
An Affordable Platform for Learning
Real-Time Adaptive Signal Processing*

MIGUEL ALONSO, Jr. and ARMANDO BARRETO
Room EAS-3956, ECE, Florida International University, 10555 West Flagler Street, Miami, FL 33174,
USA. E-mail: barretoa@fiu.edu

This paper presents a practical, economical, and useful way of enhancing an existing real-time
digital signal processing (DSP) learning kit, the Texas Instruments TMS320C3x DSK, towards
the development of adaptive signal processing (ADSP) algorithms. Many DSP educators use this
kit to provide a basic platform for learning the real-time implementation of DSP algorithms. The
kit includes an assembler and a debugger for software development. In its original configuration,
the kit can be connected to just one signal source and provides a single analog output, which is
sufficient for the prototype implementation of basic DSP algorithms. In the last few years,
however, the sub-field of adaptive digital signal processing has become increasingly important in
scientific and industrial applications. As such, real-time implementation of these algorithms, which
typically require more than one independent input and output, is highly desirable. This paper
outlines how to develop such a training platform by enhancing the popular TMS320C3x DSK with
a stereo input/output module, and provides a software template and an example to aid in the
software development for this enhanced training platform.

INTRODUCTION

THE CONTINUED enhancement of digital signal
processors (DSPs), in terms of low cost, avail-
ability, size and efficiency, has fueled the need for
engineers with the knowledge to design and imple-
ment systems using DSP technology. From toys to
portable MP3 players, to cell phones, DSP systems
can be found in many electronic products on the
market. Some of the skills that a DSP professional
must posses range from DSP algorithm develop-
ment to real-time implementation of DSP designs.

In the past, DSP systems were designed based on
observations or assumptions on the behavior or
characteristics of the signal of interest to be
processed by the system. So, for example, a DSP
system that implements a narrowband filter to
remove polluting noise centered around 60 Hz
will only be effective if the assumption about the
frequency spectrum of the polluting noise is
correct. But imagine a situation in which the
characteristics of the polluting noise are not
known or vary. It is evident that under these
circumstances a fixed DSP solution is not effective.
This is where Adaptive Digital Signal Processing
(ADSP) comes into play.

During the 1980s, a new approach to digital
signal processing, called adaptive digital signal
processing, emerged. The basis for this new
approach is self-adaptation, that is, the DSP
system adapts or changes its nature to improve
its performance. ADSP systems are not completely
designed in advance. The basic structure of the
system is set, but the parameters governing the

ADSP are flexible and are adjusted according to
what is referred to as an `adaptation algorithm'.
Many classical DSP systems (e.g., digital filters)
normally process one input signal and generate one
output signal. ADSP systems, on the other hand,
read not only the `primary input', which contains
the signal of interest, but also a second input called
the `reference input', which is usually a sample of
the signal that is to be removed, i.e. a sample of
only noise. The final result is a system that removes
from the `primary input', a signal that is corre-
lated, or similar to the signal present at the
`reference input'.

Through a very ingenious analysis of these
adaptive systems, a very simple yet powerful
algorithm, called the least mean squares (LMS)
adaptation algorithm [6], was developed to be the
driving force that molds the adaptive system for
optimal removal of unwanted noise. The LMS
algorithm has repeatedly proven its effectiveness
in industry, being implemented in numerous real-
time industrial applications. Thus, it is of utmost
importance to provide students with a practical
understanding of ADSP systems, as well as know-
ledge of real-time implementations of these
systems. This need has been partially addressed
by the development of software tools to aid in the
simulation and development process of adaptive
digital signal processing systems [4, 5]. These tools,
however, do not expose students to the obstacles
that real-time implementations must overcome in
industrial applications.

Recently, information on how to set up a prac-
tical and affordable real-time DSP learning station
based on the Texas Instruments TMS320C3x
Digital Signal Processing Starter Kit (DSK) and a* Accepted 28 September 2003.

39

Int. J. Engng Ed. Vol. 20, No. 1, pp. 39±45, 2004 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2004 TEMPUS Publications.

personal computer has been made available [1]. The
kit used in that setup, identified here as the `C3x
DSK', is very affordable, containing a target board
designed around the TMS320C31 DSP chip, an
assembler, used to convert source files into DSK
executables, and a DOS-based debugger, which
allows a host PC to communicate and download
the executables via the parallel port to the DSK.
This setup is sufficient for traditional real-time DSP
implementations, where only a one-channel input is
needed. But, for most ADSP applications, a mini-
mum of two input channels (`primary input' and
`reference input') is necessary. This paper presents a
method to overcome this limitation while keeping
the cost of the training platform down, and using the
original software development tools, which are
already familiar to many educators and students.

The setup described here is suggested for student
laboratory exercises in an advanced undergraduate
or graduate real-time DSP course. Students
require the fundamental DSP background typi-
cally provided in an introductory DSP course, as
shown in Fig. 1. If students are to modify the
programs provided, they will also need familiarity
with microprocessor assembly programming.
However, instructors could simply show the
experiments, as provided, as a supporting demon-
stration for the corresponding theoretical
concepts. Within the real-time DSP course, the
real-time ADSP experiments would naturally
follow exercises in implementation of fixed DSP
systems, such as finite impulse response (FIR) and
infinite impulse response (IIR) digital filters.

In the absence of a dual-input real-time plat-
form, such as the one proposed in this paper,
students would be constrained to experience real-
time implementations of a narrow subset of ADSP
systems that employ only a single input signal,
such as the predictor configuration used as a self-
tuning filter, or an adaptive line enhancer [6].

HARDWARE SETUP

The DSP processor in the C3x DSK board
communicates to the analog world through a
single-channel analog interface circuit, or AIC
(TLC32040), which is connected to its serial port.
Fortunately, the designers of the C3x DSK board
had the foresight to establish the connection of the

DSP chip serial port to the AIC through a jumper
header, JP1 (see Fig. 2). This allows the user to
easily disconnect the AIC from the DSP by remov-
ing the jumpers [2]. In order to experiment with
adaptive signal processing systems, requiring not
only a primary input, but also a reference noise
input, the serial port of the DSP chip has to be
connected to an analog input/output device
capable of providing two independent input/
output channels. Fortunately, stereo codecs
(coder-decoders) with standard serial interfaces
and capable of sampling two input channels at
sampling rates appropriate for digital audio (e.g.
44100 Hz.) have proliferated and subsequently
become affordable. One prime example of this
kind of devices is the Crystal Semiconductor
CS4216 stereo codec. This chip meets all the
requirements for an analog interface that would
enable the implementation of adaptive signal
processing systems with the C3x DSK.

To effectively act as analog front-end for the
TMS320C31 DSP chip, the CS4216 needs to be
configured with a few analog components. The
application note, `CDB4216: CS4216 Evaluation
Board' included in Crystal Semiconductor's Data-
book, [3], provides all the necessary details and a
printed circuit board layout to build a stereo codec
board based on this device.

Similarly, Chassaing [2] shows the schematics to
develop a stereo codec board based on the CS4216/
18 (along with a basic program to verify its
functionality). Furthermore, there are some
ready-made stereo codec boards, which can be
utilized directly as dual-channel analog input/
output systems for the C3x DSK. In particular,
the platform described here uses the `DSProto
Codec Board', based on the CS4216, and
manufactured by Digital Control Labs (http://
digitalcontrollab.com). This affordable board
contains a 12 MHz clock IC, which acts as
master clock for the codec. A bank of switches
determines the effective clock rate delivered to the
codec, thereby adjusting the sampling frequency
used for analog-to-digital and digital-to-analog
conversions. The board connects to a main pro-
cessor through a serial port available via a male
DB15 edge connector. This DB15 connector must
be connected to selected pins in the JP1 jumper
header of the C3x DSK board, as indicated in
Fig. 2, to establish the hardware connection

Fig. 1. Typical course sequence that may lead to the use of the setup described here for experimentation in real-time adaptive digital
signal processing (ADSP).

M. Alonso and A. Barreto40

between the two systems. The actual connection
can be made using a female DB15 ribbon connec-
tor to attach to the DSProto Codec board (Digi-
Key Part No.CFP15T-ND), and a 26-pin, dual-
row, socket ribbon connector (Digi-Key Part
No.CSC26T-ND), to attach to the jumper header
(JP1) on the C3x DSK. The jumper header JP1 in
the C3x DSK board has only 22 pins. However, a
26-pin connector is the smallest standard size
available for the connection and, fortunately, the
C3x board has enough space to accommodate the
slightly larger connector. Because of the disparity
in the number of contacts on each of the devices,
the ribbon cables from each connector will have to
be spliced and matched on a conductor-by-
conductor basis to achieve the connections shown
in Fig. 2.

It should be noted that in this configuration, the
DSProto codec board acts as a somewhat auton-
omous module, with its own timing signals deter-
mined by the on-board clock circuit and the
switches that control its frequency division. The
interaction between the DSProto Codec board and
the C3x DSK is controlled by the sampling rate
used in the codec. Every time an analog-to-digital
conversion is completed in the codec, a serial port
interrupt is issued to the DSP chip in the C3x DSK
board.

The overall configuration of the training station,
showing the connection of the host PC with the
C3X DSK board through the parallel port cable
supplied with the DSK, and the connection of the
C3X DSK board with the codec board, detailed in
Fig. 2, is shown in Fig. 3, for reference.

SOFTWARE SETUP

Once the hardware connections between the
codec board and the DSK board are established,
the codec board will convert pairs of samples and
exchange data with the DSP upon reset through
the serial port. The basic assembly programming
template, shown in the following sub-section, initi-
alizes the DSK board and establishes an interrupt
service routine to receive new input samples and
send output samples to the codec.

Template assembly program

; 2-CHANNEL IN/OUT PROGRAMMING TEMPLATE
;---
; Link sections to memory locations
;---

.start `intsect',0x809FC5

.start `.text',0x809900

.start `.data',0x809C00
;---
; Immediate constants (If needed, use .set)
;---
;---
; Interrupt vector for XINT0 ser port int.
;---

.sect `intsect'
BR INT_SER

;---
; Data section
;---

.data
PER_BASE .word 0x0808000
SP_CTRL_WD .word 0x0EBC0000
;serial port set-up data
IN_SAMPLE_L .word 0 ;In Sample Left
IN_SAMPLE_R .word 0 ;In Sample Right
OUT_SAMPLE_L .word 0 ;Out Sample Left
OUT_SAMPLE_R .word 0 ;Out Sample Right
;---
; [A] Text section (entry point) MAIN
;---

.entry BEGIN ; code start

.text
BEGIN LDP SP_CTRL_WD ;init dpp

CALL PER_INIT
WAIT IDLE ; wait for interrupt

BR WAIT
;---
; [B] Peripheral Initialization Procedure
;---
PER_INIT NOP
;---
;1. Preserve AR0 and R0 Registers

Fig. 2. Hardware connections from the DSK to the serial port
in the codec board.

Fig. 3. Overall component connections in the real-time ADSP training station.

An Affordable Platform for Learning Real-Time Adaptive Signal Processing 41

PUSH AR0
PUSH R0

;---
;2. Load Peripheral Base Address
;--

LDI @PER_BASE,AR0
;--
;3. Set up serial port 0(to talk to codec)
;--

LDI 0x131,R0
STI R0,*+AR0(0x42)
STI R0,*+AR0(0x43)
LDI @SP_CTRL_WD,R0
STI R0,*+AR0(0x40)
LDI 0,R0 ; R0 = 0
STI R0,*+AR0(0x48)

;--
POP R0
POP AR0

;--
;4. Set up interrupt(for serial transfer)
;--

LDI 0x0,IF ; clear IF
OR 0x10,IE ;en EXINT0
OR 0x2000,ST ;glob. int
RETS

;--
; [C] CS CODEC I/O Transfer Procedure
;--
CS_IO PUSH AR0

PUSH R0
PUSH R1
LDI @PER_BASE,AR0
LDI @OUT_SAMPLE_L,R0
LDI @OUT_SAMPLE_R,R1

LSH 16,R0
AND -1,R1
OR R0,R1
STI R1,*+AR0(0x48)
LDI *+AR0(0x4C),R1
LDI R1,R0
LSH 16,R1
ASH -16,R1

ASH -16,R0
STI R0,@IN_SAMPLE_L
STI R1,@IN_SAMPLE_R
POP R1
POP R0
POP AR0

RETS
;--
; [D] Interrupt Service Procedure
;--
INT_SER LDI @IN_SAMPLE_L,R3

LDI @IN_SAMPLE_R,R4
; **** Insert DSP algorithm here ***

MPYI 4,R3
MPYI 4,R4
STI R3,@OUT_SAMPLE_L
STI R4,@OUT_SAMPLE_R
CALL CS_IO
RETI
.end

Explanation of template
In this template assembly program, the first few

lines define the position in memory of the three
assembly sections, `data', `text' (for program
instructions), and `intsect' (pointer to interrupt
service routine). The data section allocates a few
memory locations that will be used to receive and
send left and right pairs of values to and from the
codec.

The actual assembled program, in the text
section, comprises four modules, as identified
with square brackets in the program listing.
Module [A] defines the `main' program, which
initializes the data page pointer, calls the peri-
pheral initialization routine, PER_INIT, and
then just idles, waiting to receive an interrupt.
When an interrupt occurs, it is serviced by the
interrupt routine, Module [D]. Upon completion
of this module, the program control returns to the
idling loop.

Module [B], the peripheral initialization routine,
PER_INIT, is critical, for it sets up the serial port
to enable communication with the codec board by
writing appropriate values to the serial port global
control register, the serial port pin-configuration
registers, and finally, enabling the interrupt for the
serial port.

Module [D] (INT_SER) is a very simple inter-
rupt service routine for the serial port interrupt. As
shown in this template, it brings in the `newest'
two-input values, from memory locations
IN_SAMPLE_L and IN_SAMPLE_R, to registers
R3, and R4, respectively, as 16-bit values. At this
point the samples are available for any form of
processing that the programmer may want to
implement. In the template the samples are just
multiplied by four and then sent back to memory
locations OUT_SAMPLE_L and OUT_SAMPLE_R.
Then the interrupt routine calls the codec I/O
transfer procedure, which effectively exchanges
data with the codec board and returns flow control
to the main program (Module [A]).

The effective transfer of values between the codec
board and the four designated memory locations is
performed by subroutine CS_IO, which is module
[C] in the template program. This routine appends
the two 16-bit output values, taken from memory
locations OUT_SAMPLE_L and OUT_SAMPLE_R,
into a single 32-bit word and writes it out to the
data transmit register of serial port 0 (mapped at
address 808048h). It then reads the latest samples
converted by the codec from the data receive
register of serial port 0 (mapped at 80804Ch),
breaks this 32-bit received word into two 16-bit
sample values from each channel, and makes
them available to the real-time interrupt routine
in memory locations IN_SAMPLE_L and
IN_SAMPLE_R.

Assembling and downloading the template file
described above to the C3x DSK will allow the
user to listen, via amplified speakers, to each one
of the stereo channels of a tape or CD player
plugged into the inputs of the DSProto Codec
board. In fact, by changing the factor used to
multiply the contents of R3 and R4 in the interrupt
service routine, the user should be able to appreci-
ate different amounts amplification at the output
of the codec board.

Example implementation: adaptive noise canceler
The combination of hardware integration of the

C3x DSK board with the DSProto Codec board,
and the development of the software template
discussed above, provides a complete PC-based
environment in which the implementation of real-
time adaptive signal processing systems can be
learned.

We will demonstrate the practical use of this
learning environment through the implementation
and real-time verification of a classic adaptive
noise canceler (ANC) system, as described in the
pioneering book by Widrow and Stearns [6]. The
block diagram of the ANC is shown in Fig. 4. This

M. Alonso and A. Barreto42

figure illustrates how the primary input sequence,
d(n), is applied to the upper path in the ANC,
while the reference noise sequence (`reference
input'), x(n), is processed by an Adaptive Trans-
versal Filter (ATF) in the lower path of the
diagram.

The ATF is a non-recursive filter that imple-
ments the sum of products of a set of coefficients
or `weights', w0; . . . wL, with the most recent
reference input sample x(n), and L past samples,
x�nÿ 1�; . . . ; x�nÿ L�, respectively. So, at each
sampling instant, the output of the ATF, y(n) is
calculated as:

y�n� �
XL

j�0

wjx nÿ j� � �1�

The `error signal', e(n), in the ANC is calculated as
the difference between the current primary input
sample, d(n), and the current output from the
ATF, y(n):

e�n� � d�n� ÿ y�n� �2�
The concept behind the ANC is that if the primary
input is polluted with some noise component, and
the noise is available for sampling somewhere else
where it is not mixed with our signal of interest, the
ATF will adapt to a configuration in which the
reference noise is transformed into a signal, y(n),
that matches the polluting component in d(n).
Therefore, the `adjusted noise' y(n) is subtracted
from the polluting noise component in the primary
input, d(n), leaving only the (`clean') signal of
interest in the resulting signal, e(n). Effective
removal of the polluting noise component will
cause a reduction in the power of e(n). That is
why a common adaptation procedure seeks to
obtain the `least mean square' (LMS) value of
the error signal, e(n), achievable through the
adjustment of the ATF. The LMS adaptation
algorithm iteratively changes the weights accord-
ing to reference input samples presented in the
ATF, x�n� . . . x�nÿ L�, and the error signal, e(n),
which is the overall output of the ANC. The LMS

speed of convergence is regulated by a fixed
parameter, �:

�wi�NEW � �wi�OLD � �e�n�x�nÿ i� i � 0; 1; . . . ;L

�3�
To perform as a real-time adaptive noise canceler,
our system must implement equations (1), (2) and
(3) above, in sequence, every time a new sample is
acquired from the primary and reference input
signals, that is, every time the interrupt service
routine for the serial port is executed. In order to
achieve this, three modifications have to be made
to the simple template file provided before:

1. The following instructions must be added to the
assembly of the `.data' section, immediately
after the instruction OUT_SAMPLE_R .word
0:

BETA .float 2.5e-14
ER .float 0
LENGTH .word 64
WN .float 0

.loop 254

.float 0

.endloop
.brstart `XN_BUFF',256

XN .sect `XN_BUFF'
.loop 255

.float 0

.endloop
XN_ADDR .word XN
WN_ADDR .word WN
ER_ADDR .word ER
BETA_ADDR .word BETA

These instructions allocate memory and initia-
lize to zero arrays for the samples of the
reference input, x(n), and for the adaptable
weights, wi.

2. The following two instructions must be added in
the `main' program (Module [A]), right after
the call to the subroutine PER_INIT:

LDI @LENGTH,BK
LDI @XN_ADDR,AR1

These instructions establish the length of a
circular buffer for the samples of the reference
input and initialize the pointer to the beginning
of the circular buffer.

3. The following lines of code must be placed in the
interrupt service routine for the serial port 0

Fig. 4. Block diagram of the adaptive noise canceler.

An Affordable Platform for Learning Real-Time Adaptive Signal Processing 43

(Module [D]), in substitution of the two
instructions: STI R3, @OUT_SAMPLE_L,
and STI R4,@OUT_SAMPLE_R.

FLOAT R3,R5
FLOAT R4,R6
STF R6,*AR1++%
LDI @WN_ADDR,AR0
LDI @ER_ADDR,AR2
LDF 0,R0
LDF 0,R2
LDI @LENGTH,R3
SUBI 1,R3
RPTS R3

MPYF3 *AR0++,*AR1++%,R0
|| ADDF3 R0,R2,R2

ADDF R0,R2
SUBF3 R2,R5,R7
MPYF 2,R7
FIX R7,R0 ;Error
FIX R2,R1 ;Out ATF

STI R0,@OUT_SAMPLE_L
STI R1,@OUT_SAMPLE_R

MPYF @BETA,R7
STF R7,*AR2
LDI @LENGTH,RC D

SUBI 1,RC
LDI @WN_ADDR,AR0

RPTB LMS_LOOP
MPYF3 *AR2,*AR1++%,R0
LDF *AR0,R1
ADDF R1,R0

LMS_LOOP STF R0,*AR0++

This sequence of instructions implements equa-
tions (1), (2) and (3) above to calculate the
output of the ATF, evaluate the error and use it
to update the ATF weights according to the LMS
algorithm, before the next interrupt.

Figure 5 shows a flow chart representation of
the ANC assembly program. It should be noted
that the modules outlined in the description of the
template ([A], [B], [C], [D]) remain present. The
main enhancement has been performed on module
[D], the interrupt service routine, where the 3 equa-
tions required by the LMS algorithm have been
implemented. Moreover, it should also be noted
that the template provided is general enough that
only module [D] would need to be modified to
experiment with alternative ADSP algorithms.

RESULTS

We have verified the functionality of the ANC
described above by processing a stereo recording

which contained in the left channel a mixture of
low-amplitude vocal music and large amplitude
440 Hz sinusoidal interference and in the right
channel a 440 Hz sinusoid at different phase and
amplitude. These signals were created as discrete
sequences in Matlab1, recorded to a CD-ROM as
a stereo wave file, and played back into the left and
right input connectors of the DSProto Codec
Board from a portable CD-Player. By monitoring
the signal obtained from the LEFT output connec-
tor in the DSProto Codec board we can see (Fig. 6)
the effect of adaptation. The `error' signal in the
ANC system is initially very similar to the `primary
input' signal acquired from the left channel of the
recording, containing both the music and the large-
amplitude sine interference, which is responsible
for most of the amplitude of e(n), at this point in
time. As the LMS algorithm adapts the weights in
the ANC to minimize the power of the error, the
sinusoidal component is progressively removed
from the error signal. After adaptation is complete,
the error signal is only the music without the large
sinusoidal interference. The noise cancellation
effect can also be verified by connecting the
LEFT output of the DSProto Codec Board to an
amplified (PC) speaker. In this case the adaptation
will progressively remove the strong tone compo-
nent that the left input channel has included in it.
Students can experiment with different values of
the parameter `BETA' and the length of the ATF
in the program and verify the effect that those
changes have on the convergence of the adaptation
process.

CONCLUSION

This paper has demonstrated how to enhance a
popular and economic PC-based DSP teaching kit
to make it a learning platform for the real-time
implementation of adaptive signal processing algo-
rithms. A detailed description is provided of the
hardware modifications and the software required

Fig. 5. Flow chart for the ANC implementation. The letters in
brackets correspond to the four modules identified in the
assembly template. (Please see the Software Setup section for

a description of these modules.)

Fig. 6. ANC error signal showing progressive elimination. The
system was restarted at the second time division (10 s) from the

left.

M. Alonso and A. Barreto44

to implement a classical example of adaptive
systems: an adaptive noise canceler (ANC), using
this learning tool. Fully commented versions of the
template and ANC assembler files, as well as their
DSK executables, can be downloaded from http://
dsplab.eng.fiu.edu/ASP_DSK/. This web site also
contains the C-source and DOS-executable
versions of a host (PC) program that allows the
user to change the value of the adaptation rate
parameter, change the number of ATF weights,
and save the weights of the adaptive transversal
filter to a disk file. A simple README (text) file
provides step-by-step instructions to run the DOS-
executable for demonstration purposes. Also avail-
able at this site is the sine_voice.wav file, which can
be played out with appropriate PC software or
burnt into a CD and then played with a CD-
player, to test the real-time implementation
described.

The setup suggested and the sample software
freely available to students and educators will

enable them to experience first-hand alternative
real-time DSP solutions that can be achieved
through the use of adaptive systems. Additionally,
the set of files provided on the website may
motivate interested instructors of (theoretical)
DSP courses to implement a single hardware
setup as described and use the ready-to-run execu-
table programs provided at the website as a
demonstration for their classes. We are convinced
that this will lend added credibility and a sense of
practicality to the theoretical concepts taught in
the classroom.

For the reader's convenience, Table 1
summarizes the WWW resources that have been
mentioned in this paper, including a very brief
description for each of them.

AcknowledgementsÐThis work was sponsored by NSF grant
EIA-9906600 and ONR grant N00014-99-1-0952. Mr. Miguel
Alonso Jr. is the recipient of a Graduate Research Fellowship
from the National Science Foundation.

REFERENCES

1. Barreto, A. B., Yen, K. K., and Aguilar, C. D., PC-based DSP training station, Proc. ASEE 1998
Annual Conference, Seattle, WA, June 1998, Session 1220: Digital Signal Processing (CD-ROM
format).

2. Chassaing, R., Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31
DSK, Wiley Interscience (1999).

3. Crystal Semiconductor Corp., Crystal Semiconductor Audio Databook, Austin, TX (1994).
4. Harteneck, M., Stewart, R. W., Adaptive signal processing JAVA applet, IEEE Trans. Education,

44(2), May 2001, p. 200.
5. Stewart, R. W., Harteneck, M., Weiss, S., Interactive teaching of adaptive signal processing,

Engineering Science and Education J., 9(4), Aug. 2000, pp. 161±168.
6. Widrow, B., and Stearns, S., Adaptive Signal Processing, Prentice-Hall, 1985.

Armando Barreto was born in Mexico City, Mexico, in 1963. Dr. Barreto obtained the
degree of Ingeniero Mecanico-Electricista, from the National Autonomous University of
Mexico (UNAM), in 1987. Dr. Barreto received his Master's degree in Electrical Engin-
eering from Florida International University in 1989 and the Ph.D. degree from the
University of Florida, in 1993. In 1994, after completing an appointment as Postdoctoral
Fellow at the University of Florida, Dr. Barreto joined the faculty of the Electrical and
Computer Engineering Department at Florida International University, where he estab-
lished the Digital Signal Processing Laboratory. He continues to lead the activities of the
FIU DSP Lab, as an associate professor. Dr. Barreto is a member of Eta Kappa Nu.

Miguel Alonso Jr. was born in Miami, Fl in 1979. Mr Alonso received a B.S. and M.S.
degree in Computer Engineering from Florida International University, Miami, Fl., in 2001
and 2003, respectively. He is currently a research assistant in the Digital Signal Processing
Laboratory at Florida International University while pursuing a Ph.D. degree in Electrical
Engineering. His interests are in improvements in human computer interaction, signal
processing, robotics and A.I. Mr. Alonso is a member of Tau Beta Pi and Eta Kappa Nu.

Table 1. WWW resources referred to in the paper

URL Description

http://digitalcontrollab.com Digital Control LabÐmanufacturers of the `DSProto Codec Board'
http://digikey.com DigikeyÐElectronic component suppliers
http://dsplab.eng.fiu.edu/ASP_DSK/ Fully commented versions of the template and ANC assembly files, DSK executables, and

host PC program to control the DSK.

An Affordable Platform for Learning Real-Time Adaptive Signal Processing 45

