
OPC-driven Data Exchange between
MATLAB and PLC-controlled System*

STOJAN PERSIN, BORIS TOVORNIK and NENAD MUSKINJA
Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17,
2000 Maribor, Slovenia. E-mail: stojan.persin@uni-mb.si

Many manufacturing, and mechatronics systems, are controlled by PLCs and SCADA systems.
These systems provide very limited possibilities for research, optimisation, testing and simulation.
The main advantage of this proposed solution, which uses OPC, is an integration of the numerical,
computational and graphical strengths of MATLAB1 with the robustness of industrial systems.
The experimental setup, the processing of the data and the results are presented with particular
emphasis on student use in a laboratory environment but the techniques employed in the
experiments will likely to be seen by the students in their subsequent employment after completion
of their college careers.

INTRODUCTION

INDUSTRIAL AUTOMATION has reached the
point where one cannot progress further without
applying industrially tested, robust and market-
accessible automation products such as sensors,
actuators, programmable logic controllers (PLC)
and supervisory control and data acquisition
(SCADA) systems [1] which enable the acquisition
of large quantities of data. Process automation is
particularly important in isolated areas where the
physical presence of humans is undesirable, as for
example in the production of electronic compo-
nents [2] or in the pharmaceutical industry. Such
manufacturing systems operate with various
degrees of success and are rarely modified [3].
Every alternation within any industrial process is
followed by extensive documenting, testing and
validating of the new system, sometimes even by
certified authorities such as ISO or FDA. More-
over, in the case of modification quite often
production must be stopped entirely which gives
rise to substantial costs for the entire operation [4].

On the other hand there are a number of
research laboratories where various approaches
are constantly the subject of change, development
and testing in order to bring about improvements.
This research work often implements mathemati-
cal and simulation software such as Matlab
(Matrix Laboratory) which enables the solving of
complex mathematical operations, simulations,
optimisations, etc. Their main disadvantage,
however, is that they are substantially limited
in their connectivity to other systems and
applications [5].

Automated processes include many procedures
where large amounts of data could be processed,

examined and optimised: regulation loops, optimal
production structuring, calculation of parameters
at various points, etc. The equipment presently
used in the industry, such as PLC and SCADA,
is unsuitable for performing such data processing.
Instead, Matlab would provide much better results
[6] if only it were possible to feed it with real-time
data from the manufacturing process. By applying
this technology a wide spectrum of possibilities for
testing and analysis emerges which can contribute
to the improvement of the whole process. This
system can also be upgraded to perform a real-
time parallel optimisation procedure. In this
configuration the manufacturing process would
be running independently whereas Matlab would
be performing in parallel with all the necessary
mathematical operations, the results of which
would be fed back into the process. There are
two difficulties in implementing such real-time
connections: the problem of connectivity, and the
difficulty of presenting a sufficient universal solu-
tion that would not require altering our existing
manufacturing systems, especially when new
research requires updating or changing our
existing configurations.

One possible solution would be to use the OPC
(OLE for process control) standard [7] and the
associated technology. This article presents a solu-
tion by showing how to use an OPC client in a
Matlab environment. The former is used to
exchange data as shown in Fig. 1. The OPC is
being increasingly used [1, 8±10] which lends our
solution the required level of universality and
relevance to engineering education.

The following sections contain an outline of
some of the most frequently used techniques in
the real-time mathematical analysis of process
data, a summary of the main properties of the
OPC, and a plan and an implementation of
the connection between Matlab and a PLC. In* Accepted 22 August 2002.

586

Int. J. Engng Ed. Vol. 19, No. 4, pp. 586±592, 2003 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2003 TEMPUS Publications.

addition, there is also performance testing of OPC
and descriptions of two examples for use in the
education process. The final section contains an
analysis and a summary of the main properties of
our approach.

CURRENT SOLUTIONS FOR REAL-TIME
ANALYSIS OF PROCESS DATA

The application of user-defined programmes
in one of the higher programming languages
available with the majority of SCADA solutions
appears, at first sight, to be quite a simple solution
for additional mathematical analysis. Difficulties
only arise when complicated mathematical
operations must be programmed.

One of the more common solutions for feeding
real-time data into Matlab is the use of special PC
I/O modules [11, 12], supported by Matlab, for
example those by Burr-Brown or National Instru-
ments. Apart from product integration, the main
advantage of such configuration is the speed of
data sampling which can be faster than 1 ms per
piece of data. Such systems, however, are purely
laboratory systems and are rarely used in indus-
trial automation because every hardware purchase
is unavoidably assessed by its integration difficul-
ties in the manufacturing process. Every such
interface card must be physically connected to
the existing sensory equipment by a parallel or
serial linkage to the PLC. This presents the
problems already mentioned above, namely the
costs that arise during production standstill, docu-
menting and validating the new system. A similar
solution is offered by using measurement instru-
ments with the GPIB and VISA communication
options which is also supported by Matlab.

In Matlab it is also possible to access serial bus
which enables the construction of APIs (applica-
tion programming interface) which listen to the
traffic on the PLC network and, if necessary,
return some data. The main advantage of this
solution is that it does not directly interfere with
the process itself. Its main disadvantage is that the
construction of such an interface for an industrial
bus is costly in time and the solution is not
universal [6].

The development of suitable solutions leans
more and more in the direction of software

applications which offer data exchange rather
than actual data sampling. These measurements
are continuously performed anyway for the
purposes of PLC and SCADA, which means that
they do not need to be further duplicated. The
simplest data exchange can be implemented
through an ASCII file which is fed by both
SCADA and Matlab. To a limited extent, this
application is universal, although some modifica-
tion of the SCADA programme is necessary, and
the data transfer is also slow.

By using OLE (object linking and embedding) it
is possible to connect Matlab to Microsoft Excel
which is available through the Excel Link toolbox
in Matlab. Excel fully supports DDE (dynamic
data exchange) which is also supported by
SCADA systems and hence represents a solution
that is one of the most universal. However, DDE
never obtains a stronghold in the process control
since it is inefficient and unreliable in transferring
large quantities of data [13]. Another difficulty in
using DDE is that it is necessary to alter the
SCADA system used for sending DDE data,
assuming that DDE is not originally supported
by the SCADA.

The application of OPC (OLE for process
control) for data exchange between Matlab and
PLC represents a logical continuation in the devel-
opment of the above techniques and is described in
detail in the following section.

EXPERIMENTS FOR OPC PERFORMANCE
TESTING

The Matlab mathematical software and the
Simulink package were used in creating test
environment for the experiment, as shown in
Fig. 2. The purpose of the experiment was to
accomplish an online transmission of process
data from a PLC (Fig. 3) into Matlab. In the
majority of industrial environments PLCs and
SCADA systems are the only acceptable solution.
However, the Matlab package with Simulink is a
very powerful and efficient mathematical tool
which offers much better data analysis than any
SCADA system. Therefore, it appears sensible to
include it in the system of process control.

Siemens S7±414 PLC was used in the experi-
ment, although the whole system was also tested
with General Electric, OPTO 22, Honeywell,
Omron and Allen-Bradley PLCs. The aim was to
read and write online process data from the PLC
into Matlab. PLC was connected to a computer
through MPI/RS 232 (Multi Point Interface) with
a maximum transfer rate of 19.2 kbit/s. Even better
results could be achieved by using a Profibus which
would yield significantly higher rates of data
transmission. The data was acquired using the
OPC Server. It was then necessary to create a
communication channel, to select a device where
data could be captured and to define the group of
variables to be monitored. The OPC client for

Fig. 1. The connection between Matlab and PLC using OPC.

OPC-driven Data Exchange between Matlab and PLC-controlled System 587

Matlab was used which enabled communication
between the OPC and Matlab. This is a collection
of additional commands which are available in the
Matlab environment and enable connection to any
OPC server. It is necessary to enter a few
commands into the Matlab command window in

order to configure this package and Fig. 4 contains
an example for a communication with one input
and one output.

When testing the data transfer rate from a
physical device into Matlab, a continuous
sinus signal was used as shown in Fig. 5 where

Fig. 2. A part of our testing environment in Matlab.

Fig. 3. Testing environment for the experiment.

Fig. 4. Matlab commands for communication with one input and one output.

S. Persin et al.588

discreteness as a result of sampling was also notice-
able. All measurements and tests were performed
under the most unfavourable conditions for the
entire system which yielded data on its marginal
capabilities. The server captured data from the
controller, checked its quality and evaluated it
for a change of state. It then forwarded it to the
client which used the same route to return the data
once it was processed. Synchronous reading was
used for the `worst case' scenario, where each piece
of data was changed every time and the same
computer ran a server, two clients, as well as
SCADA and Matlab software. Figure 6 shows
the signals in detail, whereby a is the sinus signal,
b is the server data and c is the client data. The
total transfer time is represented by t3 whereas the
initial or the fixed part of the transfer time is given
by the constant t1� 300 ms which is the shortest
time needed for continuous refreshing of our OPC.
The difference between t1 and the measured time is
then due to the server load which was on average
t2� 11 ms for 11 signals, i.e. 1 s for approximately
1000 data. The results obtained are fully compliant
with the specifications of the OPC standard as
well as with observations made in other experi-
ments performed on industrial SCADA systems [8,
10, 14].

The second part of the test was to establish
communication reliability by rating the relation-
ship between successful and unsuccessful transfers

of data. The testing in a closed loop PLC-Matlab-
PLC was performed by altering `sleep' time in
Matlab, as well as the load on the computer
being changed by executing various processes. It
appeared that the highest load for the system was
image manipulation. The processing of data in
Matlab was executed in fixed time intervals and
the relationship between completed and uncom-
pleted cycles was monitored. If a cycle was incom-
plete and hence a data transfer was unsuccessful, it
was assumed the computer was busy with other
processes and, as a result, it was overloaded. It is
important to emphasise at this point that even
industrial systems for process automation do not
show 100% reliability in communication, and data
transfer failures can occur during their normal
operation. This problem is solved by re-requesting
the data for which transfer has failed (retry).

The test was performed at 20 ms and 60 ms time
intervals between executions of data processing
cycles in Matlab, with various loads on the operat-
ing system (OS), and by processing eleven pieces of
actual process data. The results presented in Table
1 show that with execution intervals of 60 ms and
more the communication reliability achieves an
acceptability rate which would satisfy industrial
environments. The speed of data transfer does not
represent any particular problem since in the
majority of industrial processes the required data
transfer rate from PLC to the computer is in the
range of seconds.

The third part of the experiment was done in the
same way as the second one, with a closed loop
PLC-Matlab-PLC. The total time of data transfer
(t3 in Fig. 6) was measured because the speed of
Matlab was known. It was concluded that its
average was 720 ms which is still within the accep-
table interval for supervisory control of industrial
processes.

In the fourth part of our experiment an alter-
native method was sought for transferring data
into Matlab. There exist a possibility of transfer-
ring the data through the KEPServerEx interface
to Microsoft Excel where Matlab can access it in
real time using the Excel link which is, similarly to
the OPC Client, a group of additional commands
for Matlab. A system as shown in Fig. 7 was
constructed and data transfer rates were measured.

It became apparent that data travels from the
controller to Matlab faster than in the opposite
direction. The reason was in the macro used to
write data to the OPC server or the controller. The
connection was also very susceptible to the

Fig. 5. Signals for testing the data transfer rate.

Fig. 6. Signals in detail.

Table 1. Results from testing the execution of a Matlab
applicationÐthe percentage of incompleted cycles.

Cycle execution in Matlab

20 ms 60 ms

Unloaded OS 0.12% 0.02%
Loaded OS 1.69% 0.61%

OPC-driven Data Exchange between Matlab and PLC-controlled System 589

computer load since data transfer rates ranged
from 600 to 1200 ms. Furthermore, the computer
load had a higher influence on reading data into
Matlab rather than writing it into the PLC.

Finally, the experiment was performed under
conditions for which the proposed solution is the
most suitable: a transfer of data into Matlab for
simulations, optimisations and testing. In all these
processes data had already been acquired by a
SCADA system (see Fig. 2). Thus, a standard
industrial automation system, but now with a
link to Matlab, was used. It is important to
emphasise that in the described solution there is
no time delay between the data in Matlab and that
in the SCADA system since both of them are
connected to the same OPC server. Furthermore
no delays in the operation of the system as a whole
were noticed due to the additional OPC Client.
This option can, therefore, be used for educational,
experimental and research purposes through
having all the advantages of reliable and verified
industrial solutions.

EXAMPLES OF USING OPC IN A
TEACHING PROCESS

The aim of the first example is the implementa-
tion of a gain scheduling and adaptive control
system for use in undergraduate engineering
education. The system was developed to demon-
strate the benefits of using a connection between
Matlab and PLC and this is what senior students

of mechatronics and electrical engineering are
taught in this course.

The process, which is connected to the PLC, is
composed of a flow meter and an electrically-
driven control valve. The overall system is shown
in Fig. 3 and was described in a previous section.
The aim is to control the mass-flow and a PID
algorithm was chosen because it represents simple
classical control which can also be `upgraded'. In
addition, at this point in the educational process,
the students have had significant exposure to this
type of controller and should be relatively comfor-
table in applying it to the mass-flow control prob-
lem. Several tests were performed during the
course of this study. However, for brevity, only
salient results are reported. Students began a study
of the process in detail and observe the nonlinear
steady-state characteristic (Fig. 8) which was
obtained using Matlab and OPC connection.
Then a PID controller was designed in Matlab
and the controller parameters were downloaded
directly into PLC. As shown in Fig. 9 the control
was not equally appropriate over all operating
points which indicates a need for gain scheduling
control. Gain scheduling is then a two-step proce-
dure where firstly, local linear controllers are
designed based on linearisation of the nonlinear
system at several different operating points and
then a global nonlinear controller for the nonlinear
system is obtained by interpolating or scheduling
among the local operations point design. The
combination of PLC, OPC and Matlab was used
again, and Fig. 10 represents a control using gain
scheduling PID. For advanced students there is

Fig. 7. Interfacing Matlab and Excel.

Fig. 8. A nonlinear steady-state characteristic of the process. Fig. 9. Classical PID control.

S. Persin et al.590

also a possibility to design and test an adaptive
PID controller using on-line identification proce-
dure in Matlab. We have to remember that this
process is controlled by PLC and realisation of
identification in PLC-code would be very difficult.

Our second example of using OPC is also suit-
able for mechatronic educational purposes. We
have a six-axis Kuka robot at our faculty. The
whole system is not very open and the students
have found experimenting, evaluating results and
recording the data quite difficult. On the other
hand, there is a vendor-made OPC Kuka Server
available. On-line connection between the robot
and the Matlab could make these things easier.
Furthermore, in Matlab there is also on-line and
off-line analysis available for comparing the
results, optimisation, etc. Moreover, we are
seriously considering the feasibility of adding
some additional sensors (acceleration, force . . .)
and connecting these sensors via different PLCs
and OPC servers onto the same Matlab/Simulink
window. In this case the amount of information
about the whole system would increase signifi-
cantly, and there is also a possibility for OPC to
become a universal platform, as was proposed by
Mintchell [15].

CONCLUSIONS

In this paper a solution was proposed on how to
connect an existing system to the Matlab environ-
ment by using the OPC. Such a connection can be
used for monitoring industrial process data which
can then be used for the analyses and optimisation
of procedures, early fault detection and diagnosis,
further data processing or data documentation.
The proposed solution is particularly suitable for
systems where the industrial process must remain
unchanged, or must not be stopped.

The performance testing system consisted of an
OPC server which captured data from the control-
ler, it checked the data's quality, evaluated it for a
change of state, and then forwarded it to the OPC
client who returned it along the same route once it
was processed. Synchronous reading was used for
the `worst case' scenario, where each piece of data

was changed every time and the same computer
ran a server, two clients, as well as the SCADA and
Matlab software. The measurements performed
show that, due to the fixed dead time, the worst
results are obtained when transferring a single
piece of data only. A rate of approximately 1000
data per second can be expected with large quant-
ities of data. The process data is available to
Matlab virtually at the same time as to the
SCADA system which makes the application suit-
able for industrial environments.

Two examples for use in undergraduate engin-
eering education were also described. The first
example describes a procedure where the OPC
connection between PLC and Matlab was used in
the educational process for teaching control. The
real process was connected to the PLC and
SCADA system which is quite common in indus-
trial practice. The OPC link to the Matlab was
then established and used for several purposes: to
record the nonlinear steady-state characteristic of
the process, to download controller parameters
into PLC and also for On-line identification of
the process. The second example describes a
proposal for how to use the OPC connection
between Matlab and Kuka robot to make
students' workload easier. The use of OPC in
laboratory experiments has generated many posi-
tive results. Student reaction to the experiments
has been very good and interest has been increased.
The students seem to appreciate the `feel' that they
gain from the laboratory experiments, as opposed
to a computer simulation.

The proposed solution demonstrates tech-
nologies that are just gaining widespread support
today in industry and the examples illustrate that
OPC can form a flexible universal data platform
for factory floor automation. The techniques
employed in these laboratory experiments will
likely to be seen by the students in their subsequent
employment after completion of their college
careers. The quality of graduates is improving
and the industry is receiving engineers trained in
solving real-world problems. Our goal is to reduce
the training period for new engineers when they
start work and we believe that our paper is a
contribution to this aim.

Fig. 10. PID control with gain-scheduling.

OPC-driven Data Exchange between Matlab and PLC-controlled System 591

REFERENCES

1. M. Janke, OPC-plug and play integration to legacy systems, Pulp and Paper Industry Technical
Conference, Atlanta, USA, 228±295 (2000)

2. Mitsugu Kishimoto, Optimized operations by extended X-Factor theory including unit hours
concept, IEEE Transactions on Semiconductor Manufacturing, 14(3), 2001.

3. T. G. Kirner Quality requirements for real-time safety-critical systems, Control Engineering
Practice, 5, 1997, pp. 965±973.

4. W. David Coit, Tongdam Jin, Prioritizing System-reliability prediction improvements, IEEE
Transactions on Reliability, 50(1), 2001.

5. Linda Wills et al., An open platform for reconfigurable control, IEEE Control Systems Magazine,
21(3), 2001.

6. J. Rodgerson, Teaching systems and control using Matlab, Int. J. Electical Eng Educ., Manchester
Univ. Press, Manchester, 6, 1992.

7. OPC Foudation, Data Access Automation Interface Standard 2.04, OPC Foundation (2001).
8. Wu Sitao, Using device driver software in SCADA systems, Power Engineering Society Winter

Meeting, Singapore (2000).
9. P. Studebaker. ALL For OneÐThe Top 10 Trends in Process Control. Control Magazine 1, (1998).

10. Al Chisholm, Intelluton Inc. OPC/OLE for Process Control Overview, World Batch Forum (1998).
www.intellution.com/opchub/opc_wbfoverview.asp

11. M. Stianko, Merz. OPC Server according to the Data Access 1.0 and 2.0 Specification: Technical
Descripton, Czech Avzomatizace Magazine, 11 (2000). www.merz-sw.com/articles/opc_da.php3

12. Mohamed Am, et al., Real-time implementation of a robust H-infinity controller for a 2-DOF
magnetic micro levitation positioner, Journal of Dynamic Aystems Measurement and Control
Transactions of the ASME, 12, 1995.

13. Al Chisholm., A Technical Overview of the OPC DataAccess Interfaces, Intellution Inc. (1998).
14. Frank Iwanitz, Jurgen Lange, OLE for Process Control, Huthig Gmbh Heidelberg, Germany

(2001).
15. G. A. Mintchell, OPC integrates the factory floor, Control Engineering, 1, 2001.

Stojan Persin received the B.Sc. degree in electrical engineering from the University of
Maribor, Slovenia, in 1995. From 1995 to 1999, he was with Metronik, Ljubljana, Slovenia
and was a senior engineer for industrial automation systems and afterward a manager at the
branch office. Since December 1999, he has been with Faculty of Electrical Engineering and
Computer Science, Maribor, Slovenia. He is currently working towards a Ph.D. in electrical
engineering. His research interests include industrial automation, building automation,
fault detection and diagnosis and intelligent systems.

Boris Tovornik received the B.Sc. degree in Electrical Engineering, from the University of
Ljubljana, Slovenia and M.Sc. and Ph.D. from University of Maribor, Slovenia in 1984 and
1991, respectively. He was a teacher of Electrical Engineering school, Maribor 1973,
engineer for automation, Ironworks Store 1975, engineer for automation at Drava river
Power plants 1977. Since 1978 he has been with Faculty of Electrical Engineering and
Computer Science, Maribor, Slovenia. He is Head of Laboratory of Process Automation
and holds the rank of Associate Professor. His fields of research interests are computer
control of industrial processes, modelling and process identification, fuzzy control,
intelligent systems and fault detection.

Nenad Muskinja received the B.Sc., M.Sc. and Ph.D. degrees in electrical engineering from
the University of Maribor, Slovenia, in 1988, 1992, and 1997, respectively. Since 1989, he
has been a faculty member in the Department of Electrical Engineering and Computer
Science, University of Maribor, Slovenia, where he currently holds the rank of Assistant
Professor. His research interests include industrial automation, adaptive control, sampled-
data control, fuzzy control, and intelligent systems.

S. Persin et al.592

