
Embedded Internet Laboratory*

F. NAGHDY, P. VIAL and N. TAYLOR
School of Electrical, Computer and Telecommunication Engineering, University of Wollongong, NSW,
2522, Australia. E-mail: f.naghdy@uow.edu.au

A laboratory is developed in this work to teach embedded Internet systems to Bachelor of Internet
Science and Technology students. The design and development of the system have been carried out
based on the pedagogical outcomes expected from the laboratory and the subject. Accordingly, the
laboratory designed for this subject does not only support all the objectives of the subject, but
provides a platform to demonstrate all the principles associated with the concepts in a tangible
manner. For example, the laboratory itself is designed as an embedded Internet system and access
to the experimental device takes place remotely through the Internet from a client. The design and
development of the laboratory is described and progress made is highlighted.

INTRODUCTION

COMPLETE on-line delivery of educational
courses via the World Wide Web (WWW) is now
an accepted norm and practice in areas such as
Arts and Management, where hands-on experience
and acquisition of practical skills are not essential.
On the contrary, the introduction of engineering
courses on the Web has been slow due to their high
dependence on practical laboratories.

The Internet-enabled laboratory is the key tech-
nology that makes the on-line delivery of engin-
eering degrees a viable option by providing remote
access to an experimental rig via the Web.

The focus of this work has been on developing a
cost-effective, robust and viable solution for
setting up an Internet-enabled laboratory. It can
be practically utilized for a wide range of appli-
cations in the home, industry and educational
institutions.

In spite of its generic nature, the proposed
solution is designed to provide remote access via
the Web for an `Embedded Internet Systems'
laboratory. This subject is part of a Bachelor of
Internet Science and Technology (BIST) degree
offered in the Faculty of Informatics, University
of Wollongong.

During the course of the paper, a review of the
related work will be carried out. The overall
architecture of the developed system will be then
described and various hardware/software com-
ponents of the system will be introduced. The
progress made so far will be reported and some
conclusions will be drawn.

BACKGROUND

The traditional computer-aided laboratory often
suffers from technical limitations that arise from

diversity in software packages, hardware, com-
puter platforms and operating systems [1]. This
becomes a source of confusion for students as well
as laboratory assistants, and makes learning more
difficult.

Web systems may be used to overcome these
limitations, as well as providing students with
remote access to laboratories. The recently devel-
oped web-based remote laboratory is an example
of this. This tool consists of an actual laboratory
attached to a web interface [2]. The student enters
experiment settings via the web, and a software
interface then converts these into a form that can
be understood by the experimental rig. Data is
recorded during the experiment and then reported
back to the student via the web interface. A
number of universities have recently succeeded in
implementing various forms of remote laboratory.

The SBBT laboratory was developed by Oregon
State University in conjunction with Netscape to
provide remote access control of a three degrees-
of-freedom robot arm. The main component of the
laboratory is a Java server running on a Sun Sparc
5 workstation. The workstation is connected to a
Motion Control Interface (MCI) and a control PC
that are in turn connected to a robot arm. The
server contains a lab manager application that
controls access to the robot arm. UNIX shell
scripts are used by the lab manager to interact
with the MCI and the control PC. Students may
connect to the robot arm via the lab manager,
where they can then implement a control algorithm
and observe the response of the robot arm to the
algorithm [3].

Although it functions correctly, the major prob-
lem with this laboratory is cost. The use of a high-
end Unix workstation prevents the laboratory
from being within the budget of most learning
institutions.

A remote laboratory was developed by Case
Western Reserve University to provide students
with access to a Bytronic Process Control unit
(BPC) located within their Process Control and* Accepted 22 February 2003.

427

Int. J. Engng Ed. Vol. 19, No. 3, pp. 427±432, 2003 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2003 TEMPUS Publications.

Automation Laboratory. The BPC is a water flow
system in which flow level and temperature can be
measured and controlled. The remote laboratory
consists of a Macintosh Power PC connected to the
process rig via a PLC interface module. The PC
contains a LabVIEW server, which is used to
provide both static HTML pages and also a
Common Gateway Interface (CGI) for executing
programs. In this laboratory, students post experi-
mental control data to the server via an HTML
form. The server then runs the appropriate CGI
program sending the data to the PLC module,
which then starts the experiment. Output data is
logged and made available to the student via an
FTP site [4].

This system successfully provides remote access
to the laboratory. It has an advantage over SBBT
in that it is simpler and significantly more cost-
effective. However, the use of LabVIEW server
software greatly limits the laboratory functional-
ity. Additionally, the system is not fully interactive.

Robotoy is a simple remote laboratory devel-
oped by the School of Electrical, Computer and
Telecommunications Engineering (SECTE) at
University of Wollongong. It allows remote users
to control the operation of a robotic arm located
within SECTE's Mechatronics Laboratory. It
utilises a Linux PC to provide an interface between
the remote user and the arm. An Apache web
server installed on this PC allows users to request
a particular action by the arm. The CGI scripts
written in PERL are then used to process the
request and run a C program with the appropriate
arguments for that request. The C program com-
municates with the arm via a parallel connection
between the PC and the arm. Visual feedback of
the arm is provided via video cameras and a frame
grabber card. Additional functions such as camera
selection and status checks are performed via serial
communications with a microprocessor [5].

PEDAGOGICAL ISSUES

The developed laboratory is meant to assist the
students to develop a better understanding of
Embedded Internet Systems defined as micro-
chip-based control systems that are dedicated
to perform specific tasks or groups of tasks.
Embedded systems are now intrinsic components
of mechatronic systems and are employed in all the
modern medical, industrial and consumer
products.

With advances in the Internet technologies,
much attention is currently being paid to how
real-time embedded systems can be linked and
shared across the Internet. In such systems,
people and devices easily and automatically com-
municate with each other with no one having to
know about computers or software.

In embedded Internet systems there is a two-
way communication linkage between the Net and
virtually every mechanical/ electronic devices that

touches the human life. This includes even life-
critical devices which monitor/ assist major
transplant organs in one's body by remotely
monitoring, gauging and controlling them.

As mentioned before, the laboratory developed
in this work is meant to support the teaching of a
subject called `Embedded Internet Systems'. The
aim of this subject is to provide students with an
understanding of the concept and typical appli-
cations of embedded Internet real-time systems;
and to familiarise them with methodologies and
tools used to design and develop them. The subject
covers Web servers in embedded systems,
embedded operating systems, embedded system
configuration, real-time embedded databases, and
design for embedded Internet.

Accordingly, the laboratory designed for this
subject will not only support all the objectives of
the subject, but provides a platform to demon-
strate all the principles and associated concepts in
a tangible manner. For example, the laboratory
itself is designed as an embedded Internet system
and access to the experimental device takes place
remotely through the Internet from a client. Other
pedagogical issues imbedded in the laboratory
include:

. The design of the laboratory illustrates the
primary components and configuration of an
embedded Internet system and how they
should be integrated.

. The communication protocols and methodo-
logies of the laboratory show a typical design
of the necessary interaction between different
elements.

. The software tools and operating systems used
in the experiments familarise the students with
typical means which can be used to develop and
operate embedded Internet systems.

SYSTEM OVERVIEW

The solution developed in this work is illustrated
in Fig. 1. The embedded Internet device, a soccer
robot in this study, is interfaced to the Internet via
a TINI (Tiny InterNet Interface).

In the following sections different components
of this system are defined.

TINI
This interface device provides an optimal and

very low cost but universal solution that can be
applied to any embedded Internet system used in a
laboratory.

TINI is a low-cost microcontroller which
connects directly to the Internet. The first imple-
mentation of it was in 1998 as a Java program-
mable device capable of controlling household
electrical goods. TINI has been further developed
by Dallas SemiConductors and the TINI SIG
(Special Interest Group) and the result is a broad
platform including software and hardware that can

F. Naghdy et al.428

be used to create intelligent network devices.
Targeted devices have a small footprint, low
power consumption and are cost sensitive.

A TINI board is connected to the local area
network via an Ethernet connection. Users connect
directly to the TiniHttpServer running on the TINI
board via a web browser. A java applet is down-
loaded to the user's computer and during the
initialisation stage a socket request is sent to the
TINI board. This socket request is answered by a
java application running on the TINI board. This
program performs Ethernet to Serial and Serial to
Ethernet conversion for the connection between
the user computer and the I/O System.

The soccer robot
The robot is illustrated in Fig. 2. In the final

system, a web-cam connected to the TINI will
provide a visual feedback of the robot and its
location. This feature is not fully implemented at
this stage.

The overall system is programmed in C and
Java to provide communication between different
components of the system and to enable the
services required.

TiniTutor
In order to control the robot, TINI is used with

a socket supplied from Taylec [6] called the Tini-
Tutor. This socket is equipped with 8 digital inputs
and outputs, one analogue input and one analogue
output (amongst other features). The soccer robot
requires four digital outputs (all asserted low) and

one digital input (from the collision switch) for its
control.

The code for the TiniTutor requires the use of
the TiniHttpServer software freely available from
[7]. This allows the setup of the Applet software on
the TINI, which acts as a server for HTTP-based
web pages. The Applet and source web page are
thus downloaded to the TINI and stored as files on
its operating system (Slush). Another Java
program is written which runs concurrently on
the TINI with the Java Applet called Soccer-
Robot.tini. It starts up waiting for a call from
the applet on port 1000 (this being the port
originally chosen for communication). Once the
applet obtains a connection, the program Soccer-
Robot.tini waits for the applet to send a command
using an Ethernet packet. When it receives the
Ethernet packet it is decoded to locate the required
operation.

For example, the command for moving the
SoccerBot forward is `1'. When SoccerRobot.tini
receives this, the digital output which drives the
SoccerBot in the forward direction is asserted
low. A separate thread is provided in SoccerRo-
bot.tini to listen for an input from the collision
switch. When it receives this input, it stops the
soccer robot by asserting high on all the outputs
and sends an Ethernet packet back to the Web
browser running the applet to provide feedback
to the user that the TINI has detected a collision
event.

Robot drive card
In order to drive the Robot, four 3 V, 300 mA

signals are required. These output signals are only
required to provide a constant voltage. This could
be achieved through an I/O card using four pins of
ioport1 which provide the commands required to
drive the robot in four directions of forwards (F),
backwards (B), left (L) and right (R).

TINI could not provide the current required to
drive the robot. Hence a relay-based circuit was
designed for this purpose.

The mapping of these inputs to the ioport pins
is shown in Table 1. The inputs to the system all
have a low assertion level. This board was tested
and was found to provide a reliable means of
controlling the movements of the robot.

The complete set-up including the soccer robot
and TiniTutor is shown in Fig. 3.

Fig. 1. The TINI board.

Fig. 2. The soccer robot.

Embedded Internet Laboratory 429

COMMUNICATIONS SOFTWARE

The communications software integrates differ-
ent components of the system and provides a
means for the components and user to interact
with each other. It consists of three main parts of
the interface applet, the serial to Ethernet appli-
cation and the control program. The architecture
of the communications software is illustrated in
Fig. 3.

The interface applet is the user interface that has
been designed for the system. The TiniHttpServer
hosts this applet on the TINI board.

TiniHttpServer is a web server that was devel-
oped by Smart Software Consulting for the TINI
board and is capable of serving Java Applets, Java
Servlets and HTML documents.

The serial to Ethernet application is a java
application that runs on the TINI board acting
as a transparent proxy between the interface applet
and the control program. It has been designed as
a multi-threaded application so that the serial/
Ethernet and Ethernet/serial conversion processes
may run in parallel.

The system must be capable of dealing with:

. establishing a new connection to the system;

. control of the robot's direction by a user;

. feedback to the user from the robot;

. detection of a link failure.

A user can connect to the system via a web browser
providing a simple, user-friendly and familiar
interface from which to control the system. When
the user wishes to connect to the system they
redirect their web browser to the homepage of
the TINI board. An HTTP GET request is then

sent to the default web browser port (port 80) of
the TINI board.

This HTTP GET request is received by the
TiniHttpServer. As no particular web page has
been requested the default web page index.html is
sent back. This web page contains an applet tag,
which references the interface applet. The web
browser recognises this and requests a copy of
the applet.

Once the interface applet has been retrieved the
JVM on the client's PC begins to execute the Java
applet. It executes the init() function which initi-
alises the user interface and attempts to open a
TCP/IP socket connection to the TINI board IP
address on port 1000.

The connection request sent to the TINI board
is received by the serial to Ethernet application
that has a server socket listening to port 1000 for
incoming requests. The serial to Ethernet appli-
cation then stops listening to port 1000 for incom-
ing requests and sends an acknowledgement back
to the client's PC and opens the socket connec-
tion. The serial to Ethernet application and the
interface applet then bind their InputStream and
OutputStream to the socket connection.

Finally, the serial to Ethernet application opens
a serial connection to the I/O board. Once this has
been completed it binds another InputStream and
OutputStream to this connection launchings the
SerialReader and SerialWriter threads. The
current thread is assigned as the maintenance
thread. The SerialReader thread provides com-
munication from the I/O board to the client's PC
and the SerialWriter thread provides communi-
cation in the opposite direction. The maintenance
thread monitors the status of both of these threads
to ensure that no failure occurs.

The serial to Ethernet application is a Java
application that runs on the TINI board acting
as a transparent proxy between the interface applet
and the control program. It has been designed as a
multi-threaded application so that the serial/
Ethernet and Ethernet/serial conversion processes
may run in parallel.

Once a user has established a connection to the
system they can control the movements of the

Table 1. Mapping of directions to ioport pins

Circuit Input Direction Pin

Input 1 Forwards Ioport1, pin 2
Input 2 Backwards Ioport1, pin 4
Input 3 Left Ioport1, pin 5
Input 4 Right Ioport1, pin 3

Fig. 3. Complete laboratory set up. Fig. 4. The user interface.

F. Naghdy et al.430

robot via the interface applet. The user interface
that they are presented with is shown in Fig. 4.

The user is able to move the robot forwards,
backwards, left and right and can also stop the
robot. The buttons that the users click on to
achieve this are GIF images. A mouse listener
instance has been created to detect if the users
click within the boundary of these images. For
example, if the `Forwards' button is selected the
mouse listener object detects this and sends the
appropriate message to the serial to Ethernet
application via the socket connection it previously
opened.

The robot has been fitted with a collision
detector. When this collision detector is tripped
the interface board asserts pin 6 of ioport1. The
Software Timer Interrupt polls the status of this
pin every 200 ms. If it finds that the pin has been
asserted, the control program stops the robot and
then sends the value `5' back to the client's PC to
indicate that the robot has collided with an object.

PROGRESS SO FAR

The design and development of all aspects of
the project apart form its visual feedback are
complete. The laboratory was used in the second
session of 2002 for the first time. The laboratory
notes were developed as a Web page

The students who attempted the embedded
Internet laboratory came from different back-
grounds. Some had experienced earlier labora-
tories using TINI and Java and thus were
familiar with the embedded Internet platform
that was used. Others were not so experienced
and needed to learn some basic Java, getting
familiar with TINI, and undertake the laboratory
activities.

The students were asked to submit a laboratory
report and undertake an exam on the laboratory
contents. The reports were mostly satisfactory and
showed that students had understood the concept
and had developed skills to program TINI. The
results of the exam were rather varied as some
students did quite well whereas others showed
poor performance.

The work of developing a systematic validation
and study of the pedagogical outcomes of the

project in relation to the subject and its objectives
is still outstanding. The evaluation and validation
will take place next session primarily by asking
students to fill evaluation forms at different stages
of their work. In the next phase, automatic moni-
toring of the students on line will be implemented
to study the activities of the students on different
aspects of the laboratory.

CONCLUSION AND FUTURE WORK

The primary goal of the project has been
to build a cost-effective system for teaching
embedded Internet systems to BIST students. The
design and development of the system have been
carried out based on the pedagogical outcomes
expected from the laboratory. The laboratory
itself is an embedded Internet system and provides
remote access to control a soccer robot through a
Web browser.

As far as the cost is concerned, the TINI and I/O
card each cost around $US60. The total is sub-
stantially lower in cost than a PC-based solution,
particularly if the number of required stations is
large.

The laboratory is scheduled to be used in
Autumn Session of 2002 as part of the subject,
offered for the first time. The laboratory is set up
on the Web and students can access the robot via
the TINI.

Although the remote access to the laboratory is
technically possible, due to the non-availability of
Web cameras it is not provided for the time being.

The future work includes interfacing the Web
cameras to the experimental rig and enabling the
client to view the activities of the experimental rig.
The pedagogical outcomes of the laboratory will
be also evaluated through student's surveys and
other validation methods.

The experience gained through this work can be
incorporated in other engineering laboratories.
This will have two major impacts. It will make
the engineering practical laboratories more acces-
sible to the students and hence provide them with
more opportunities for experimentation and learn-
ing. It will also make the distance offering of
engineering degrees a reality and will provide
new opportunities for training of quality engineers.

REFERENCES

1. P. Doulai and M. Aldeen, Engineering and science laboratory courseware delivery using world wide
web technology, IEEE Int. Conf. Multi Media Engineering Education 1996, Vol. 1, July 1996,
pp. 339±344.

2. S. E. Poindexter, and B.S Heck, Using the Web in your courses: the how-to's and the why's, Proc.
1998 American Control Conference, Vol. 2, June 1998, pp. 1299±1303.

3. Bhandari and M.H. Shor, Access to an instructional control laboratory experiment through the
World Wide Web, Proc. 1998 American Control Conference, Vol. 2, June 1998, pp. 1319±1325.

4. M. Shaheen, K. A. Loparo and M. R. Buchner, Remote laboratory experimentation, Proc. 1998
American Control Conference, Vol. 2, June 1998, pp. 1326±1329.

5. P. Ciufo, Welcome to the Robotoy Homepage, URL: http://roboty.elec.uow.edu.au/, accessed:
January 1999.

Embedded Internet Laboratory 431

6. Taylec Website, accessed March 2002, http://www.taylec.com
7. TiniHttpServer home page, www.smartsc.com, accessed March 2002.

Fazel Naghdy received his first degree from Tehran University in 1976. He then received an
M.Sc. from the Postgraduate School of Control Engineering, University of Bradford,
England, in 1980 and received his Ph.D. from the same University in 1982. Currently he is
an Associate Professor at University of Wollongong, School of Electrical, Computer &
Telecommunication Engineering. Fazel has extensive research experience in the areas of
intelligent control, robotics and mechatronics. He has received many research awards and
published around 145 technical papers in international journals and conferences. His
current research interests include embedded Internet systems, haptic rendered virtual
manipulation of clinical and mechanical systems, intelligent control and learning in non-
linear and non-structured systems.

Peter Vial is an Associate Lecturer in the School of Electrical Computer and Telecommu-
nications Engineering. He graduated with a Bachelor of Engineering Hons 2 (i) in 1987 and
a Master in Telecommunications Engineering (Honours) in 1996. In 2000 he received a
Diploma of Education (Mathematics). All qualifications were awarded by the University of
Wollongong. His interests include issues in electrical engineering education, embedded
internet systems, digital signal processing, modeling of telecommunication systems and
wireless digital communications.

Nathan Taylor completed secondary education in 1997 and started University studies in
Computer Engineering in 1998. He graduated with the first class Honours in December
2001 in Computer Engineering. His final year thesis was on embedded internet control of a
SoccerBot. His work is currently used as part of a laboratory in an undergraduate degree.

F. Naghdy et al.432

