
Resource Sharing Software for Distance
Learning in Engineering Education*

L. PETROPOULAKIS and B. STEPHEN
Dept. of Electronic and Electrical Engineering, University of Strathclyde, 50 George Street,
Glasgow G1 1QE, Scotland, UK. E-mail: L. Petropoulakis@eee.strath.ac.uk

This paper presents the work being carried out in Strathclyde University to utilize generic methods
for making computer-aided design (CAD) and simulation packages available on the Internet for
distance learning and distance collaboration purposes. The system was developed over a 3-year
period and has now evolved into a generic resource sharing structure with several features designed
for use predominantly in education but also in other environments. This paper provides an overview
of the development, illustrates the functionality and use of the system in sharing different
applications and for various user-modes, analyses the significance of such systems in educational
establishments, indicates the difficulties experienced thus far in implementation and gives a brief
overview of the latest version of this development.

INTRODUCTION

THE ORIGINAL AIM was to develop a system
where CAD and simulation packages such as
MATLAB/LabVIEW could be used and shared
over the Internet for distance learning by our
engineering students. Early attempts concentrated
on MATLAB software since this package is most
commonly used in an Electrical Engineering
Department. A conscious decision was also taken
to support Octave a free-to-use (useful for
students) alternative to early MATLAB versions.
(Originally developed by the GNU consortium
(www.gnu.org), Octave is available for Unix,
Linux, NT and Windows. Its original design has
a poor graphic user interface (GUI) and does not
support a Simulink-type environment. Both these
problems have now been resolved through our
development.)

Providing similar functionality for both these
packages and enabling easy construction of simu-
lations using a Simulink-type environment was one
of the challenges of the work. Our aims therefore
were:

1. To develop an environment where users could
share the same copies of MATLAB/Octave
for teaching and co-operation purposes over
Intranet/Internet connections.

2. To provide a Simulink-type environment
which was compatible with both Octave and
MATLAB and which could be used over
intranet/Internet with full user sharing func-
tionality (Note: MATLAB/Simulink's Web
Server system only permits single user Internet
access).

3. To ensure that a familiar and easy-to-use
interface (through the use of simple browsers)
was in place and that the minimum of
additional software was required.

4. To ensure that the operation was not impeded
by problems arising from bandwidth con-
siderations through sending graphics files
across Internet connections.

5. To ensure platform-independence since our
MATLAB/Octave software was available on
both Unix/Linux and Windows operating sys-
tems. Browser independence was also desirable.

6. To extend the system to other applications of
normally used in education and elsewhere.

The objectives of platform and browser inde-
pendence were easily achieved through a Java
development. It was also clear from the outset
that to minimise use of bandwidth a client-based
graphic system would need to be used. This also
implied that a new Simulink-type (also Java-based)
interface needed to be developed to provide a
graphical simulation environment with full sharing
capabilities. The overall system design is totally
modular and agent-based [1±5, 9]. Using agents
also requires the use of mediators-type agents [6].
(Definitions of agents and mediators as applied in
our context can be found in [11].) Through
continued development, the system has now
evolved into a general-purpose software platform
for sharing applications across Internet/intranet
connections.

This paper concentrates mostly on the earlier
developments of the system and the experience in
using it, but it also provides brief overviews of
more recent versions and functions. Very recently,
additional features have permitted the sharing of
any software application (such as LabVIEW or
AutoCAD, Word for Windows, Excel, Power
Point, etc.) in a robust and consistent manner.* Accepted 12 February 2003.

371

Int. J. Engng Ed. Vol. 19, No. 3, pp. 371±378, 2003 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2003 TEMPUS Publications.

THE BASIC SYSTEM
(SIMPLE INTRANET/INTERNET USE)

The basic system, written in Java 1.2 was ready
by July 2000. This system had no sharing
capabilities but it enabled single users to access
an Octave/MATLAB application server remotely
over Internet/intranet connections, through the use
of simple browsers (e.g. Netscape 3.0 or above,
IE 4.0 or above) in a Windows NT/98/95 or a
Unix/Linux or similar system. (A version of this
early system is available from www.webeng.org, by
emailing us your request: we must draw your
attention to the licensing conditions of MATLAB
if you intend to use our software with this appli-
cation.) Later versions of the software (permitting
full sharing capability) are available to Scottish
Educational Institutions only. (Full commercial
versions of the software will be made available in
future.)

The Octave/MATLAB application server must
run on a Unix/Linux or a Windows NT-based
operating system. (New versions, which allow full
sharing capabilities, have several modes which are
explained next.)

This system operates on a simple server-client
basis. The application (Octave/ MATLAB) runs
on the server and the user connects remotely to the
server through a browser on a client machine.
Commands typed in the browser are executed in
the server and the results are returned to the
browser for viewing. The system is capable of
handling console commands as well as MATLAB

m-files. Any data to generate graphics issued by
MATLAB/Octave is passed on to the client and
plotted locally. Since only textual information is
passed over Internet connections, the system is
very fast with practically no latency even with
slow connections. Tests between Strathclyde
(UK), Purdue (US), Dundee and Edinburgh
universities indicated that the system is robust
and well structured.

The sharing conceptÐpassive and active users
The technical details of the sharing arrangement

are illustrated in Fig. 1. The figure shows both the
sharing ability and the cross-platform capabilities
of our development (Note that the names used in
the figure and in the following description are the
actual names of our networked computers. For
clarity only two client users are shown in the
figure.)

On `Poseidon'Ðthe name of our Sun server, the
MATLAB server Java application runs con-
tinuously `listening' for connections. On PC
machine `McGuinn', User1 points the web browser
to the `Poseidon' web page containing the client
Java applet. The ensuing execution of the applet
produces a pageÐdisplayed on `McGuinn'Ðand a
login dialog requiring user name, password and
type, e.g. student/tutor/supervisor. (A tutor is
assumed to be a lecturer/teacher/trainer in charge
of a whole class of students/trainees. Supervisors
are assistants to tutors in charge of only a fraction
of supervised students/trainees.)

Fig. 1. The sharing concept.

L. Petropoulakis and B. Stephen372

On submission of correct information a connec-
tion with the server is established. If User1 is the
person who activates the session, an ActiveUser
and an Administrator objects are created. The
Administrator controls a dynamic lookup table
of all users `looking on' to User1's session. User
names enable the server to propagate the
commands issued by User1 and also the responses
of the system as a result of these commands to
other users. Hence, on PC machine `Nevis', User2
session is initialised in a similar way to User1
session. The only difference is that now a
PassiveUser object is created to handle the
connection with the User2 client.

Unlike an ActiveUser object, a PassiveUser does
not `own' the copy of MATLAB. PassiveUsers
only receive the output from an ActiveUser's
copy and cannot interact with the process except
to view graphs, save plots to files, or terminate
their session.

The above describes a typical `tutor/multiple-
student' teaching-by-showing session, where
commands entered into the browser console on
the tutor client machine are sent to the server
machine where they are executed and the results
are then passed on to all users connected to the
system (i.e. a multicasting operation ensues). In
cases where information other than commands to
MATLAB is transmitted (e.g. send plot data to
clients or audio or image files to the server),
appropriate headers are used to denote this to
the system. The system can also handle the sub-
mission of files for batch execution of multiple

commands just as though they were supplied to the
system from a keyboard.

The connections between the machines are
standard TCP/IP connections common in Inter-
net-based communications. The number of
users on the system at any one time is limited
only by software licences or server capacity for
the maximum number of simultaneous users. The
system also permits a dual server/client function-
ality on the same computer at the same time.
Hence, any computer user can share applications
on his/her machine with other users over Internet
connections.

Sharing of applications
The features described in 2.1 allow a number of

additional modes. These modes (shared, super-
visory and supervised) permit the co-operative
use of Octave/ MATLAB for the purpose of, for
example, teaching, project development and syner-
gistic design. These modes enable PassiveUsers to
become ActiveUsers and vice versa.

This approach has important implications in
educational, research and development environ-
ments, where two or more users `share' the
same copy of the software and can assume active
or passive roles to obtain guidance or actively
illustrate their ideas or designs. These modes are
fully functional and additional refinements are
added frequently to ensure extra robustness and
preserve continuity of output. Switching between
active and passive modes is effected through
messages between any PassiveUser and the current

Fig. 2. The sharing mode.

Resource Sharing Software for Distance Learning in Engineering Education 373

ActiveUser. When an agreement is reached, the
system performs the switch in real-time and
without loss of data.

Figure 2 illustrates a typical sharing session
with an ActiveUser having control of an Octave
window (the command line where commands are
issued is clearly visible) and the PassiveUser shar-
ing (no command line exists in this user's browser).

It is possible, through these additional modes for
students to use their own individual copies of
MATLAB/Octave and for tutors/supervisors to
view what the students are doing and if required
take over control of any student copy to illustrate
to the student where (s)he has gone wrong and
finally return control back to the student. A
history log of all student activities is also available
to assist tutors in this task. Tutors have also the
capability to supervise a large number of students
and attend to each one in turn. Facilities, which
alert the tutor to the fact that a student may need
attention, also exist in the package. A typical case
is presented in Fig. 3 where double-clicking the
name (which is highlighted if attention is required)
on the list of names on the left-hand side of the
window enables tutors to take control of the
corresponding student copy.

In case of distant collaboration, the system
allows one ActiveUser per Octave/MATLAB
copy, but an infinite (in theory) number of
PassiveUsers. An ActiveUser can be alerted to the
fact that a PassiveUser is seeking control of the
software and (s)he can surrender this control when
agreed. In this way, users can take control of the
software in turn. It should be noted that the

switching happens without interruptions or loss
of data.

The system enables privileged users (e.g. tutors
or supervisors) to login into multiple sharing
sessions so as to monitor several different students
or several classes. Switching between multiple
sessions is merely a case of switching between
browser copies or by pointing the same browser
to a different connection point.

THE GRAPHICS USER INTERFACE (GUI)
AND J-SIM

It was known at the outset of this project, that it
would be inappropriate to use the existing Octave/
MATLAB plotting systems, owing to bandwidth
requirements for transmitting graphs and plots
over the Internet. For this reason, we have now
in place a plotting system that is client-based.
Graphs are now plotted at the client end at a
rate which the client can handle, whilst the
commands and information as to what needs to
be plotted is transferred over the Internet in the
form of textual data. This is both fast and efficient.
Our approach also ensures sufficient bandwidth
availability for other multimedia (e.g. sound).
The graphic interface is compatible with both
MATLAB and Octave and an example of complex
plot is shown in Fig. 4. Once generated, graphs
may be rotated in 3D, zoomed, saved, etc. The
GUI system is currently available for Linux, Unix,
and Windows platforms.

Apart from the ability to plot graphics locally,

Fig. 3. Controlling several users.

L. Petropoulakis and B. Stephen374

Fig. 5. J-SIM platform and browser independent.

Fig. 4. The plotting facilities.

Resource Sharing Software for Distance Learning in Engineering Education 375

the GUI system also enables us to meet the
additional design requirement of providing a
graphical simulation environment similar to Simu-
link. Using Simulink over Internet connections,
implies the use of graphics over these connections
which require a lot more bandwidth (Mathwork's
solution of converting everything to html is
another method).

Our solution to this problem is to use our
existing client-based GUI in a Java-based Simu-
link-type workspace environment known as
J-SIM. J-SIM operates at the client end and
permits the construction of blocks (each contain-
ing a mathematical function) through a drag-
and-drop action into the workspace. These
blocks can then be linked in much the same
way as Simulink blocks, to provide complex
simulations. As the system is being built, the
commands required to construct the simulation
are propagated to all the computers of all
observing users. Hence, they are able to view
on their computer the design progress. The
ActiveUser has full control of when to start,
pause or stop this propagation process. The
development enables users to switch between
active and passive roles much in the same way
as described in the previous section. A typical

session illustrating two users sharing is shown in
Fig. 5. Notice that the toolboxes are only
available to the ActiveUser. If control of the
application is switched, then the toolboxes will
also switch accordingly. The browsers shown
here are Microsoft Explorer 5.0 and Netscape
6.0.

In its present form J-SIM only has basic tool-
boxes, which can be individually customised with
mathematical functions at simulation build time.
However, this is rather slow and ready-made
components may be desirable by users. To accom-
modate this, J-SIM is both user-expandable and
easily customisable for particular environments.
Users who wish to customise J-SIM for their
own particular needs can do so by expanding the
number and type of toolboxes available to suit
their needs. However, in cases where sharing
control of J-SIM is envisaged, the same toolboxes
must appear at all client machines that need to
control the application.

The system has been tested across various insti-
tutions in Scotland and elsewhere. Concerning
connectivity and robustness the results have been
excellent. In all tested cases, system performance
was as designed without major concerns and with
little time delay (even with limited bandwidth).

Fig. 6. Desktop sharing system.

L. Petropoulakis and B. Stephen376

DESKTOP SHARINGÐGENERALISING
THE SHARING OF APPLICATION

The generic nature of our development implies
that sharing individual applications as described
and shown here for MATLAB and Octave, can
easily be achieved provided that our method is
incorporated as part of the application during the
design stage. MATLAB and Octave are unique in
that they allow textual information flow between
their mathematical engines and plotting facilities.
Hence, building the system in the way described
around these applications was possible. In general,
this will not be possible for other applications used
for educational purposes such as LabVIEW or
AutoCAD. To overcome this difficulty we have
recently extended our development to include a
desktop sharing environment, thereby permitting
any application to be shared. A typical application
shared in this way is shown in Fig. 6. The figure
shows a 3D drawing system projected into a user's
browser. The sharing operation in this case is
much the same as before except that the informa-
tion passed between server and clients is not
purely textual anymore, but it also contains
screenshot data. This can be rather slow at times
particularly when large screen changes are
required.

Although this latest extension to the system is
fully functional, it is not yet completely platform
independent. The constraint is that applications to
be shared must run on a Windows NT/2000/XP
operating system. The system operates well in real-
time and enables sharing of all applications across
mixed platform networks for a reasonable band-
width availability (e.g. broadband). Further work
to improve functionality and achieve full platform
independence is being carried out.

FIRST EXPERIENCES IN USING THE
SYSTEM

So far our development has been tried on just a
few occasions. In most of these cases the purpose
of the trials was to debug the software or test its
functionality. However, enough trials have been
done to evaluate issues such as:

. ease of use and familiarisation;

. ease of information exchange between users
(i.e. using the system's message capability to
communicate with each other);

. ability to attract tutor's attention;

. ability to respond to demands;

. maximum number of simultaneous users the
system can support.

The latter issue is clearly hardware-dependent
related to bandwidth availability and server capa-
city. In our case the most stringent test thus far
involved fourteen simultaneous users without any
adverse effects being observed. The upper possible

limit of simultaneous users who can use this system
is not currently known.

The fact that the MATLAB interface was
contained within a browser appeared to unsettle
a few experienced MATLAB users. However, it
did not appear to impose particular difficulties in
using the application. Users with no previous
MATLAB experience did not find the interface
unusual. The ability to share copies and be able to
exchange messages on designs appeared not to be
used significantly whilst users were within the same
room. The tendency here was to attempt to physi-
cally attract the attention of the tutor (i.e. by
raising their hand) rather than use the system to
achieve the same result. We attribute this to
habitual use of a traditional classroom approach.
When this practice was restricted, students
appeared quite happy to use the facilities of the
system. Soon, however, it became evident that, in
the case of non-experienced users, one tutor could
not cope with the number of enquiries reaching
his/her terminal. In the case of more experienced
users, this particular problem appear to be
containable.

One, almost predictable, result of asking various
tutors to use the system was their reluctance to
depart from known and set ways. It was only the
realisation that there was nothing particularly
time-consuming about learning the new system
that persuaded them to try it out.

The main criticism related to the original system
implementation was the fact that, owing to the
command line as shown in the browsers (see Figs 2
and 3), users could no longer see the whole of the
MATLAB command window and be able to scroll
up and down so as to cut and paste commands
whenever possible. This has been remedied
through the use of a history command-window
that the user can see, use for cut and paste, and
save commands. This also allows for the sub-
sequent easy creation of m-files (not possible
using standard MATLAB facilities).

CONCLUSIONS

We have presented a user interface which,
through the use of simple browsers, permits users
to access the MATLAB and Octave simulation
software through the Internet. This interface has
been extended to a system that enables the simul-
taneous tutoring of a large (theoretically infinite)
number of students by a single tutor. The system
can be used both in classroom environments and
also for distance learning. Additional system struc-
tures, which enable co-operation between research-
ers, have also been developed. This resource
sharing system operates across various computer
platforms such as (Linux, Unix, Windows, etc.)
and using a variety of browsers.

The initial system has now been enhanced to
incorporate desktop sharing facilities enabling
sharing of all applications. This system is still

Resource Sharing Software for Distance Learning in Engineering Education 377

under development as it is not as yet fully
platform-independent.

A number of international patent applica-
tions have been launched for this development,
which (to the best of our knowledge) provides
unsurpassed sharing capabilities for computer

applications through several different modes to
facilitate user collaboration.

AcknowledgementsÐThe authors would like to acknowledge the
contribution of the Scottish Educational Funding Council
(SHEFC) for their continuing support of the WebEng project.

REFERENCES

1. L. Foner, What is an Agent? Crucial Notions, MIT Press (1993).
2. S. Franklin, and A. Graesser, Is it an agent, or just a program? A taxonomy for autonomous

agents, Proc. Third Int. Workshop on Agent Theories, Architectures, and Languages, Institute for
Intelligent Systems, University of Memphis, Springer-Verlag, 1996.

3. M. Wooldridge, and N. R. Jennings, Intelligent agents: theory and practice, Knowledge Engineering
Review, 10(2), 1995, pp. 1±62.

4. T. Finin, Y. Labrou, and J. Mayfield, KQML as an agent communication language, in J.
Bradshaw (ed.), Software Agents, MIT Press, Cambridge, 1997.

5. M. R. Genesereth, and S. P. Ketchpel, Software agents, Communications of the ACM, 37(7), 1994,
pp. 48±53.

6. G. Wiederhold, Mediators is the architecture of future information systems, IEEE Computer,
March 1992, pp. 38±49

7. K. Goldeberg et al., Desktop tele-operation via the World Wide Web, Proc. IEEE Int. Conf. on
Robotics and Automation, Nagoya, Aichi, Japan, 1995, pp. 654±659.

8. J. Paaso, Telematics for hich-tech engineering education: from computer-based teaching to
telematic learning in software engineering, Proc. EAEEIE 96 Conference, June 12±14, 1996,
Oulu, Finland, pp. 107±115.

9. N. Jennings, and M. Wooldridge, Software agents, IEE Review, January 1996, pp. 17±20.
10. R. L. Shuey, D. L. Spooner, O. Frieder, The Architecture of Distributed Computer Systems,

Addison Wesley, 1997, ISBN: 0-201-55332-5
11. L. Petropoulakis et al., Agent-controlled Internet tools for computer-based distance training in

industry and education, Int. J. Eng. Educ. and Lifelong Learning, 12(1±4), 2002, pp. 267±276.

Lykourgos Petropoulakis obtained a 1st Class Degree in Aeronautical Engineering (1982)
and a Ph.D. in Robotics and Control (1986) form Salford University UK. He worked
briefly for Unimation UK before joining the Department of Artificial Intelligence,
University of Edinburgh as a robotics researcher in 1987. In 1991, Dr. L. Petropoulakis
joined the University of Strathclyde as a lecturer. Since 1995, his research has been mainly
involved in areas relating to Internet-based collaboration and virtual laboratories. Dr.
Petropoulakis has over 30 publications in various conferences and journals.

Bruce Stephen holds a B.Sc. in Aeronautical Engineering from the University of Glasgow,
UK and MSc in Information Technology Systems from Strathclyde University, UK. He is
currently a Research Assistant in the department of Electrical and Electronic Engineering
at Strathclyde University where he is working towards his Ph.D. His current research
interests include: intelligent agent based systems, distributed/resource sharing systems,
neural networks, fuzzy logic, hidden Markov models.

L. Petropoulakis and B. Stephen378

