
Teaching Embedded Programming
Concepts to Mechanical Engineering
Students*

J. EDWARD CARRYER
Design Division of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
E-mail: carryer@cdr.stanford.edu

While the prerequisites to mechatronics courses often include a programming course, students are
rarely prepared to deal with writing software for an embedded microcontroller. In typical
introductory programming courses students write programs to run on relatively large computers
with no mechanism for direct interaction with the hardware or real world. This paper describes the
elements of Stanford's undergraduate mechatronics courses that are used to introduce students to
programming on an embedded microcontroller directly connected to a simple autonomous mobile
platform. The philosophy behind the approaches taken, the content of the lectures preceding the
laboratory assignment, the assignment itself, the software framework provided as well as the
physical platform are discussed.

INTRODUCTION

REVIEW OF SOFTWARE programs written by
mechanical engineering students in the graduate
mechatronics courses at Stanford indicated that
these students were not well prepared to program
embedded systems. While the prerequisite pro-
gramming courses had been successful at teaching
students the basic syntax and flow control struc-
tures of programming, they were not successful at
teaching students to structure complex programs.
This was especially true when the programs were,
as most embedded programs are, required to
respond to a number of asynchronous inputs
relating to real-world events.

In 1994, the design of a new undergraduate
Mechatronics course prompted the development
of a sequence of lectures and a lab assignment
coupled with a software framework to introduce
event-driven programming constructs to under-
graduate students. The design, evolution and
implementation of these lectures and lab assign-
ment along with the supporting infrastructure are
the topic of this paper.

Background on the course structure
The undergraduate course, `Introduction to

Mechatronics' that is based on the approach
described here was offered for the first time in
the spring of 1994. It is a ten week long course that
derives its hands-on laboratory orientation from
the experiences of the graduate mechatronics
course sequence that has been offered since 1978.
The course consists of four hours of formal
lectures a week, four laboratory assignments and

a final four-week long open-ended team design
project. The material presented here occupies a
week's worth of lectures and one of the laboratory
assignments.

The approach that has been taken to allow
undergraduates to gain experience in systems inte-
gration is to give them tools that enable them to
work at a relatively high level of abstraction. This
has been facilitated by the development of both
software and hardware function modules. By using
these higher level tools, the students are able to
concentrate on solving the larger problem rather
than spending all of their time learning the details
necessary to design every sub-system from scratch.
This is consistent with the trends in the semi-
conductor and software industries, which have
focused on supplying larger scale problem
solutions and emphasizing re-usable software.

The primary goal for the lectures described in
this paper is to introduce students to the concepts
associated with structuring software for systems
that must interact with the real world. The labora-
tory exercise provides them with an experience in
which they can put these ideas into practice. A
secondary goal is to motivate students for the
balance of the course by providing them with an
exercise that will not only be pedagogically sound
but also feel like it is fun.

HOW THE MATERIAL IS INTRODUCED

The lecture content
The lecture material to introduce students to the

embedded programming environment is delivered
in two 110-minute lectures prior to the laboratory
assignment. The material begins with a review of* Accepted 5 June 2003.

581

Int. J. Engng Ed. Vol. 19, No. 4, pp. 581±585, 2003 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2003 TEMPUS Publications.

the relationships between binary & hexadecimal
notation. This is used as the introduction to the C
bitwise operators and how to use them to isolate
bits in a byte for testing and manipulation. This is
a technique that is not typically taught in the
introductory programming courses, but is essential
in embedded applications where individual bits on
input and output ports must be tested and manipu-
lated. The lecture continues with an introduction
to microcomputers, and the different types of
input/output devices on typical microcontrollers.
The following lecture focuses on software struc-
tures for event-driven programming. This includes
the definition of an event, the concept of non-
blocking code and an introduction to state
machines as a design and implementation tool
(Auslander et al., 1995). The state machine struc-
ture is introduced as a tool for structuring code
and also as a tool for debugging at the design
stage. This lecture is a somewhat atypical lecture in
that it includes a group exercise.

In the group exercise, the class is broken up into
small groups to work on a state machine design
problem. The problem is to design the controller
for a hypothetical microwave oven. The students
are given a drawing of the controls of the oven and
a description the desired operation. They are asked
to develop a state diagram to describe the details of
the operation of the oven. The description that
they are given is intentionally vague and incom-
plete. As the questions arise about how a particular
feature should work, or what is meant by a portion
of the description, the instructor uses the oppor-
tunity to not only answer the question but to
emphasize that the process of creating the diagram
is helping to bring out the parts of the specification
that are either not clearly stated or omitted
completely. The students take about 15 minutes
in the groups to work up their state machine
designs.

After the groups have worked up their designs,
they are asked to capture them on a transparency.
At this point several groups are asked to volunteer
to share their designs for review by the class. The
purposes of this part of the exercise are several.
First, this is a way to rapidly assess if the students
have grasped the mechanics of creating a state
diagram and capturing the required information.
By doing this immediately after the approach has
been introduced, immediate feedback can be given
before misconceptions have had a chance to get
established. The second thing provided by present-
ing several groups' solutions is to emphasize that
there is no one unique design that describes the
operation of something even as simple as a micro-
wave oven. The third purpose of the exercise is to
graphically demonstrate the use of the state
diagram as a debugging tool at design-time. The
instructor and members of the class study the
proposed design and assess whether or not
the design captures the requirements laid out in
the description. This generally leads to questions
for the group about how the design would deal

with particular aspects of the specifications. In
every offering of the course at least one of the
student-presented designs has had a fundamental
flaw in the design. This offers the opportunity to
demonstrate in a very convincing way how taking
the time to design the structure of the software can
help to find errors long before any code has been
written.

The final portion of this lecture is a code review
of a simple application written using the concepts
discussed in the lecture. The code review is used as
an opportunity to emphasize some of the signifi-
cant issues that students need to deal with in
designing an event-driven system. The first of
these is the definition of an event and how it differs
from a state.

When writing their first event-driven appli-
cation, many students write event-checking routines
that, in actuality, test the state of a sensor. The
result is that the event checker reports a continuos
stream of `events'. A true event must defined as a
transition in the state of an input. The examples of
how to write an event checker demonstrate the use
of static local variables to maintain the history
necessary to detect a transition.

The other issue that is demonstrated is using
hysterisis to deal with analog inputs. If an event is
defined as an analog input value crossing some
specified threshold value then multiple `events' will
be generated when the analog value switches
across the threshold due to noise in the system. It
is rarely desirable to treat each of these transitions
as a separate event. To avoid this `event chatter'
the students are shown how to implement
hysterisis around the threshold.

The students leave this lecture with a homework
assignment that will be the first step in working the
laboratory assignment.

The laboratory assignment
The concepts introduced in the lectures and

homework assignment are solidified in a labora-
tory assignment. In this assignment the students
use the programming concepts and course-
supplied software tools to program an autono-
mous vehicle. The vehicle is referred to as a
`cockroach' for the behavior that is programmed.
The vehicle can drive forward and backward, turn
left and right, sense bumping into objects at each
corner and sense the ambient light level. The
students are asked, as a minimum, to program a
behavior that mimics its namesake: drive around in
the light, deal with obstacles and stop when dark-
ness is found. The exercise is designed to not only
give the students a chance to employ the concepts
from lecture but also to give them their first
exposure to programming that produces an
output that is something more than dots on a
video display. The exercise was designed to be
motivational and is positioned at the beginning
of the quarter to get students `hooked' on the
material.

The students are given ten days from the time

J. Carryer582

the assignment is handed out until the results will
be evaluated. Each student will design and imple-
ment a solution to the assignment, though the
students are required to work in groups to review
their individual state machine designs before
implementation. The culmination of this assign-
ment is a mini-celebration where the whole class
gets to see the behaviors implemented by their
classmates.

THE INFRASTRUCTURE

Software tools and evolution
To allow students to quickly apply the structural

concepts that have been presented in the lectures
they are provided with a set of software libraries
that ease implementation. These libraries provide
for an event-driven programming framework,
analog to digital (A/D) converter library, motor
drive and timing functions.

The `events and services' programming library
supports the event-driven paradigm by providing a
round-robin scheduler for calling event-checking
routines and an automated method for calling an
associated response, or `service' routine. To use the
library, the programmer makes a single call to a
master initialization routine followed by any
number of calls to a function that associates
event-checking functions and response functions.
The typical main() takes a form like that shown in
the listing below:

SES_Init(SES_ROUND_ROBIN, SES_NO_UPDATE);

SES_Register(getKey,putKey);

SES_Register(TestForLightOn,RespForLightOn);

SES_Register(TestForLightOff,RespForLightOff);

SES_Register(TimeOut, TimeOutResp);

while (1)

SES_HandleEvents();

Using this library, the students focus their
programming efforts on identifying what the rele-
vant events are, how they should be tested for and
what to do in response to those events. The
SES_HandleEvents() function efficiently
handles the process of calling the event checkers
to test for events and then calling the associated
service function if the event checker reports that an
event occurred.

The A/D converter interface library is quite
simple consisting of only two functions:
AD_Init() and AD_Read(). It is worth
noting that the greater flexibility of a larger A/D
library provided later in the quarter is rarely used
by the students.

The motor drive library provides control over
the pulse width modulated (PWM) outputs that
drive and steer the platform. The students were
provided with a set of functions to separately
control the left and right drive motors on the
third generation platform. The underlying PWM
functions are implemented using interrupt driven

routines and the 68HC11 timer output compare
system. As such, their operation is transparent to
the students.

The last significant library provided is an
elapsed timer library. The timer library implements
eight virtual timers. Each of these timers can be
started while specifying a time-out period and
tested for expiration. This makes it easy for
students to start a timer and use the ability to
test for expiration as the event checker to create a
new event when the timer expires. The result of
adding this library has been a much greater use of
time-based behavior in the code written for this
lab.

Electronics platform
The students implement their software on an

embedded controller board based on the Motorola
MC68HC11. This is an 8-bit processor that has
sufficient computing power to facilitate program-
ming in the C language. Programming in a high
level language is an essential feature for a one-
quarter course and C is the de-facto standard
implementation language for embedded systems.
For this and all other programming in the course,
the students work in an integrated development
environment running on a PC platform (Man,
1999).

The latest generation of `Cockroaches' is based
on a commercial single board computer, the
MicroCore-11 (Barnes, 1999). The version of the
MicroCore-11 used provides 8K bytes of
EEPROM storage and 32K bytes of RAM. The
EEPROM is programmed with a customized
version of the BUFFALO debugging monitor.
Student programs are downloaded into the 32K
of RAM, providing a large program space and
quick downloading of code.

To provide the circuits necessary to drive the
motors, as well as the interface to the light and
mechanical sensors on the vehicle, a supplemental
interface board was designed and built. The
contents of this board are more fully discussed in
the section on the mechanical platform.

Mechanical platform
The mechanical platform for the `cockroach' is

currently in the third generation. While the first
two generations used commercial radio control
(RC) model cars as the vehicle base, the platform
was recently redesigned to make it more robust
and base it on more easily available components.
One of the goals for this third generation design
(Fig. 1) was that it be reproducible at other
institutions.

To the greatest degree possible it was based on
easily available commercial parts. To this end, the
RC car platform was abandoned for a simple
acrylic platform driven by DC gear-motors and
riding on roller-blade wheels. The platform is in
two parts. The inner chassis carries the drive
motors and a standard 8.4 V RC battery pack on
the bottom side (Fig. 2), and the single board

Teaching Embedded Programming Concepts to Mechanical Engineering Students 583

Fig. 1.

Fig. 2.

J. Carryer584

computer (SBC) and a custom circuit board that
provides the communications connection, motor
driver and sensor electronics on the top. The light
sensor uses the same three-photo-resistor config-
uration that was introduced in the second genera-
tion vehicles. The bump sensors in the new vehicle
are based on Hall-effect switches and magnets
rather than the optical system used in the second-
generation vehicle.

The bump sensor system used in this vehicle is a
strong departure from the prior generations. To
avoid problems with jamming, the bumpers are
minimally constrained. The outer frame that is the
bumper is free to move in-plane around the
chassis. It is held in place by four springs that
determine its static position. Therefore, the
bumper structure is free to move in response to
contact at any point around the perimeter. This
allows it to respond to contact with fixed objects
that are more or less in the direction of travel as
well as contact with other vehicles that may come
from any direction. The arrangement has proved
to be largely immune to jamming. To detect
motion of the bumper, four pieces of flexible
magnet strip are glued in place near the four
Hall-effect sensors at the corners of the top circuit
board. A complete documentation package for the
vehicle, its electronics and the software libraries is
available at http://spdl.stanford.edu/Cockroach/

SUMMARY OF EXPERIENCES

The laboratory assignment presented here has
been a part of ME118 since its initial offering in
the spring of 1994. Since that time, the course has
been offered more than a dozen more times, each
including a version of the assignment. The same
basic approach has also recently been applied to a
new mechatronics course targeted to EE and CS
majors.

From a pedagogical standpoint, the assignment
has been very successful. The students report
finding the experience of programming the
mobile platforms to be very motivational and
just plain fun. This is despite the fact that they
generally spend a great deal of time getting their
programs running. As the lectures and supporting
libraries have grown to better support the event-
driven paradigm, the use of this paradigm for the
students' later projects has grown.

AcknowledgmentsÐTom Kenny has co-taught the ME course
with me since its first offering and contributed many good ideas
to its development. More recently, Matt Ohline has come on-
board as a lecturer with the course and coordinated the design
and build of the `roaches'. Jose Aguilar did the conceptual and
detailed mechanical design for the third generation vehicles.
Matt Ohline designed the top circuit board. Finally, the initial
development of this course at Stanford was funded through the
Synthesis Coalition of the National Science Foundation.

REFERENCES

1. D. M. Auslander, A. Huang, M. Lemkin, A design and implementation methodology for real time
control of mechanical systems, Mechatronics, 5(7), 1995, pp. 811±832.

2. C. Barnes, Using Your MicroCore-11, Technological Arts, Toronto, Ontario, Canada M5R 1E9,
(1999)

3. R. F. Mann, Imagecraft Compiler Users Manual, Imagecraft, Palo Alto, CA 94303 (1999).

J. Edward Carryer began his academic career by graduating from the Illinois Institute of
Technology as a member of the first class of the Education and Experience in Engineering
program (E cubed). After a short stint designing water treatment systems for power plants,
he returned to school at the University of Wisconsin, Madison to earn a masters degree in
bio-medical engineering. That was followed by 8 years in the automotive industry, working
on turbo-charged engines. In 1992, he earned his Ph.D. in Mechanical Engineering from
Stanford University. Since that time he has been teaching and developing mechatronics
curriculum for both graduate and undergraduate students.

Teaching Embedded Programming Concepts to Mechanical Engineering Students 585

