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Procedure to calculate deflections of

curved beams*

TORE DAHLBERG

Division of Solid Mechanics/IKP, Linkoping University, Linkoping, Sweden. E-mail: torda@ikp.liu.se

In the study presented here, the problem of calculating deflections of curved beams is addressed.
The curved beams are subjected to both bending and torsion at the same time. The Castigliano
theorem, taught in many standard courses in Strength of Materials, Mechanics of Solids, and
Mechanics of Materials, is used to determine the beam deflections. Using the methodology
presented here, beam deflections that cannot be found in handbooks or textbooks can be calculated
without too much effort. The Castigliano theorem and a numerical integration algorithm from the
MATLAB package have been used. The examples investigated in this paper deal with elliptically
curved beams. The beams are either statically determinate or statically indeterminate. Limiting
cases of the elliptical beam are bending of straight beams and bending and torsion of a circular
beam. Beam deflections obtained in the limiting cases are compared with handbook formulae.

AUTHOR’S QUESTIONNAIRE

1. Solution methods discussed in this paper are

of interest for mechanical and civil engineering

education where bending and torsion of
straight and curved beams are taught.

The Castigliano theorem is used to solve one

class of problems that cannot easily be solved

using other methods, including the finite element
method.

3. Bending and torsion of curved beams are inves-
tigated. It is demonstrated that these problems
can be solved without too much effort.

. Commonly used beam bending formulae are
obtained as limiting cases.

5. Using, for example, the MATLAB package, the

student may practice numerical calculations.

6. Two problems, one statically determinate and

one statically indeterminate, are analysed and
discussed.

INTRODUCTION

MANY BASIC COURSES in solid mechanics
and/or strength of materials given for mechanical
and civil engineering students often include the
concepts work and elastic strain energy. Using
these concepts, methods for analysing the beha-
viour of elastic structures have been developed. In
this paper the well known theorem by Castigliano
(Castigliano’s second theorem) will be used in
association with a numerical integration algorithm
to solve one class of problems that cannot easily
be solved by analytical methods or by the finite
element method. It is demonstrated how the
Castigliano theorem can be used to calculate
deflections of curved beams, both statically deter-
minate and statically indeterminate.
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The curved beams investigated in this paper will
have the form of either a quarter of an ellipse or
half an ellipse. The half-axes of the ellipse will be
denoted a and b. The load acts normally to the
plane of the curved beam. In the first example, the
problem is statically determinate. The beam,
curved to the form of a quarter of an ellipse, is
clamped at one end and free at the other. In the
second example, a half-elliptical beam is clamped
at both ends, thus giving a statically indeterminate
problem.

The quarter-elliptical beam is clamped at one
end and loaded by a force P at the free end. The
force acts perpendicularly to the plane of the
curved beam, see Fig. 1. In the limits, when one
of the half-axes of the ellipse (a or b) tends to zero,
the quarter-elliptic beam tends to a straight canti-
lever beam loaded by the force P at the free end.
Studying bending of beams, this is a standard case
found in any textbook in solid mechanics or
strength of materials. The deflection ¢ of the free
end of the beam is (linear elastic material is
assumed) [1]:

PL3
=357 (1)

where L is the length of the beam (i.e. the length of
the ellipse’s half-axis not tending to zero) and EI is
the bending stiffness of the straight beam. This
case will be obtained as a limiting case in the
calculations presented below.

When the two half-axes of the elliptical beam are
equal (i.e. a=b = R) the form of the curved beam
will be a quarter of a circle. The deflection 6 of the
free end of the quarter-circular beam can be found
in, for example, the handbook Roark’s formulas for
stress and strain [2]. It becomes:
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Fig. 1. (a) Curved cantilever beam (uniform cross section) curved to the form of a quarter of an ellipse. (b) Definition of beam
geometry, and (c) cross sectional moments: M}, bending moment and M, twisting moment (torque). Influence of the shear force on
beam deflection is neglected (shear force not shown in the figure).

where R is the radius of curvature of the beam. It is
assumed that R is much larger than a diagonal
measure of the beam cross section, i.e. R>> I/4,
where [ is the second moment of the beam cross-
sectional area. Further, EI is the bending stiffness
(bending rigidity), and GK; is the torsional rigidity
of the beam. Also, E is the modulus of elasticity,
G = E/2(1 4 v) is the shear modulus, and v is the
Poisson ratio of the beam material. Also this case,
i.e. Equation (2a), will be obtained as a limiting
case in the calculations presented below.

Often a beam with a circular cross section,
diameter d, is examined. The second moment I of
the beam cross-sectional area then is I = nd*/64
and the factor K; in the torsional rigidity of the
beam cross-section is K; = wd*/32, and, using
v = 0.3, one obtains, in agreement with [2]:

5:PE—If{§+(1+u)<%T”_2>}

PR? md*
= 1.2485E where [ = 7y (2b)

The half-elliptical beam is clamped at the two ends
and loaded by a force P perpendicularly to the
plane of the curved beam. The force P is applied at
the centre of the beam (i.e. in the plane of
symmetry), see Fig. 5. This problem is statically
indeterminate. In this problem the limiting case
when the half-axis b (see Fig. 5) tends to zero will
become a double cantilever beam carrying the load
P at its free end (a double cantilever beam in the
sense that the load P is carried by two straight
cantilever beams parallel to each other). The
deflection 6 at load P then becomes:

1 Ps

=335 (32)

where a is the length of the two cantilever beams

and the factor 1:2 is there because the load P is
carried by two parallel beams.

In the other extreme case, when the half-axis «
tends to zero (see Fig. 5), a straight beam of length
2b that is clamped at the two ends is obtained. The
force P at the middle of the beam then causes the
beam centre to deflect the distance [1]:

5 P(2b)’  PH

~ 64-3EI  24EI

The third limiting case, a = b, gives a beam with a
circular curvature; the beam takes the form of half

a circle. This case is less frequent in the literature;
only [3] has been found. One has:

PR} (1 PR? [3n 1
=—|-—— —— -2
b 2EI<4 w)+2am(4 T ) (3¢)
For a beam with circular cross section, diameter d,
the expression (3c) simplifies to (v = 0.3):

(3b)

PR d*
where [ =" (3d)

Solutions to the problems solved and discussed in
this paper have not been found in the literature.
The solutions are interesting from an educational
point of view, because the problems solved tend to
three known solutions for special cases of the
minor and major axes of the ellipse.

STATICALLY DETERMINATE PROBLEM

In this section a cantilever beam, curved to the
form of a quarter of an ellipse, will be investigated.
The beam is clamped at one end and loaded with a
force P at the free end, see Fig. 1(a). The force P
acts perpendicularly to the plane of the ellipse. Let
a be the length (in the x direction) of one half-axis
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of the ellipse and b the length of the other half-axis
(in the y direction). In the extreme case a =0, the
beam will then be a straight cantilever beam of
length b, and in the case =0, the beam will be a
straight cantilever beam of length a. In the third
case, a = b, the beam will take the form of a quarter
of a circle. Sometimes, but not very often, the out-
of-plane bending of such a beam may be treated in
textbooks, see for example [4] and [5].

The bending stiffness of the curved beam is EI
and the torsional rigidity is GK; (uniform along the
beam). The material is linear elastic; E is the
modulus of elasticity (Young’s modulus) and G is
the shear modulus. The second moment of the
cross-sectional area is denoted 7, and K, is the
cross-sectional factor of the torsional rigidity.

The deflection ¢ of the beam end (at the point of
application of the force P and in the direction of the
force) will be determined. The force P is normal to
the xy plane. Also, for axis b the notation b = Ba is
introduced. Here (3 could be larger than or smaller
than 1.

Especially, the cases =0, =1 and 8> 1 will
be investigated and the results will be compared
with known results for straight cantilever beams of
length ¢ and b, respectively, and for the quarter-
circular cantilever beam (with a=b=R, and R is
the radius of the circularly curved beam). In some
cases it is also assumed (for simplicity) that the
beam has a circular cross-section with diameter d,
where d < a and/or b, implying that beam theory
for straight beams can be applied.

Solution
First, the equation of the ellipse is examined.

The equation reads:

22

2 p=! @
The beam studied here is located in the first
quadrant of the coordinate system, so here
0<x<aand 0<y<b, where a and b are the
half-axes of the ellipse, see Fig. 1. Solve (4) for y. It

gives:
x2 x2
y”wﬁﬂ“\/lz (5)

where b= Ba has been introduced. Differentiation
of Equation (5) gives:

d_y:ﬂ__bz_x{:tangw)}

dx /1= x2ja2  a¥y

(6a,b,¢)

One notices that dy and dx have different signs
because the expression (6a) is always negative.
Here dx is negative. It is also noticed that the
length ds of a beam element is:

2
ds = 1/ (dx)*+(dy)? = —dxy /1 + (%) (7)

The negative root has been selected because dx
is negative while the length ds is positive. Also
cos ¢ and sin ¢ will be needed. One obtains:

. dx +1
Sing = — - = ————— and
s a2
1+ ()
dx
dy  —dy/dx

& o (8a,b)
1+ (5
(&)
The angle ¢ varies between 0 and 7/2, which
implies that both cos ¢ and sin ¢ are positive.
Next, study the beam cross-section situated at
angle . At this cross-section the bending moment
Mpending = M, and the torsional (twisting) moment
Morsion = M, are acting, see Fig. 1(c). The shear
force has been omitted in the figure; its influence
on the beam deflection will be neglected in the
calculations performed here. The equilibrium
equations will be established. Here the equations
of moment equilibrium are used. At the cross-
section at angle ¢, the directions x and y are
selected as directions for the moment equilibrium

equations. Then the shear force will not appear in
the equations. One obtains:

Mycosp — Misinp + Py =0

. (9a,b)
My sing + Mycosp+ Pla—x) =0
Solving for My, and M, gives:
My, = —Pycosp — P(a— x)sing
) (10a,b)

My = +Pysinp — P(a — x)cos

The elastic strain energy stored in the beam can
now be determined. One has:

L

1
=_— | M?
U 2EIJ o ds +

L

M? 11
2GK[J t ds ( )
0 0

where L is the length of the beam (the length L
need not be calculated, because the integration will
be performed over the variable x and not over s).
The contribution of the shear force to the strain
energy U has been neglected. Using the Castigliano
theorem (the second theorem), the deflection § of
the beam end at the load P can be calculated. One
obtains:

L
ou 1 My,
6’5’2151,[2%’ ap &
0

+

L
1 M,
J ta L ds (12)

2GK; oP
0



506 T. Dahlberg

Enter My, OMy /0P, M;, and OM./OP from (10)
into (12). It gives:

L

P . 2

6—EJ(—ycos<p— (a — x)sinp)°ds
0

P . 2
+G—Ktj(ysmcp— (a—x)cosp)ds (13)
0

Next, enter into (13) the expressions of cos,
siny, y, dy, and ds as given in Equations (6) to
(8) as function of the variable x. The integration
over ds from 0 to L then becomes an integration
over dx from a to 0. Change the order of the
integration limits (thus, integrate from 0 to a)
and change the sign of the integrand. Also, intro-
duce b= a and remove &’ from the integrals. One
obtains, with x/a as a new dimensionless integra-
tion variable, giving integration limits 0 and 1:

P Pa?

8=Fr 10+ 5 L) (14a)

ET

where the integrals I; and I, are functions of the
parameter 3 (= b/a) only. One obtains:

1
2 dy/d
,1(5):J -5 B
0

dy 2
1+ ()

and

(14c¢)

An expression giving the deflection of the ellipti-
cally curved cantilever beam has now been found.
Each one of the two terms in Equation (14a) will
be investigated, i.e., it will be investigate how
bending and torsion, respectively, contribute to
the deflection 6.

Fig. 2. Curve (1): Integral I, = §/(Pa’/EI) as function of para-
meter 3=b/a. It is seen that for F=0 one obtains I;=1/3
(reference line (b) at 1/3), which is the deflection of a straight
cantilever beam of length a, see Equation (1). For f=1 one
obtains I, = /4 (reference line (a), cf. the bending contribution
to Equation (2a)). Curve (2) shows ;/3°. One notices that for
large values of 8 one obtains Il/ﬁ3 =1/3, i.e., the same result as
for bending of a straight cantilever beam of length 5 = a. The
two curves intersect at 3= 1, as they should.

Influence of bending

First, investigate the integral 1;. After simplifica-
tion, one obtains:

1 a(%) (152)

I /
12k l.-:-__.r -
I,/ /
; i
L -N"'.
T, (]
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____.-"- =
I -_F- T i L& E- a 2

Fig. 3. Curve (1): Integral I,=6/(Pa’/GK,) as function of
parameter 3 =b/a. One notices that I,=0 for §=0, i.e., the
torsion does not contribute to the deflection when 3=0. This
was expected, because 3=0 gives a straight cantilever beam
loaded only in bending. When 3 =1 one obtains [, =37/4 — 2=
0.3562 (reference line (a), cf. the torsional contribution to
Equation (2a)). This agrees with what can be found in some
handbooks. Curve (2) shows /3. One notices that for large
values of 3 the factor I,/3* tends to zero, i.e., the torsion does
not contribute to the deflection when 3 is very large. Also this
was expected because a very large value of 3 gives a straight
cantilever beam loaded only in bending. The two curves
intersect at 3= 1, as they should.
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Examine the three cases =0, =1 and 5> 1.
The case =0 gives dy/dx =0, and one obtains:
1

oo [(1-aC) =3 aw

0

This result, together with Equation (14a), agrees
with the deflection obtained when a straight canti-
lever beam of length « is loaded with a force P at
the free end. In this case one has 6 = Pa’/3EI, as
expressed in Equation (1). Note that here only the
term in Equation (14) describing the bending
has been investigated. As will be shown below,
see Fig. 3, the torsion will not contribute to the
deflection when 3=0.

The case f=1 gives a beam with a circular
curvature. This case can be found in some text-
books and handbooks. Entering dy/dx from (6a)
(using #=1) into (15a) gives:

(e ()
0
()

1

e s

0

Let x/a=¢. It gives:
1
=1 = [Vi-eu
0
1
"2

[5\/ 1 — & + arcsin f}

1 .
= parcsin 1= g (15d)

This result can be compared with that given in
some textbooks and recapltulated in Equation
(2a), namely § =7PR’/AEI, see the first term on
the right hand side of expression (2a), where the
part of the deflection depending on bending is
given. Entering Equation (15d) into (14a) gives,
as it should, the deflection wPa*/4EI for the term
representing the bending.

In the case > 1 we start to multiply
the numerator and the denominator in Equation
(14a) w1th ,6 Doing this, the express10n P(Ba)’IEI
(= Pb*EI) is obtained as a factor in front of
the integral at the same time as the integral I; is

divided by (°. Entering dy/dx from (6a), one
obtains:

1 2
o= [ (Ve 2o fu-o)

B - f
1

X e zdf
JH( _152)

! 2

=J<§+ﬂ2< 9

0

X 52v1_§2 d¢ (15¢)
3 (1—52)+£2

3
As (3> 1 the expression (15¢) can be approxi-

mated. Omitting small terms one obtains:

1

2
< Jéx/l—ﬁzdf

0

o
A
I

1
1 2
@11(ﬂ>>1)—l£ NG
=[5 - =4 (15f)
Together with (14a) this result is in agreement with
the deflection of a straight cantilever beam of
length Sa=>b. Also here the term expressing the
influence of torsion of the beam tends to zero when
B> 1, see Curve (2) in Fig. 3.

For an arbitrary value of § the integral I; is
solved numerically. This is a suitable exercise for
programming in MATLAB and the calculated
results can be checked versus the three limiting
cases =0, =1, and 8 > 1. For the bending part
of the solution in Equation (14a), calculated results
are presented in Fig. 2. It is seen in Fig. 2 that the
three limiting cases for the three values of 3 are
obtained.

Influence of torsion

The integral I, in (14) will now be investigated.
Some simplifications of Equation (14c) gives:

x;d(g (16)

Table 1. The factor k() in Equation (18) for some values of 5 (=b/a) and for a circular beam cross-section

8 0.0 0.5 1.0 1.5
k() 0.333 0.543 1.249 2.618

2.0 3.0 5.0 10.0 100.0
4.859 12.86 49.60 353.9

3.337-10°
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Fig. 4. Curve (1): Normalised deflection 6/(Pa’/EI) = k() of beam end as function of the parameter 3 = b/a. The contribution I;(8) to

k(B) due to bending is given by Curve (2) (the same curve as Curve (1) in Fig. 2, but now the scale on the y-axis is linear). The

contribution 1.315(5) to k(5) due to torsion is given by Curve (3) (the same curve as in Fig. 3 but now multiplied by the factor 1.3;1i.e.,a

circular beam cross section has been assumed). The reference lines are situated at the levels (a) 1.2485, cf. Equation (2b), (b) #/4, and
(c) 1.3(37/4 — 2). These levels can be checked using handbook solutions.

Numerical integration gives I, as presented in
Fig. 3, Curve (1). Also, I,/3* has been plotted in
Fig. 3, see Curve (2). Curve (2) indicates that I,/3*
tends to zero when ( becomes large, implying
that for 8> 1 (a tends to zero) only bending
contributes to the beam deflection, see also the
discussion of Table 1.

Circular cross-section
For a beam with a circular cross-section one has,
using v=0.3:

Enter Equation (17) into the expression (14a). It
gives:

a’ @’
= PO 0(®) +136(8) = k(B o (18)

where the factor k(0) is given in Fig. 4. In Table 1
the factor k() is given for some values of (.

It is noted in Table 1 that for 3 =0 and for large
values of 3 the deflections of straight cantilever
beams are obtained. When g=0 (implying that
half-axis b =0) the factor multiplying Pa’/EI is 1/3
(0.333 in the table), as is should. If k&(3) is divided
by (3’ the factor for a straight cantilever beam with
length b= Sa is obtained, i.e. §/(P(Ba)*/EI)=1/3.
This value is found in the table at §=100. The
factor becomes 3.337 - 10°/100% =0.3337 ~ 1/3, as it
should.

A comment on the integration will also be given.
The upper integration limit & (=x/a)=1 will give
division by zero in dy/dx. Therefore integration
was performed to £ =0.99999 only. As the elastic
strain energy stored in the beam is finite, the
energy stored in the remaining art of the beam
can be neglected.

o

STATICALLY INDETERMINATE PROBLEM

A curved beam (bending stiffness EI and
torsional rigidity GK;) has the form of half an
ellipse. The ellipse has the radii (half-axes) « and b.
The total length of the beam thus is approximately
L = m/(a*> + b*)/2. The ends (the boundaries) of
the beam are clamped. The beam is loaded by a
force P acting perpendicularly to the plane
of the curved beam, see Fig. 5. The structure is
symmetric, and the xz-plane is the plane of sym-
metry. The deflection 6 of the beam at the load P
will be determined.

Solution

The equation of the ellipse is given in Equation
(4). Here the symmetry with respect to the xz-plane
will be used in all calculations, so that 0 < x <a
and 0 < y < b. Thus, from now on only half the
beam, with appropriate boundary conditions at
=0, will be studied. The quantities y, dy/dx,
ds, sinp, and cos¢ all have been expressed as
functions of x and dx in Equations (5) to (8).

At the load P a sectional bending moment
My(p=0)= M is applied, see Fig. 5(b). Due to
symmetry, there will not be any torsional moment
in the beam at the force P. The shear force in the
beam is Q= P/2. As only half the beam is investi-
gated, we now have a beam with the form of a
quarter of an ellipse. The quarter-elliptical beam is
clamped at one end and free to translate in the z
direction and free to rotate with respect to the y
direction at the other end. Due to symmetry the
slope (rotation with respect to the x direction) is
zero at this end. The sectional moment M (at
¢ =0) will thus be determined so that it gives the
slope zero of the beam end. At an arbitrary cross-
section of the beam, determined by the coordinate
¢ (0<¢<m7/2), the cross-sectional reactions
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Fig. 5. (a) A clamped/clamped beam curved to the form of half an ellipse. (b) Sectional moments M, (bending) and M, (torsion) as

function of angle ¢. At the plane of symmetry (¢ = 0) only the bending moment M(p =0) = M is acting (no torsion due to symmetry).

The load P is applied in the plane of symmetry giving shear force Q = P/2 on each half of the beam (shear force at ¢ not shown in
the figure).

(bending moment and torsional moment) M, and
M, and a shear force are acting. The shear force
is not shown in Fig. 5(b), and it need not be
determined because its influence on the deflection
will be neglected.

The cross-sectional moments M, and M, are
obtained by use of moment equilibrium. The
cross-section at ¢ is selected for moment equili-
brium. Then the shear force (not shown in the
figure) does not enter into the equilibrium equa-
tions. One obtains, using x and y as directions for
the moment equilibrium:

Mycosp — Misinpg — M+ Qy =0
. (19a,b)
Mysing + Micosyp+ Q(a—x) =0

Solving for My, and M, gives:
My = —Qycosp — Q(a — x)sing + M cos p
M, =+Qysinp — Q(a — x)cosp — Msingp
(20a,b)

The elastic strain energy stored in the beam (the
full, half-elliptical beam) can now be calculated.
One obtains:

L L
1
U“":ijgderzGKtJMfds (21a)
0 0

where the unknown bending moment M in the
beam (at load P) is included in M, and M,,
see Equation (20a,b). The integration could be
performed over the total length L of the beam
(the full length of the half-elliptical beam), but due
to the symmetry exploited, it suffices to integrate
over half the beam length (i.e. the quarter-elliptical
beam). This gives half the total energy stored in the
beam. The total amount of energy stored in the
beam need not be calculated here. Instead, when
using the Castigliano theorem, differentiation with
respect to half the force, i.e. Q= P/2, may be
performed to obtain the same result. This will be
done here (this is the reason why Q= P/2 was
introduced). The boundary conditions of the
quarter-elliptical beam are such that symmetry

with respect to the xz-plane is maintained. Using
U= U""/2 one obtains:

) L2
J Mzds  (21b)
0

1
U=-— J Mg ds +

2E1 2GK;

[}

where L/2 is that part of the beam that is situated
in the first quadrant of the Oxy coordinate system.
Using the Castigliano theorem, the slope © of
the beam at the load Q will be determined. One has
© =90U/OM. Also, exploit that © = 0, which is
obtained because of the symmetry, or alternatively,
because M is an interior quantity. It gives:

L2
@zozg—zzﬁ J 2Mb%ds
0
L)2
+3 CiKt J 2M, g%‘ ds (22)

0

Enter M,, OM,/OM, M, and OM;/OM from
Equation (20) into (22). It gives

1
0=%

L2
X J {—Qycosp — Q(a— x)sinp + M cosp}
0

1
x cos pds +§
t

L2

X J {Qysinp — Q(a — x)cos ¢
0

— M sin p}(—sinp)ds (23)

Separate the terms in the integral. Collect terms
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containing Q on the left hand side and terms
containing M, on the right hand side. It gives:

L2

% J {ycosy + (a — x)sinp} cos pds

0
L2
+G£Kt J {ysinp — (a — x)cos p} sinpds
0

L/2 L/2
M
2 .2
J cos <pds+GK J sin” pds (24)

t

~EI
0

Now the three special cases 5=0, 5=1and > 1
will be investigated. For the full, half-elliptical
beam these three cases correspond to, respectively,
a double cantilever beam of length « (two cantilever
beams in parallel to each other), a half-circular
beam with radius a=b=R, and a clamped-
clamped straight beam of length 26 =2ga.

The case =0 gives dy/dx=0, cosp=0,
sinp=—1, y=0, dy=0, and ds= —dx, which,
entered into Equation (24), gives M =0. This
result was expected, because =0 gives that the
load P is carried by two cantilever beams (of length
a) in parallel to each other, and the two beams are
loaded in bending only.

The case =1 gives that the ellipse becomes a
circle. Enter a=b=R for the radius of the
circle. Also, one obtains y= Rsiny, x= Rcosp,
and ds= Rdy. The integration will be performed
over the variable ¢, and the integration limits
become 0 and #/2. Enter this into (24). It gives:

/2

% J {Rsinpcosp

0
+ (R — Rcosp)sinp} cosp Rdy
/2
—&-g J {Rsin psin ¢
GK,
0
— (R— Rcosp)cosp}sinp Rdp
/2

M
=EI J cos 2¢ Rdy

(=1

/2
+£ J sin 2¢ Rdy (25)

GK;
0

After some simplifications one obtains:
OR? 1+QR21_MR7r+MR7r
EI 2 GK, 2 EI 4 GK 4

from which the solution M =2QR/w= PR/n (for

B=1) is obtained. This solution can be found, for
example, in the textbook (solutions manual) [3].

(26)

The case OG> 1 gives that cosp=1 and
sin p =0. Also, using x/a=¢, one obtains:

1_§2+6252

= —dx e

(27a)

As (> 1 the third term in the numerator (6%¢?) is
much larger than the two other terms in the
numerator. The two terms may then be neglected.
It gives:

BE
/€

Enter this, together with y = Ba\/1 — &2, into
Equation (24). It gives:

ds = —dx (27b)

0

gj{ﬁa\/l 2140

EI
' 0
X lﬁf = (—dx) +G£KtJde
0 ’ 0
:%Jl lﬁfgz(dchflijoax (28)

Simplification and integration gives:

QBal = M[— m};: M (29)

Thus, M = QfBal2 = Pbl4 when 3> 1.

This result can be verified by studying a canti-
lever beam of length Sa loaded with a force Q and
a moment M at the free end. The moment should
be such that the slope at the loaded end of the
cantilever beam is zero. For the cantilever beam
one obtains the slope © [1]:

Q(Ba)*  M(Ba)
2EI EI

Enter © =0, and one obtains M = Qfa/2 in agree-
ment with Equation (29).

For any other value of f it is suitable to solve
Equation (24) numerically. As in the statically
determinate case studied above, cosy, sing, y,
dy, and ds, as given in Equations (5) to (8), are
entered into Equation (28). The integration over
ds then is replaced by integration over dx. Then,
remove «* and a, respectively, from the integrals in
Equation (24) and name the integrals /3, I, I5, and
Is. These integrals are functions of 3 only. One
obtains:

0= (30)

0d® Ma Ma

Qd* _
GK. L(B) = —1I5(3) + GK,

ﬁh(ﬂ) +

Is(3)
(31)

~ EI
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where Equation (24) together with (5) to (8) give
the integrals I5 to Ig.

Circular cross-section

If the beam cross-section is circular, the relation-
ship GK,=EI/1.3 holds (v =0.3) and Equation
(31) gives:

L(B) 4 1.314(5)
I5s(3) + 1.314()

The integrals I3 to Is have been evaluated numeri-
cally using the MATLAB package. In Fig. 6 the
moment M is given as function of the parameter (3.
Curve (1) gives M /Qa and Curve (2) gives M /Qfa.
It is seen that the three special cases =0, =1
and > 1 are obtained (asymptotically in the
case 3> 1). One finds that 3=0 gives M =0,
B6=1 gives M =2Qalm, and 3 > 1 gives M = Qal2
(where Q = P/2), as it should.

Now, when the moment M is known, the deflec-
tion 6 of the beam end can be determined. The
Castigliano theorem gives:

M = Qa =f(8)Qa  (32)

L/2

| 201,
0

_ov_ 1
00 2EI

OMy,

5 50

ds

L/2
1 oM,

0
Enter My, OMy/00Q, M\, and OM,/0Q from Equa-
tion (20) into (33). Further, enter cos, siny, y,

dy, and ds expressed in the variable x, and use the
dimensionless variable £ = x/a. It gives:

where:

1

L(B) = J{—%cosgp - (l —g) sinp + f(B) cosw}

0

Sy (1= ene)
x{ Pl L) sine

1+ (%) sz) (34b)

and

1

I(8) = j{gsiw ~ (1- %) cosp — f(B)sin o}

0

b (1)
x{asmcp ) cos¢

x4/1+ (%>2d(§) (34c)

Numerical calculation of the integrals /; and Ig
gives the deflection § according to Figs 7 and 8. In
Fig. 7 the deflection has been normalized with
respect to Qa’/EI It can be seen that the special
cases §=0 and f=1 are regained. For =0
(the case of a straight cantilever beam of length
a) one obtains 6= Qa*/3EI — Ma*/2EI = Qa*/3EI
(because M =0 when =0). When =1 it was
found above, Equation (3d), that §=0.2582PR’/
EI=0.516404°EL

In Fig. 8 the deflection 6 has been normalized
with respect to Q(Ba)’/EI It can be seen that the
special case 5 > 1 is regained. When [ is very large
the (half) beam behaves like a straight beam
clamped at one end and having sliding boundary
condition at the other (the sliding boundary

Qa’ Qa’
== 7 = I 4
b="Fr 1)+ e s() (34a)

i

7
as | s
] 1 i

i 0

Fig. 6. Bending moment M at symmetry axis (the x-axis, see Fig. 5). Curve (1): Normalised moment M/Qa as function of the parameter
B =bla, and Curve (2): normalised moment M/Qfa. Reference line (a) at 2/x (cf. Equation (26)) and line (b) at 1/2 (cf. Equation (29)).
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Fig. 7. Deflection 6/(Qa’/EI) as function of ratio 3= bla. Reference line (a) at 0.5164 (from Equation (3d) with P =20) and line (b) at
1/3 (from Equation (1)).

condition induces the moment M). A cantilever
beam loaded with Q and M gives in this
case 6= Q(Ba)*/3EI — M(Ba)*/2EI which, using
M= Q(Ba)l2, gives 6= Q(Ba)’/12EI, as obtained
in Fig. 8. Finally, entering Q= P/2 one obtains
8= P(3a)*I24EI as given in expression (3b).

CONCLUSIONS

In this paper, it has been demonstrated that
a well known energy method (the Castigliano
theorem) can be used, in combination with a
numerical integration algorithm, to calculate
deflections of curved beams. The curved beams
have forms that cannot be found in the handbook
literature. Here elliptically curved beams have been
investigated. Both statically determinate and stati-
cally indeterminate beams have been considered.
The loading of the beams is such that the beams

are subjected to both bending and torsion at the
same time.

If the problems discussed here should be solved
with the finite element method, a finite element
model had to be created for each ratio of the ellipse’s
half-axes ¢ and b = Ba, where 0 < 8 < co. Not many
finite element programs deal with curved beams
subjected to both bending and torsion.

In the statically determinate case, the curved
beam takes the form of a quarter of an ellipse.
The beam is clamped at one end and free at the
other. The load, a force P, is applied at the free end
perpendicularly to the plane of the curved beam.
The beam then is subjected to both bending and
torsion. The deflection at the free end is calculated.
From an educational point of view, this problem is
of interest because there are three limiting cases
that can be calculated and compared to results
given in handbooks and some textbooks. The half-
axes of the elliptically curved beam are « and b

13
i
T
b
=
'-c|:||
g
Sut
i
: o T
Z1o 1L — __
{E]
12 " i ; i i i
0 1.4 I 2 3 bia 4

Fig. 8. Deflection 6/(Q(3a)*/EI) as function of ratio 3= bla. Reference line (a) at 1/12 (from (3b) with P =20).
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respectively. In two of the limiting cases, either « or
b tends to zero, and the curved beam tends to a
straight beam of length b and a, respectively. In the
third limiting case, a =5 = R, the cantilever beam
is curved to the form of a quarter of a circle, and
this case can be found in some handbooks and a
few textbooks.

In the statically indeterminate case, the curved
beam takes the form of half an ellipse. The beam is
clamped at the two ends and the load, a force P, is
applied at the middle of the beam perpendicularly
to the plane of the curved beam. This case, thus, is
symmetric with respect to the xz-plane, see Fig.
5. Also in this case the beam is subjected to both
bending and torsion. The deflection at the load is
calculated. Again, from an educational point of
view this problem is of interest because also here
three limiting cases can be found, and at least
two of the limiting cases can easily be found in
the handbook literature. These two limiting cases
are obtained when either a or b tends to zero.

When half-axis b tends to zero, see Fig. 5, the
half-ellipse takes the form of two parallel straight
cantilever beams of length «. Half the load, P/2,
is then carried by each one of the two cantilever
beams, and the deflection can easily be found in
any textbook. When half-axis a tends to zero, the
curved beam tends to a straight beam of length
2b. This beam is clamped at both ends and the
load is applied in the middle; a case that can also
easily be found in any textbook. The third limit-
ing case appears when a=b=R; the beam is
then curved to the form of half a circle. This
case is, however, less frequent in the handbook
literature.

The examples discussed in this paper may be
suitable exercises for mechanical and civil engin-
eering students. It is demonstrated how problems,
not easily found in the handbook literature, may
be solved without too much effort using the second
Castigliano theorem and an integration algorithm,
for example a MATLAB routine.
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