
A XML-based Framework for the
Development of Web-based Laboratories
Focused on Control Systems Education*

R. PASTOR, J. SAÂ NCHEZ, and S. DORMIDO
Dpto. de InformaÂtica y AutomaÂtica, UNED, Avda. Senda del Rey no. 9, 28040 Madrid, Spain.
E-mail: rpastor@dia.uned.es

In this paper, a novel framework, termed RELATED, is described that allows Web-based labs
focused on the teaching/learning of control systems to be published. With this approach, XML files
are used to connect the laboratory elements (plant, simulations, controllers, experiments), conduct
the remote system access, and define different experiments. Teachers can thus create and publish
new Internet-based control labs using legacy code and control elements regardless of their locations
on the Internet. A Java-enabled browser is the only tool needed by students to operate the remote
experiments.

INTRODUCTION

AT THE MOMENT, practical education in
control topics faces several problems that can be
reduced to two: no room for didactical setups and
lack of financial resources. To solve these deficien-
cies, there are many works focused on the devel-
opment of virtual (simulation-based) and remote
(didactical setups) laboratories conducted across
the Internet [1±9].

However, all these remote and virtual labora-
tories are isolated efforts by different university
groups. The idea of using different educational
centers' software and hardware is not contem-
plated at all, and the work already carried out by
others is not fully exploited. That is to say, to date
a methodology or a standard for the construction
of networks of virtual/remote laboratories based
on previous developments do not exist.

For creating these networks of virtual/remote
labs, new tools and languages are needed for
defining and integrating the elements that consti-
tute a control lab (plants, controllers, user inter-
faces, experiments, access permissions, etc). Once
the components are declared by means of these
new definition languages, the tools carry out the
integration of a new virtual/remote laboratory
irrespective of the component locations and release
it in the WWW. These components (plants, control
code, models, etc.) can belong to other previous
developments, but the graphical user experimenta-
tion interface will hide these details. In this way,
the distributed or local architecture of the telelab is
transparent for users.

The ultimate objective of this line of work is the
creation of an RCLML DTD (Remote Control

Laboratory Markup Language). The benefits of
this approximation are manifold. First, the devel-
opers (teachers) can express the system's attributes,
the system's control commands and responses, the
data streams, the command and inquiry formats,
the communication mechanisms, and the docu-
mentation in an extremely flexible yet highly
structured XML format. Code generation and
(where real-time constraints permit) run-time
interpretation enable teachers to make frequent
changes to RCLML text files, which are auto-
matically reflected in the application code, and
thus in the telelab architecture. At the same time,
this DTD enables the XML parser to validate
the XML input files, thereby guaranteeing that
the telelaboratory description (i.e., elements and
experiments) are complete and in line with
the constraints imposed by the teachers. The
RCLML DTD can be extended to cover new
control elements or accommodate changing
constraints of existing components, often without
making changes to previously written laboratory
descriptions.

Similar developments applied to other fields are
the VIML [11] specification for describing the
elements of a network of virtual instruments, and
the IML [12] and NASA AIML [12] specifications.

This paper focuses on part of this DTD. First,
details of the environment characteristics and
system architecture are given. Next, a full example
of remote on-line control of a small-scale plant is
described. Finally, the educational outcome and
conclusions are presented.

MAIN ATTRIBUTES OF RELATED

RELATED (REmote Laboratory Extended) is an
XML-based framework for the development of* Accepted 18 February 2003.

445

Int. J. Engng Ed. Vol. 19, No. 3, pp. 445±454, 2003 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2003 TEMPUS Publications.

new paradigms on Internet-based laboratories.
RELATED has been defined for the teleoperation
of academic control systems as simulation
problems or real-time plants (didactical setups).
The main idea is to define an abstract entity called
RLAB system by an XML DTD (the ongoing
RCLML DTD) and publish it in an RLAB Control
Web Server so that students can have remote
access to it. Therefore, it will be possible to work
with any RLAB system plugged into the web
server and share different resources such as
plants, simulation engines, or simply, control
code. The main RELATED attributes are:

1. Internet access to different RLAB systems
services by an RLAB control web server.

2. Teleoperation for any RLAB system defined in
an RLAB control web server. Digital certifi-
cates and signatures, which are generated for
each RLAB system user, provide security and
integrity.

3. System specifications via XML. Different XML
files allow teachers to define different types of
RLAB systems. An RLAB system could be
made up of local elements or use components
located in other university departments.

4. Platform independency and portability. The
RELATED framework is fully developed in
Java language. The RLAB system could run
on any Java platform such as Wintel boxes,
Unix/Linux systems, or Java Cards. Thus our
software architecture combines the platform-
independent processing capabilities of Java
with XML power.

5. Local code reusability. Any control code devel-
oped for the local operation of an RLAB
system can adapt for implementing new
RLAB systems.

6. Control code repository. The code of other
RLAB systems can be used to build other
remote RLAB systems.

7. Open architecture. Changes are easily made in

the system. For example, the addition of new
system features just consists of `adding new
XML lines to the definition files'.

SYSTEM ARCHITECTURE

RELATED system architecture is shown in
Fig. 1. There are several RLAB systems (formally
RLAB component servers) connected to the
RLAB control web server. First, it lets users
connect to a particular RLAB system provided
that students have enough permission. This main
web server can also point to the RLAB system web
pages of other associated HTTP servers, i.e., it
works like a publication system. In this sense, self-
explanatory documents about local system beha-
vior can publish, for example, hands-on assign-
ments or information pages. Hence, users browse
the RLAB control web server pages in order to
find the RLAB system where the experiments are
conducted.

XML-BASED DEFINITIONS

The Extensible Markup Language (XML) is the
universal format for structured documents and
data on the Web [10], and it has become an
industrial standard for different software environ-
ments. XML is used for describing the structure
and elements of an RLAB system, so every RLAB
system is defined with one XML file, termed the
definition file. According to the RCLML DTD
specification, a system is composed by different
elements: a plant, several controllers, some experi-
ments and different GUI. So a system is described
in this file by means of a set of XML tags that
represent these elements or system objects. At
present, these objects are modules, variables, para-
meters, views, references, and experiments.

Any XML definition file has two sections:

. Static behavior section. It includes modules,
references, and views. Variables and parameters
are dynamic elements since they are changed by
the users. Yet as both objects belong to system
and modules, they are included in this file sec-
tion.

. Dynamic behavior section. Only experiments are
defined here.

As previously mentioned, an RLAB system is
defined by a set of objects (they will be explained
below): variables, parameters, modules, experi-
ments, views, and references. Thus an RLAB
system can be considered as a black box that can
be manipulated via its variables as happens in
block-oriented applications (e.g., Simulink or
LabView). The hsystemi XML tag defines a
system and only one tag is allowed on each
definition file.

A module is an entity with variables andFig. 1. Logical outline of the RELATED system architecture.

R. Pastor et al.446

parameters. This entity allows the code to be run
inside a local thread while a user is conducting a
remote experiment. At present, RELATED
supports two types of implementation:

. Native code developed for the local platform
where the RLAB system is defined. It is very
useful to run the real-time control code or
any kind of code developed for control
purposes. The programming interface is the
Sun's JNI specification (Java Native Inter-
face). So, the binary compatibility of native
method libraries across all Java virtual
machine implementations on a given platform
is attained.

. Java code organized as a set of classes included
in a Jar file. This Jar file can be located in a
URL. This means that any user can develop his/
her own control code and use it to build the
RLAB system.

In order to provide a standardized interface, the
module implementation must offer a predeter-
mined set of methods. This aspect is very signifi-
cant since it enables the modules to be reused to
elaborate other RLAB systems (local or remote).
The most important methods of the module
interface are:

. Init(). It returns a Boolean value according to
module initialization.

. Start(). It executes the thread that runs the
local code implementation every sampling time.

. Pause(). Used to pause modules that work
with simulations.

. Resume(). Used to resume modules that run
simulations.

. Stop(). It stops the running thread of the
module.

. Exit(). Used to free resources in the local code
implementations.

. GetVarValue(var). Used to retrieve the value of
a variable in the local implementation. This
method allows the signal values to be obtained
in real time.

. SetVarValue(var, value). Used to change the
value of a variable in the local implementation.

The hmodulei XML tag defines a module and the
h implementationi tag indicates which code will be
run. So, a dynamic library (DLL for Windows, SO
for UNIX) is needed in a native implementation,
and the Jar file URL and the main class name are
provided in a Java implementation.

A variable is an object that stores a value
(double, float, integer, long, boolean, or string)
and that can be changed while the system is
running an experiment. A variable is always
associated with a module, since the module
implements the get and set functions to access
these variables. A variable is defined by the hvari
XML tag.

A parameter is like a variable but it cannot be
changed while the system is running an experi-
ment. Parameters are useful for initializing the

internal variables of a module implementation.
There are default parameters for modules and
views (e.g., the ExecutionTime parameter defines
the maximum time estimation in running local
code). A parameter is defined by the hparami
XML tag.

A view defines a GUI form composed of graphi-
cal components and multimedia capabilities
(video, animation, sound). These components
allow users to view and manipulate the remote
data defined in an RLAB system. A view is
implemented like a module, i.e., with a standard-
ized interface, but different methods are needed.
These are:

. Show(). It presents the GUI form to the
user.

. Hide(). Used to hide the GUI form and run the
finalization tasks.

. Update(). Used to update the graphical
components of the GUI form.

The hviewi XML tag just defines a view and the
syntax looks like a module definition.

A reference is a URL that allows information to
be published using HTML pages. Any information
about local RLAB systems can be added by
references. The hreferencei XML tag defines this
object.

An experiment describes the dynamic behavior
of an RLAB system, for example, a controlled
system, the manual operation, etc. An experiment
is defined using the static definitions of modules
and variables in the following way:

. An experiment needs to run one or more
modules (one is mandatory) that must be run-
ning while the experiment is going on, i.e.,
there will be several threads running concur-
rently. The system must provide synchroniza-
tion among these threads for its correct
operation regardless of the local or remote
nature of these modules (the local or remote
execution of modules is possible by means of a
hruni tag).

. If a module needs data from another module
(remote or local) then input ports must be
defined using several h ini XML tags. These
input ports make possible to set data on the
module from different sources.

. If a module sends data to another module
(remote or local) then outport ports must be
defined using some houti XML tags. With these
output ports a module get data from different
sources (local or remote data).

. If disturbances are introduced in a variable or it
is necessary to program timing changes on
several variables then the hseti tag is used.

. Finally, experiment duration is set by the
hdurationi XML tag.

An RLAB system could include as many experi-
ments as the system administrator adds to the
definition file and users could also add their own
experiments to the definition file.

A XML-based Framework for the Development of Web-Based Laboratories 447

PUBLISHING AN RLAB SYSTEM

After describing the objects defining an RLAB
system, we now list the steps that a teacher has to
take to publish an RLAB system in an RLAB
control web server. They are as follows:

1. Establish the static behavior of the system in
terms of variables and parameters. These vari-
ables must be classified into groups, since a
system is composed of many kinds of variables
and parameters.

2. Define a module implementation for each
group of variables and parameters. The teacher
chooses a native or pure Java implementation
for each module, and then the implementation
must be programmed.

3. Develop views. Several GUI forms can visually
help to describe and understand the dynamic
behavior of the system.

4. Begin the documentation task. The results are
HTML pages that are included in the system as
references.

5. Define the dynamic behavior. First, the teacher
decides what features in the system are public

for users. Second, he/she has to write the
experiments using the modules defined in the
previous static behavior section.

Steps 1±5 produce the XML definition file. This
file is loaded into the RLAB Publish Application
(see Fig. 2a) for exporting the new system to
RELATED users. The definition file is parsed
selecting the Load XML-File menu item, and if
no errors are found, the RLAB system is published
in the main web server. From now on, the new
RLAB system can be managed across the Internet.

To manage the services available in a published
RLAB system, an applet has been developed (see
Fig. 2b). This applet allows users to start and stop
experiments, show and hide views, or open the
references in new windows. This applet also has
graphic capabilities in order to show different
scopes for the variables defined in the modules.

BUILDING AN EXPERIMENT

The example presented here uses as its system a
small-scale pasteurization plant, the PCT-23 (see
Fig. 3). In this plant, the typical working procedure
is energy exchange between two liquid flows
with different temperatures: cool and warm. A
Windows application called CILab (Control Inter-
active Laboratory) was developed for the local
operation of this didactical setup.

As mentioned before, CILab is a standalone
application. So, initially, the PCT-23 teleoperation
is not possible. However, thanks to the features of
the RELATED framework, the CILab code can be
reused and the experimentation with the plant
across the network can become a reality. In this
example, a single PID loop is considered and liquid
flow is controlled with a pump.

The procedure for writing the XML definition
file of an RLAB system based on this plant is
described below. Afterwards, an experiment with
both local and remote implementation of a PID
controller is carried out. The steps defining the
XML file are:

Step 1. In this example, just three PCT-23 variables
are considered: F1 (liquid flow), N1 (liquid pump),

(a)

(b)

Fig. 2. Interfaces: (a) RLAB Publish Application GUI; (b)
main applet window. Fig. 3. PCT-23 plant.

R. Pastor et al.448

and SP_F1 (set point for F1). A PID implementa-
tion with seven variables and one parameter is also
needed:

. `y'. It represents the plant output (in this case
F1).

. `u'. It is the control action generated for the PID
(N1).

. `ref ' represents the set point for the `y' variable
(SP_F1).

. `Kp'. PID proportional gain.

. `Ti'. PID integral time in seconds.

. `Td'. PID derivative time in seconds.

. `Automatic' variable (boolean value).

. `Inverse' parameter (boolean value).

Step 2. There are two groups of variables (plant
and PID modules) that are implemented separately
in modules using the two different types of imple-
mentation: native code for the PCT-23 variables,
and Java code for the PID variables. These two
modules are named `PCT23 module' and `PID

module'. Both definitions are shown in Figs 4
and 5.

Step 3. Two views (see Fig. 6) were developed for
direct user interaction:

. Valves panel, useful for opening and closing
PCT23 valves.

. Global diagram, which allows pump values to be
changed and other variables in the PCT23 plant
to be seen.

Step 4. Currently no references are defined.
At this point, the static behavior section of the

XML definition file is already fulfilled and the
dynamic behavior must be written, that is to say,
the experiments.

Step 5. Two experiments are considered in this
contribution:

. An experience of the PCT23 manual control: No
connections are needed and the experimentation
time is set to infinite.

Fig. 4. XML definition for the `PCT23 module'.

Fig. 5. XML definition for the `PID module'.

A XML-based Framework for the Development of Web-Based Laboratories 449

. A PID control for F1 and N1: In this case,
connections between the `PCT23 module' and
the `PID module' have to be established in order
to change the N1 value (`u' variable in the `PID
module') and reach the set point. Thus three
connections are defined using the h ini and houti
tags. Additionally, some changes in the SP_F1
are programmed in order to verify the correct
operation of the PID algorithm.

Both experiment definitions are shown in Figs 7
and 8.

After the previous steps have been completed,
one XML definition file is obtained and released to
users by means of the RLAB Publish application.
Figure 2b shows graphically the two parts of the
PCT32 system defined with the previous XML file:
the system modules (static section) and the system
experiments (dynamic section).

Now, starting and stopping experiments in the
plant can be done. Once the PID Control experi-
ment is started, it is possible to select and view
real-time data and change `interactive' variables
using the RLAB system information applet
(Fig. 9).

Running a remote pid module
The above example shows how to build an

experiment using local modules. In this new ex-
ample, the PID module with a different XML
definition file has been moved to an RLAB
system located in another machine (see Fig. 10).
A new experiment is now defined using the remote
PID module and the PCT23 module. The previous
PCT23 System experiment is modified for using
this remote PID module (see Fig. 11).

EDUCATIONAL OUTCOME

If the existence of remote laboratories resolves
many of the problems raised, the creation of
consortia or networks of telelabs considerably
increases the benefits. Benefits which, on the one
hand, affect the two parties involved: the students
will have a complete set of activities that do not
depend on the available university equipment,
whereas the teachers will have different platforms
to support their teaching based on the master
lesson, thereby minimizing the purchase and

(a)

(b)

Fig. 6. Views: (a) valves panel (b) PCT23 global diagram.

Fig. 7. Manual operation experiment.

R. Pastor et al.450

maintenance costs. Additionally, the access to
different experimental resources thanks to the
net enables the laboratory to be more integrated
in the educational curriculum both horizontally
and vertically. Horizontally, because students can
access laboratories of different subjects (control,
robotics, vision, electronics, artificial intelligence,
hydraulics, etc.) irrespective of the existence or
not of a laboratory at their teaching center.
Vertically, because the student can do practical
activities of increasing difficulty within the same
subject or range of subjects. Consequently, well
or badly equipped laboratories do not exist but
rather just one environment in which to work, to
the advantage of the whole university com-
munity. This community can thus offer more
integral, complete, varied and state-of-the-art
education.

CONCLUSIONS

Although the paradigm of the virtual and
remote laboratory accessible via the Internet is
presently at a relatively mature stage of develop-
ment, there are still no standards for defining
experiments and connecting teleoperated environ-
ment elements. Most researchers carry out similar
developments and paradoxically make the mistake
that they are precisely trying to solve with the
creation of experimentation tele-environments:
minimize costs and maximize uses. It is therefore
obvious that global initiatives are necessary in
RELATED to group, or at least share, all these
efforts for a common purpose: the training of
pupils.

RELATED is the first release of a new frame-
work developed for connecting control systems

Fig. 8. PID control experiment.

A XML-based Framework for the Development of Web-Based Laboratories 451

(a)

(b)

(c)

Fig. 9. (a) Selecting data. (b) Changing values. (c) Plotting real-time data from PCT-23.

Fig 10. New definition file only with the PID module.

R. Pastor et al.452

(real plants, simulations, control algorithms)
across the Internet using XML language. This
approach lets teachers create new Internet-based
control labs using legacy code and control
elements regardless of location.

A full example of real-time control via the Inter-
net has been presented. This example shows that the
use of local code to develop a complete Internet

control application could be quite simple. Finally,
remote module execution in a shared-distributed
information system has been demonstrated, and
how a full PID implementation algorithm can also
be used for educational experiments.

For further information about the software's
availability and a complete description of the
system's details, readers can e-mail the authors.

REFERENCES

1. J. W. Overstreet and A. Tzes, An Internet-based real-time control engineering laboratory, IEEE
Control Systems Magazine, 19(5), 1999, pp. 19±34.

2. C. Schmid, A remote laboratory using virtual reality on the Web. Simulation, 73(1), 1999,
pp. 13±21.

3. A. Zolnay, A. LassoÂ, H. Charaf, and I. Vajk, Configurable remote, platform independent control
system, in Advances in Control Education 2000 (L. Vlacic and M. Brisk, eds), Pergamon, Great
Britain (2001) pp. 319±324.

Fig. 11. New experiment using the remote PID module.

A XML-based Framework for the Development of Web-Based Laboratories 453

4. D. Gillet, H. A. Latchman, Ch. Salzmann, and O. D. Crisalle, Hands-on laboratory experiments in
flexible and distance learning, Int. J. Eng. Educ., (2001), pp. 187±191.

5. C. Salzmann and P. Huguenin, A distributed architecture for teleoperation over the Internet with
application to the remote control of an inverted pendulum, Lecture Notes in Control and
Information Sciences 258: Nonlinear Control in the year 2000, 1, Springer-Verlag, London (2001)
pp. 399±407.

6. C. C. Ko, B. M. Chen, J. Chen, Y. Zhuang, and K. C. Tan, Development of a Web-based
laboratory for control experiments on a coupled tank apparatus, IEEE Trans. Education, 44(1)
2001, pp. 76±86

7. K. Ling, Y. Lai, and K. Chew, An online Internet laboratory for control experiments, in: Advances
in Control Education 2000 (L. Vlacic and M. Brisk, eds), Pergamon, Great Britain (2001)
pp. 173±176.

8. W. Sheng, L. Choo-Min, and L. Khiang-Wee, An integrated Internet based control laboratory, in:
Advances in Control Education 2000 (L. Vlacic and M. Brisk, eds), Pergamon, Great Britain (2001)
pp. 49±54.

9. J. SaÂnchez, F. Morilla, S. Dormido, J. Aranda, and P. RuipeÂrez, Virtual control lab using Java and
Matlab: A qualitative approach, IEEE Control Systems Magazine, 2, (2002).

10. Available: http://www.w3.org/XML/
11. Available: http://www.nacimiento.com/VIML/.
12. Available: http://pioneer.gsfc.nasa.gov/public/iml/.
13. T. Ames, L. Koons, K. Sall, and C. Warsaw, Using XML and Java for astronomical

instrumentation control, SpaceOps 2000, Toulouse, France (2000).

R. Pastor received his Physics degree in 1994 from Madrid Complutense University and he
is currently working on his thesis on virtual and remote laboratories. Since 2000 he has been
working at UNED Department of Computer Sciences and Automatic Control as an
Assistant Professor. His current research interests are real-time control systems, distributed
systems, virtual and remote labs and their applications in higher degree courses.

J. SaÂnchez received his Computer Sciences degree in 1994 from Madrid Polytechnic
University and his Ph.D. in Sciences from UNED in 2001. Since 1993 he has been working
at UNED Department of Computer Sciences and Automatic Control as an Assistant
Professor. His current research interests are the design of new systems for control
education, virtual labs, telepresence, multimedia, and the use of the Internet in education.

S. Dormido received his Physics degree from Madrid Complutense University (1968) and
his Ph.D. degree with a thesis on `Adaptive Sampling' from the University of the Basque
Country, Spain, in 1971. In 1981, he was appointed Full Professor of Control Engineering
at UNED Faculty of Sciences. Since 1986 he has been Head of UNED Department of
Computer Sciences and Automatic Control. His scientific activity includes various topics
from the control engineering field: computer control of industrial processes, adaptive
systems, model-based predictive control, robust control, and modeling and simulation of
continuous processes.

R. Pastor et al.454

