-body diagram of the cable,
while Fig. 10 shows free-body diagrams for
support points A and B and for points Py, P ,
and P ;. In Fig. 11 we have summarized the
analytical solution of the problem in steps in the
manner in which a student might write a home-
work problem.

To conclude, it may be mentioned that the
analytical resolution of the system, taking L, L,,
Ls, Ly, a, Wy, W, and W as the data, poses a more
complex problem. In this case we have an extre-
mely difficult set of equations to solve. The
equations obtained are very difficult to solve
because of the non-algebraic, trigonometric func-
tions that appear [4]. The solution is, therefore,
very difficult if the calculus is done manually.
Therefore, in order to solve the problem of the
cable using this formulation, the use of a computer
is recommended.

CONCLUSIONS

The laboratory project described in this paper
provides students with a better understanding of

the basic concepts in engineering mechanics:
statics. The use of a simple cable, on which a
series of weights were hung, has allowed the
experimental study of a cable under the action of
a system of punctual forces. The problem has been
analyzed by three different methods: experimental,
graphical and analytical. In this way, the students
acquired an ample perspective of the problem
analyzed. We have shown that there is good
agreement between experimental, graphical and
analytical results. The laboratory project may be
integrated into an introductory engineering
mechanics course by considering both laboratory
sessions as formal lectures. Students can verify
findings of the experiments by hand and this
reinforces the importance of the physical funda-
mentals of the problem. In the three different
approaches to the problem there are important
concepts of statics such as force, moment of a
force, reaction at a support, resultant of the
system of forces and tension. It is evident that
the experiments could be generalized to a situation
in which the points of support are not at the same
height. The method of measuring points directly
on the cable with different weights hung on it, as
shown in this paper, can be used to explore other
cases of equilibrium. For example, the same
scheme can be applied to study the equilibrium
of a cable under the action of its own weight and to
measure the catenary [11]. Finally, it is important
to point out that this is a simple, inexpensive, easy-
to-assemble experiment that enables us to experi-
mentally study the statics of cables by means of a
series of simple measurements such as lengths and
masses.
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