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Isotopic Engineering (IE) refers to use of the diversity of stable isotopes of chemical elements for a
range of technological applications, including such areas as microelectronics, optoelectronics and
quantum informatics. In a more extended version, it also includes technological applications of
radioactive isotopes. The author argues that the incorporation of IE in university courses on
electronics, informatics and general engineering provides a convenient and unifying tool for
introductory exposure of students to a broad range of novel scientific and engineering concepts
and ideas. Among them are quantum well structures and superlattices, random number generators,
quantum computing, as well as ideas of chaos theory and nanoscale information storage. While
most of these topics are scientifically quite involved and educationally challenging, their presenta-
tion in the context of isotopic examples allows for some reduction of the ‘threshold of difficulty’ for
a typical engineering student. For the in-depth understanding of most of these topics the educational
background requires only a base knowledge at the level of introductory courses in physics,
chemistry and mathematics.

INTRODUCTION

MOST CHEMICAL elements exist in nature as
mixtures of several stable isotopes. A number of
major areas of science and technology takes
advantage of this fact. Various effects stemming
from isotopic diversity serve as key ingredients for
a broad range of fundamental research directions
as well as providing a basis for numerous applica-
tions. Some of them were discussed recently under
the umbrella term of Isotopic Engineering (IE)
[1-5]. While a broad variety of topics and numer-
ous applications were suggested and discussed in
this context [1-26], IE as such is still an incipient
research and technological direction rather than a
full-fledged area of a massive effort. At the same
time, its potential for future electronic applications
shows promise along several major lines.

The fact that about % of all chemical elements are
random blends of several stable isotopes is, of
course, well known. The notion of isotopes is
traditionally explained even in the most intro-
ductory courses of chemistry and physics. Many,
seemingly distant, areas of science and technology
are primarily based on this fact. For example,
there are isotope separation technologies (several
versions), nuclear industry, isotope labelling in
biology, medical applications of radioactive
isotopes, isotope geology [18], and isotope ecology
[17]. In physics and chemistry isotope effects are
important in such areas as chemical kinetics [13],
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diffusion studies, superconductivity (including
recent developments in high temperature super-
conducting materials), structural phase transitions,
impurity spectroscopy, etc. Such methodologies
as Nuclear Magnetic Resonance (NMR) or
Maossbauer spectroscopy make use of isotopic
differences in nuclear magnetic moments.

It is quite curious, however, that in spite the
common awareness about the existence of isotopes
among scientists, engineers, and educated public in
general, there is almost a complete lack of appre-
ciation of the fact that isotopic diversity is a unique
phenomenon in its own rights. One may wonder if
it is possible to delineate a common thread (or
threads) for various manifestations of isotopic
diversity. Can we talk of isotopic diversity (or
‘isotopicity’, to be brief, [4]) as a kind of a singular
phenomenon of Nature in its own right? If such a
unifying view can be established, what are other
possible implications that could be drawn from
such an interpretation? And, furthermore, can
such a unifying prospective lead to other gainful
links between seemingly unrelated areas of
research and applications?

The conceptual simplicity of 1E and isotopicity
makes it a convenient educational tool which
allows to relate fundamental aspects with numer-
ous engineering applications. One of the simplest
examples, perhaps, is isotopic fibre optics. It takes
advantage of the fact that crystalline structures
made of different isotopes have slightly different
refractive indices and hence provide a possibility
for confinement of light [4, 6]. The present paper
emphasizes the educational value of presenting
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isotopicity and IE from unifying positions. The
author does not pretend to give here a final and
exhaustive description of all possible implications
of IE. Nevertheless, examples discussed below are
aimed to stimulate a unifying vision of isotopicity
in terms of its potential usefulness for discussing
various facets of microelectronics and informatics.
This approach can be tried at both undergraduate
and graduate level courses on physical foundations
of electronics and informatics. As to the personal
experience of this author, some facets of IE
were used in a variety of courses taught at the
Department of Engineering Physics (electricity and
magnetism, thermodynamics and solid-state elec-
tronics), although no special courses on IE were
offered to this point. The offering of such a course
could, in the opinion of this author, be implemen-
ted relatively straightforwardly upon the perceived
curriculum need.

STABLE ISOTOPICITY

When we hear the word ‘isotope’ our most
common reaction is to think of radioactivity. Use
of radioactive isotopes in nuclear energy technol-
ogy, in medicine and in several other areas of
human activity (e.g., carbon-14 dating) is so well
known, that in the public perception it tends to
obfuscate even the more basic fact of Nature: that
the majority of chemical elements are mixtures of
several stable isotopes.

Chemical elements have various numbers of
naturally occurring stable isotopes. If Z is the
place number of an element in the Periodical
Table, the range of stable isotopes runs from
hydrogen (Z=1) to bismuth (Z=283). Some
elements have only one stable isotope, while their
immediate neighbours (next Z) may have several.
The two most numerous groups are mono-isotopic
and di-isotopic elements. They are almost equal in
numbers (20 and 22 elements, respectively) and
together encompass about half of all stable
elements. It is a some kind of curiosity of Nature
that 2 elements ‘inside’ the stable range of Z do not
have stable isotopes at all, namely, technetium
(Z=43) and promethium (Z=061). While the
author is not aware of any universally accepted
explanation for the existence of these two ‘gaps’, it
is interesting to note that both the above values of
Z (43, 61) are prime numbers. Taking into account
the frequently emphasized role of prime numbers
in various natural phenomena (see, for example,
[27]), one may refer (metaphorically, perhaps) to
some peculiar numerological game that Nature
plays in this case.

Groups of elements with 3, 4, 5, and 6 stable
isotopes are almost equal in numbers. The ‘cham-
pion’ of polyisotopicity is tin (Z = 50) which has 10
stable isotopes. Altogether, there are 283 stable
isotopes for 81 stable elements—an average of
about 3.5 stable isotopes per element.

Apart from some isotopic-sensitive studies (as,
for instance, in the above mentioned NMR
method), common chemistry in most cases ignores
isotopic differences in defining molecular specifi-
city. Chemical properties of, say, benzene (CsHyg)
are, by and large, the same when the Cg-ring
contains only '’C atoms, or only '*C atoms, or
any combination of these two isotopes. However,
due to their mass differences isotopes are classi-
cally distinguishable particles. This leads to inter-
esting statistical implications and in terms of
educational efficiency allows for a relatively
elementary and vivid discussion of such complex
issues as Gibbs’ paradox of identicality in statis-
tical physics and the issue of quantum identity of
particles [28].

ISOTOPIC RANDOMNESS

Classical distinguishability of isotopes can be
described within the concept of isotopic freedom
which is applicable to any molecular or crystalline
structure which involves at least one polyisotopic
element. In order to illustrate this concept let us
consider, for example, an ‘ideal’ diamond crystal.
Since natural carbon is 99% to 1% mixture of
stable isotopes '*C and '>C, the crystal lattice of
diamonds, even in the absence of ‘common’ defects
(vacancies, impurities, dislocations, etc.), still
possesses an inherent disorder due to random
locations of two different isotopes at regular
lattice sites. As classically distinguishable parti-
cles, these isotopes can form a tremendous
number of positionally different combinations.
Strictly speaking, such isotopic randomness
violates the translational invariance of crystal. It
is also obvious that no two microcrystals of the
same size and shape are fully equivalent—each of
them has its own pattern of isotope distribution
(‘isotopic individuality’).

It is important to stress that the above
mentioned arbitrariness of a particular micro-
scopic isotopic arrangement in any segment of a
crystal lattice is realized within the framework of
rigid constrains of chemically-specific structure.
One may say that isotopic freedom, with its
enormous number of possible spacial combina-
tions, can be exercised ‘inside’ a fully deterministic
(in terms of chemical bondings) realm of a given
lattice structure. Thus, isotopicity provides an
interesting dichotomy between categories of deter-
minicity and freedom at the level of atomic struc-
tures. This can be seen as a complimentary aspect to
the ‘usual’ quantum-mechanical indeterminacy
based on a probabilistic nature of the quantum
dynamics [24]. However, isotopic fluctuations
differ from ordinary compositional or impurity
fluctuations in their ‘built-in’ character, that is,
they occur within the chemically-ordered structures.

Unless crystals are composed exclusively of
monoisotopic elements, they have a ‘built-in’
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isotopic diversity. Most materials which are impor-
tant for microelectronics have isotopic diversity.
Exceptions to this are relatively rare (e.g., AlAs,
where both Al and As have only one stable isotope
each). Most chemical compositions forming
natural or synthetic crystals have isotopic diver-
sity. Consequently, each next sample of the
chemically-identical crystal (e.g., each microregion
of a silicon chip) has its own individual pattern of
microscopic isotope distribution (‘personal iso-
topic signature’). Nevertheless, isotopicity gener-
ally has relatively little appreciation, even in the
domain of phonon physics and acoustic devices
where the mass-dependent isotope effects could be
quite noticeable. Since vibrational time scales are
directly mass-sensitive (usually depending on mass
M as 1/SQR(M), isotope shifts of phonon frequen-
cies should be seen as first-order effects [1, 22].

Probably, the best known effect of isotopic
randomness is the modification of lattice heat
conductivity in a form of additional isotope scat-
tering [6-8]. The latter means that local mass
variations due to different atomic masses of
isotopes produce additional scattering of phonons.
This reduces heat conductivity of isotopically-
random crystals in comparison with a monoiso-
topic (isotopically purified) crystal of the same
chemical identity. Difference in heat conductivity
between isotopically pure and isotopically blended
crystals could reach a factor of 2 to 3. Less
pronounced, but still observable, are variations in
electrical conductivity in metals and semiconduc-
tors due to differences in scattering cross-sections
of charge carriers on different isotopes. The addi-
tional electronic scattering factor can be inter-
preted as a Rayleigh-type scattering on isotopic
fluctuations whose size is comparable with an
electronic wavelength.

In favourable cases (e.g., narrow electron bands,
strong electron-phonon coupling) isotopic disorder
can induce Anderson localization of electrons
and/or holes in semiconductors [1, 19]. Anderson
localization is purely quantum phenomenon when
random fluctuations of electrostatic potential lead
to a formation of discrete (bound) quantum states.
This effect is closely related to semiconductor-
insulator transitions which are used for fast elec-
tronic switches (Mott-Anderson transitions). Using
isotopic randomness as an example, allows for an
easy introduction of undergraduate students to the
understanding of this electronically-important (but
conceptually challenging) physical effect.

Similarly, isotopic disorder could be a possible
reason for the presence of phonon-assisted
hopping conductivity in some electronically impor-
tant materials [1]. Hopping conductivity means a
change of mode of charge propagation through a
semiconductor from a diffusion-like continuous
motion to discontinuous jumps of electrons or
holes from one localized state to another. Because
of the variety of isotopic surroundings of the
otherwise identical lattice sites, isotopic diversity
can lead to a conversion of these sites to trapping

levels for electrons or holes. Thus, a whole range of
quantum concepts (discrete and continuum states,
localization, conductor-insulator transitions, etc)
can be illustrated on the basis of the isotopicity
model.

A special avenue of IE is the possibility of
constructing ‘physical’ random number generators
[10, 11]. Typically, generation of random numbers
in computers is based on mathematical procedures
of truncation of various transcendental functions.
Random numbers which are produced this way
are, in fact, pseudo-random: due to a deterministic
character of computer codes the strings of random
numbers is repeated every time the same seed
numbers are used. Mixture of stable isotopes,
provided they can be probed at the atomic level
[10], is free from this limitation. Counting different
isotopes of the same chemical element (say,
carbon) as digital ‘0’ and ‘1’ a non-repeatable
genuinely random binary string can be generated.
This example of ISENG can, therefore, be used to
expose students to subtle aspects of randomness and
pseudo-randomness.

An alternative version of isotopic random
number generators uses the physical randomness
in the decay of individual radioactive isotopes.
This randomness is a direct manifestation of the
fundamental laws of quantum physics. Thus, using
it as an educational example helps students to
relate fundamentals of quantum physics (which
some Students may see as quite remote from
practice) to a straightforward and important
technical application of random number generation.

INFORMATIONAL AND MEMORY
ASPECTS OF ISOTOPICITY

It is a common assumption that the distribution
of different stable isotopes of the same chemical
element over the corresponding lattice sites in
crystalline structures is always perfectly random.
This assumption is equivalent to a statement of the
lack of any noticeable positional correlation in the
distribution of isotopes. There are some general
reasons to doubt the universal validity of this
assumption. On the contrary, one can expect
that there is (at least in some crystal-forming
situations) a non-vanishing positional correlation
for different isotopes which may turn up in atomic-
scale analysis [15, 18, 23].

Likewise, isotopes can potentially store digital
information at an atomic scale [2]. Isotopically
different regions within crystalline matrices can
be assigned informational ‘zero’ or ‘one’. Such
informational loads can be carried by monoiso-
topic micro islands or even by single atoms within
a bulk crystalline or thin film structure. This
amounts to a very high density of information
storage of up to 10E20 to 10E23 bits per cubic
cm. Such possibility is based on the fact that
isotopic information storage (unlike most other
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information storage techniques) allows an infor-
mation bit be carried by a single atom. We note in
this respect that the information content of the
Library of Congress (estimate: 10E8 volumes of
1000 pages each, each with generous allowance of
10ES bits per page—the latter to account for the
digitized photographs) is ‘only’ about 10E16 bits.
In principle, with isotopic information storage, all
the information accumulated by the whole civiliza-
tion (about 10E21 bits) can be stored in a volume
of less than one cubic centimetre (!).

As such atomic-scale isotopic information
storage forms (a somewhat specific) subdivision
of nanotechnology. Because of its extremely high
information packing density it opens the potential
possibility of creating a universal library of ‘all
books’. The latter is something which was foreseen
in a speculative vein by several earlier authors,
such as, for example, a well-known essay ‘The
Library of Babel’ (1941) by Jorge Luis Borges
(1899-1986). At this time, miniaturization of
spatial scale of information storage (and speed of
information processing) still follow well-known
Moore’s law (doubling every 18 months). Storage
at the single atomic level (e.g., by specific isotopes)
gives, therefore, a natural stop-point for Moore’s
law (at least as far as atomic physics is concerned).
It should be noted, however, that because of
enormously high packing density which isotopic
information storage could potentially provide, an
eventual atomic-scale limit to the Moore’s law
(even if it will be reached), will, for all practical
purposes, be of little or no of real significance for
the future information systems.

Further to that, in isotopically mixed lattices
there could be a number of similarly structured
isotopic microcomplexes. This might lead to
low-frequency vibrational resonance effects and
account for memory storage phenomena. For
example, holographic-type memory effects in
quartz crystals may be related to complexes invol-
ving minority isotopes of oxygen and/or silicon
(e.g., 7O and *°Si isotopes) in a manner describ-
able as a formation of isotopic neural networks,
similar to neural networks in spin glasses [4, 26].

ISOTOPIC DIVERSITY AS A METAPHOR
OF CHAOLOGY

Most compounds and crystals are, in principle,
available in different isotopic versions. Their
physical characteristics are slightly different. This
fact provides a basis for representing isotopic
variations as points in a multidimensional con-
figuration space. Each axis corresponds to a
given physical parameter. These points form
‘isotopic paths’ resembling sequences of points
which could be stroboscopically sampled along
the phase trajectories of strange attractors in
chaotic dynamics [20, 29, 30].

Quite often isotopic replacements produce

noticeable variations of physical parameters, e.g.,
temperatures of structural phase transitions of
different isotopic versions of the same crystal can
differ by as much as several degrees centigrade—a
clearly ‘macroscopic’ variation even in terms of
crude measurement standards [9].

The multiplicity of isotopic combinations and
physical parameters available for measurements
leads to a wide range of possible topological
representations of data. The physical properties
of isotopically different crystal lattices are not
exactly the same. Therefore, the relative isotopic
variations of different physical parameters can be
represented by corresponding isotopic points in
multidimensional configurational spaces [20]. The
set of all isotopic points in a chosen space forms an
isotopic cluster. The line connecting all isotopic
points of a given cluster one-by-one, according to a
gradually increasing value of some physical ‘label’,
forms an isotopic trajectory.

As an example, consider crystalline SnTe which
has as many as 80 isotopic versions (10 isotopes for
Sn and 8 for Te, respectively). Let us assume that
some set of physical parameters is experimentally
known (measured) for all N = 80 isotopic versions
of this crystal. Let D be a number of measured
physical parameters for a given run of measure-
ments. This number is, of course, the same as the
dimensionality of a given configurational space.
Each of the axis of this parametric space repre-
sents a given physical parameter. For example, if
D=3 one can take as physical parameters the
speed of sound, the melting temperature, and the
refractive index of the corresponding isotopically
pure crystal (in this example, 1 out of 80 possible
versions).

If all such parameters are measured at the
precisely specified and fixed conditions, there is a
plethora of other choices of measurable physical
parameters. In addition, D itself can be any
positive integer. The set of all N points represent-
ing each of N participating isotopic combinations
(isotopic cluster) forms a ‘swarm’ in a corres-
ponding configurational space. It is important to
note that the same set of N isotopic points can lead
to quite different shapes and appearances of these
swarms if different combinations of physical para-
meters are used for plotting. Due to the wealth of
accumulated data on various isotopic effects this
opens an opportunity for numerous tutorial projects
and assignments when students can use multidimen-
sional plotting programs to attain a conceptual
grasp of parametric spaces and gain a deeper insight
into underlying physical effects.

The next step is to extract some physical infor-
mation from a set of measurements for a complete
isotopic ‘collection’ of a given compound or a
crystal. For a particular experimental run one
can look for all types of meaningful correlations
between various subsets of physical parameters
and labels designating various isotopic combina-
tions as some functions of atomic numbers of
participating isotopes.
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ISOTOPIC COMBINATORICS AND
ISOTOPIC STRANGE ATTRACTORS

In a polyelemental compound, isotopic replace-
ments for each element can be done independently
of all other elements. Therefore, for each indivi-
dual compound, isotopicity can be seen as a
discrete (stepwise) multidimensional variable
having the dimensionality equal to the total
number of polyisotopic elements in a given
compound (F). For the above example of SnTe
the so-defined isotopic dimensionality, F=2.
There is, of course, no special limitation on a
number of different physical characteristics (D)
which can, in principle, be measured for all iso-
topically distinguishable compositions. This leads
to a rich variety of possible isotopic spaces and
isotopic trajectories which can be studied for
compounds with isotopic variability.

For F=1 isotopic points can be connected
according to consecutive values of atomic
number of stable isotopes of a given element. For
substances with isotopic dimensionality F > 1, the
order in which N points are to be connected is less
obvious and may not be unique. One can use, for
example, the following simple recipe of consecutive
numbering of all N isotopic points. List all poly-
isotopic elements of a given compound in order of
their atomic number Z. Within each Z count all
stable isotopes according to the increase of their
atomic weight A. The shape, length and the topol-
ogy of isotopic trajectory will, of course, depend
on the enumerating rule used in each given case.

One route of extracting non-trivial physical
information from isotopic trajectories is to apply
the same protocols as commonly used in the theory
of chaos. In a frequently quoted experiment with
the leaky faucet ([29], p. 262) consecutive time
moments of the falling drips exhibit a subtle
structure having informational interpretation in
terms of strange attractors. On the other hand,
there are indications that isotopic effects may lead
to non-linear shifts of physical parameters with
atomic mass. In this case a natural way to analyse
isotopic points is to calculate the correlation sum
according to the method of Grassberger and
Procaccia [30]. Power approximation for the corre-
lation sum gives an estimate of power (n) which, in
analogy of the theory of chaos, can be called the
dimensionality of an isotopic attractor.

Another route of informational assessment of
isotopic attractors (which could be especially
useful for cases when the number of collected
isotopic points is small) can be based on exploiting
more specific connections between chaology and
information theory (e.g., by relating isotopic
points to informational Shannon’s entropy).
Due to a limited number of isotopic points and
(generally) high level of experimental uncertainty,
methods based on Bayesian version of probability
theory and the Maximum Entropy principle of
Edwin Jaynes [31] can be of special relevance in
this context.

There could be numerous ramifications of the
above method when it is applied to cases with
various degrees of isotopic diversity, varying rela-
tive magnitude of isotopic effects for different
compounds, attainable precision of measurements,
etc. The best candidates for such studies are likely
to be found among materials with unusually strong
isotopic effects [9]. It is quite possible that vari-
ously chosen subsets of the whole ‘isotopic collec-
tion’ of a given compound or a crystal will reveal
different resulting values of the dimensionality of
isotopic attractor (n) or a different degree of
quality of fitting to a power dependence.

Even for cases with relatively small degrees of
isotopic diversity (say, for N =10) the number of
possible subsets could be quite significant to
allow the extraction of reliable conclusions
about the degree the robustness of the dimension-
ality of isotopic attractor. It should be remem-
bered, however, that isotopic swarms with a finite
number N of points can only tentatively imitate
the behaviour of the ‘genuine’ strange attractors of
chaology for which N tends to infinity. None-
theless, prime concepts of chaology can be intro-
duced on vivid and chemically Iucid examples of
isotopically-different compounds.

ISOTOPIC TRAJECTORIES AND
‘DATA MINING’

There is a priori no known ‘law’ which requires
that mutual dependances of physical parameters
represented by isotopic trajectories should be
smooth or even monotonous functions. For
instance, in heteroatomic crystal lattices, especially
those with strong ionicity of the lattice, the effect
of atomic weights on features of phonon spectra
can be quite peculiar. The resulting isotopic trajec-
tory can, generally speaking, be a smooth feature-
less curve or, contrary to that, it may have some
peculiar features, like cusps and other singularities.

As a possible tutorial example, we can put
forward the following indirect argument in
favour of a likely expectancy of non-trivial possi-
bilities of isotopic mappings. Taking the above
example of SnTe, let us compare the following
3 of its 80 isotopic combinations: '**Sn'*Te,
1249n"2%Te, and '**Sn'**Te. In the first sample Sn
is lighter than Te, in the second Sn is heavier than
Te, and in the third they have the same weight.
Because SnTe is a partially ionic material, it is
highly unlikely that the vibrational properties of all
three samples are so close that their differences can
not be detected by the available methods of vibra-
tional spectroscopy. On the contrary, it is more
likely that the third, equal-mass (‘resonance’)
combination will show some distinct features in
phonon spectra in comparison with two other
combinations with unequal masses of Sn and Te.
Such a contrast may be due to a different position-
ing (symmetric for the third and asymmetric for
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the first and second combinations) of the centre of
mass of a unit cell within the unit cell itself.

The development of an isotopic mapping meth-
odology can lead to even more tricky results. For
instance, the situation could turn out to be espe-
cially interesting if labelling of isotopic points
according to a yet another physical parameter
will result in a different isotopic trajectory for the
same N isotopic points. Suppose we choose the
fourth parameter, e.g., the hardness or magnetic
permeability and connect isotopic points according
to the consecutive values of this new parameter.
This may result in the same numbering of points
and it would be a kind of a trivial case. However, it
may also happen that a new labelling, according
to consecutive values of a new parameter, will
result in a different order of connecting same N
isotopic points. Wealth of non-trivial physical
information can be obtained along this route of
experimentation and conceptualization.

We will not analyse all other topological options
for isotopic clusters and isotopic trajectories in the
present paper any further. Any, more or less
comprehensive, analysis of these options should
probably wait before any systematic experimental
data will be collected for isotopic versions of
chemically identical crystals. However, a few
additional and more concrete experimental routes
can be indicated:

1. Impurity spectroscopy for the case when iden-
tical impurity is placed in isotopically different
host crystals. This is an ‘inverse case’ to more
traditional studies of isotopic effects for impur-
ity centres which mostly look for isotopic shifts
of isotopically different impurities in isotopi-
cally fixed matrix. In the suggested case isotopic
points can be collected by measuring isotopic
spectral shifts (e.g., zero-phonon lines whose
positions can be measured with a high preci-
sion) of isotopically-same impurity in several
isotopically different matrices. For polyisoto-
pic impurity both the impurity centre and the
host lattice can be tried in various isotopic
combinations.

2. Isotopically engineered structures (e.g., isotopic
superlattices grown with alternating layers of
different isotopes) can be of a double benefit for
collecting isotopic points. Firstly, they open a
possibility for various ‘junction’ measurements,
e.g., similar to the known measurements of
band-gap offsets for variously doped semicon-
ductor homojunctions. Secondly, they could
often lead to noticeable ‘savings’ in terms of a
number of required isotopic combinations for a
given number of isotopic points. For example, 5
isotopes of a metal (e.g., Zn) together with 5
isotopes of a semiconductor (e.g., Ge) produce
25 isotopically distinguished Schottky barriers.
More refined and sensitive experiments can be
performed on isotopically varying Josephson
junctionsnear their superconductivity transition.

Another example of structural IE is isotopic
fibre optics mentioned above [4, 6].

3. Ultrahigh pressures (e.g., in experiments with a
diamond anvil cell) can be quite useful in a
number of ways. One is that they tend to reveal
new structural phases for crystalline materials.
Experiments with isotopically different samples
could likely be optimal when pressures and
temperatures are kept near the boundaries of
such transitions as it increases sensitivity to
applied parameters and could lead to a ‘magni-
fication’ of isotopic effects. Ultrahigh pressure
experiments can be especially instructive for
isotopically structured samples [see item (2)]
as conditions can be found when spatially
different parts of the sample experience tran-
sitions at slightly different pressures and/or
temperatures.

4. Isotopically pure versus isotopically mixed
materials give another experimental leverage—
a simple example will be to study the compara-
tive properties of pure 2°Si crystal and 50-50 %
mixture of 2®Si and *°Si. Both crystals have the
same averaged weight of a unit cell and yet
clearly are not the same. The questions which
can be offered in this respect aim to determine
whether these (isotopically different) crystals
have exactly identical lattice constants, melting
temperature, etc. For heteroatomic combina-
tions the combining of all possible isotopic
subsets in pairs, triplets, etc., can, in principle,
generate an almost unlimited collection of
additional isotopic points.

Additionally, isotopes could be combined in vari-
able proportions which is even further increases
potential information which can be extracted from
‘hidden’ correlations between physical parameters
(data mining).

This, theoretically speaking, produces an infinite
number of possible isotopic points and leads to
continuous isotopic trajectories—the latter could
even better mimic the essentials of strange attrac-
tors of chaology. However, in case of isotopic
mixing, statistical aspects, such as isotopic
fluctuations, should be taken into account.

QUANTUM INFORMATICS AND
QUANTUM COMPUTING

Apart from the above mentioned isotopic
random number generators [10, 11], isotopes
have recently found their way into a novel area
of quantum computing.

The rapidly unfolding area of quantum infor-
matics and quantum computing is an unquestion-
able growth industry at the frontier of physics and
electronics. While basic principles of quantum
computing are becoming generally known
[32-35], technological applications are still mostly
in infancy stage. The applicational potential of
quantum computing and quantum informatics,
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however, is truly enormous. Instead of handling
fix bits (zeros and ones) quantum computers work
with superpositions of bits mixed in various
proportions (qubits). The expected advent of a
reliable quantum computer (which many experts
believe is likely to happen within a decade) will
make the problem of the factorization of arbitrary
long integers solvable by relatively simple means.
The most important advantage of quantum
computers is their ability to probe multiple possi-
bilities simultaneously. This could be invaluable in
such applications as extremely fast data mining of
large-scale databases. Some authors go as far as
ascribing enormous potential of quantum com-
puters to their ability to borrow computing
power from parallel universes [35]. In spite of
speculativeness of such ideas, almost everyone
finds them fascinating and mind-boggling. Thus,
the very mentioning of them to aspiring students
can significantly boost their interest in quantum
informatics and strengthen their learning process.

Most of the modern cryptology (such as security
of bank transactions) is based on the practical
impossibility to factor long numbers (over a few
hundred digits). For example, to find the prime
factors of (arbitrarily chosen) 500-digit integers is a
practically unsolvable problem, even with the best
modern computers. Such popular schemes as RSA
algorithm [31, 32] are fundamentally based on the
fact of this factorizational difficulty. Quantum
computers will likely eliminate physical basis for
such cryptology schemes which, in turn, may
require fundamental social re-evaluation of such
issues as secrecy and privacy.

At the time of writing, there are several research
lines attempting to implement quantum computing
in practice. Almost all of them use nuclear spin
states of specific isotopes in crystalline matrices
[34]. In practical implementation on the basis of
solid state structures, quantum computing is iso-
topically selective. Thus, quantum computing
naturally falls into the domain of IE. Specifically,
because of the quantum identity of the same
isotopes (as opposed to the quantum distinguish-
ability of different isotopes of the same element),
isotopicity provides a natural playground for the
establishing of quantum entanglement among
large clusters of atoms. The latter (sustained quan-
tum entanglement) is one of key requirements
needed for a functional quantum computer [32].

DISCUSSION: ISOTOPICITY AS PRIME
FACT OF NATURE

We have reviewed here several, quite different,
aspects of isotopic diversity of chemical elements.
On top of chemical diversity, isotopicity provides
an additional ‘built-in’ degree of freedom in
condensed matter structures (crystalline or not).
This extra degree of freedom has a distinct
informational bearing [2, 4]. In a kind of general

philosophic modality isotopicity can be seen as an
independent outfit for a general trend in Nature
for a pattern-forming activity [4, 15, 16]. One may
possibly say that various examples of spontaneous
pattern formation are concrete manifestations of
inherent ‘quest for intelligent patterns’ deeply
rooted in Nature [25, 26].

It is known that Nature has found ways to
utilize biologically almost all chemical elements
from the Periodical Table. Many so called ‘micro-
elements’ have distinct biological function. In spite
that some of these functions may still not be fully
understood, our body’s need for a variety of
mineral supplements is generally well recognized.
Not only major life-related elements (C, O, N, H)
are important for biological processes but also
such trace elements as, say, vanadium or molybde-
num have their own biological functions as well. A
whole range of chemical elements (often several
dozens) are typically used in poly-vitamin supple-
ment pills. Likewise, the same can be expected for
isotopic diversity of elements. Informational and
pattern-forming capabilities of isotopic diversity
are so multisided and universal that it is highly
unlikely that Nature could completely overlook
the use of this additional option in its inner
fabric.

EDUCATIONAL POTENTIAL OF
ISOTOPIC ENGINEERING

As a concept, isotopic diversity of chemical
elements (isotopicity) is quite lucid and transpar-
ent. Its fundamental essence can be reasonably well
understood and appreciated by a person with just a
base knowledge of chemistry and physics. This
makes it a convenient and attractive tool for the
presentation of a broad range of topics of novel
science and technology as was briefly outlined
above. The advantage of a unification of a variety
of topics under one conceptual umbrella is
obvious. It allows for the economy of time and
educational resources. Furthermore, an appeal to
such a conceptually transparent phenomenon as
isotopicity makes it suitable for an introductory
exposure to a number of ‘hard’ topics for the
mixed (interdisciplinary) student audience. Some
educational experiments in this vein were under-
taken by the present author in his teaching of a
course on the Discovery and Innovation for the
McMaster Theme School on Science, Technology
and Public Policy (1998-2000) [36].

It is important to note that in the context of the
present article IE (and isotopicity) should not be
seen as an entirely new separate discipline. It is
rather a venue along which a variety of engineering
and technological topics can be presented and
integrated. In this way, IE displays itself as primar-
ily a unifying and synthetic educational tool which
adds to a synergy in a coverage of a broad range of
methods and ideas.
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EPILOGUE

Exposing students to IE and the isotopicity
concept, especially at the undergraduate level,
can serve a two-fold objective. One one hand, the
very phenomenon of isotopicity is one of the prime
facts of Nature which branches into numerous
applications in science and technology. Thus, a
more detailed familiarity with isotopicity has a
distinct engineering value in itself. On the other
hand, by providing a rich illustrative tapestry for
various effects and applications, it assists to some
degree in simplifying and making more accessible
the treatment of such complex topics as atomic
scale information storage, quantum computing,
quantum entanglement and qubits, physical
random number generators, or some aspects of
bioengineering.

In addition to technical merits, the exposure to
the ideas of isotopic diversity and related areas
such as quantum computing, contributes to a
broadening of general scope and in-depth compre-
hension which is normally expected from the
modern engineer. For example, one of the foun-
ders of quantum computing, David Deutsch, is a
strong proponent of one of the most radical and
interesting interpretations of quantum physics
known as Many-World interpretation [35]. This
brings into serious consideration such mind-
boggling ideas as an issue of the physical existence
of parallel universes. It is the experience of the
present author (23 years of teaching in engineer-

specialties seem to be remote from physics (such
as, e.g., civil engineers) are often fascinated by
these frontier ideas. It is obvious that the intellec-
tual excitement provided by such ideas is almost
invariably serves as a strong contributing factor
into the quality of engineering education.

While in this paper we covered only IE based
on stable isotopes, it should be mentioned
that extending isotopicity to include radioactive
isotopes allows for even greater leverage of
presenting engineering related topics. The nuclear
industry alone comprises a separate area of
engineering. Likewise, nuclear fusion, neutron
channelling, nuclear activation analysis and several
other technologically important areas are all, in
fact, subareas of IE in a broader sense.

Because of the multiplicity of conceptual
facets and applications, IE and isotopicity
have a distinct interdisciplinary flavour. In prac-
tical terms, however, it may be a dubious
blessing. While superficially, interdisciplinary
approaches are often acclaimed as creative and
fruitful, this praise is often hardly more than a
lip service. Quite often, the reality of the
research community, its ‘Realpolitik’ and its
accepted practice of peer review are de-facto
aimed at the protection of narrow sectarian
professional interests and turn out to be overtly
conservative and generally remains in opposition
to interdisciplinary efforts [36, 37]. In this vein
isotopicity provides an alternative route for
expanding horizons in interdisciplinary engineering

ing) that many students, even those whose

education.
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