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Educational activities in engineering are often partitioned into analysis, experimentation, and
synthesis. While depth is provided in each of these areas throughout a typical curriculum, little
is domne to unify them as interdependent components of engineering. This paper proposes an
overarching structure that integrates these components under the notion that, at its core,
engineering is decision-making. Design research provides the building blocks for decision-based
design, providing a unifying framework not only within the design process but also among analysis,
experimentation, and synthesis and extending outward to connect engineering to the society of
which it is a part. Existing curricula can be integrated with only small changes.

INTRODUCTION

ENGINEERING PRACTICE has evolved
tremendously with the development of more and
more accurate methods for predicting the behavior
of engineered systems. But increased prediction
accuracy does not change the role of the engineer-
ing designer: to develop design candidates based
on the needs of a customer and to project those
candidates back into the customer’s context to
evaluate their efficacy. The uncertainty of this
process now lies mainly in the representation of
the external world within the modeling environ-
ment (e.g. expected loads, customer needs, manu-
facturing capabilities, etc.) rather than in the
models themselves. Decision-based design (DBD)
is a response to this shift, focusing attention on the
remaining uncertainty toward providing the best
possible designs.

The engineering curriculum can be divided
roughly into three main components. Synthesis is
directed toward generating design options in
response to customer needs. Analysis operates
over these options, evaluating their performance
against well-defined performance measures or fail-
ure modes. Experimentation serves dual purposes:
to confirm or elaborate existing theoretical models
and to parameterize empirical models. The peda-
gogical question is: how should a curriculum weave
these three components together? Historically,
analysis leads in the engineering curriculum—
students first learn mathematical methods and
physical principles. Experimentation convinces
students that their analytical results actually
obtain in the physical world. Synthesis follows
once students have gained a measure of engineering
intuition, but it still suffers from an inherent ‘fuzzi-
ness’ that is difficult to reconcile with analysis and
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experimentation. In the end, students are left with a
disintegrated view of engineering.

We propose to integrate the engineering curricu-
lum by casting engineering into a decision frame-
work. If engineers are society’s tool-makers, then
engineering students should be immersed in a
socio-technical process from the very start, where
they must decide which projects to consider, how to
approach those chosen, how to evaluate their
results, and when they have completed their task.
Each of these decisions requires the generation of
alternatives, their evaluation, the selection of the
best alternative, the identification of information
that might alter that selection, and consideration of
the cost of making a commitment.

DECISION-BASED DESIGN

While often defined as a tool for evaluating a
predefined set of design options [1], decision-based
design can provide a framework for a rational
design process [2, 3]. Under resource constraints,
designers must trade deeper exploration of indivi-
dual design concepts against the development of
new concepts; framing this trade-off as a decision
leads to a normative design process.

One key to this process is the realization that
engineers must make decisions throughout the
design process, from the earliest stages, where
evaluation models and design concepts are both
quite abstract to the final detail stages of design,
where alternatives and their effects on design
performance are more concrete. Decision-based
design thus provides a unifying framework for
this process: at any single point in the design
process, options exist not only in the form of
different concepts under consideration but also in
the form of different possible design actions. If all
design options are known and their performance
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predicted to the highest possible precision, then
decision-based design is simply a matter of choos-
ing the best option (perhaps under the risk prefer-
ences or time-value of money preferences of the
designer’s enterprise).

Unfortunately, resource bounds prevent either
of these conditions [4]. Decision-based design must
instead focus on the development and refinement
of both the set of designs to be considered and the
performance metrics used to predict their value. In
the early stages of design, it is useful to regard the
performance metrics as a single, uncertain value
function. In this case, uncertainty extends not only
to the form of function for aggregating these
metrics (and weights used within such functions
[5]), but also to the set metrics that should be
included. Typically, designers focus on one or two
main performance measures, tuning the overall
performance model as conflicts arise.

Narrowing the design space

Given a set of options and a value function,
expected-value decision-making (EVDM) provides
a normative method for determining the best
option. Each option is evaluated in isolation,
using mathematical expectation to resolve uncer-
tainty in option performance as measured by the
value function:

E(V|dec;, c,u) = J obj(dec;, c,u)p(c,u) du

u 0

where V is the value function, dec; is one of the
set of possible decisions, ¢ are deterministic
constraints (e.g. classification variable assign-
ments), u are uncertain constraints (e.g. perfor-
mance variable constraints), and €2, is the state
space of the uncertainty.

The designer is then free to choose the option
which maximizes expected value. For example,
Fig. 1 shows performance along with sets of
decision plots for various partitions within a
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motor selection design space. Here, the overall
objective is to minimize motor weight, the expecta-
tion of mass given motor length is shown in the
upper left panel along with the probability density
function for motor length in the design space.
Choices for narrowing the permanent magnet,
DC motor design space include: rare-earth vs.
ferrite magnets, frame vs. frameless motors, and
brush vs. brushless commutation. The “*’ portions
of the plots indicate the decision among all
possible partitions that minimizes expected mass.

Refining the evaluation function

As Fig. 1 shows, the decision about which type
of motor to select depends on the allowable length
required by the design. Within the existing evalua-
tion function (minimize motor weight), motor
package length is not considered. For low length
values a designer should have a clear preference for
framed, brushless, rare-earth motors, perhaps
letting motor selection drive significant portions
of the design process. If longer lengths are allowed
(or required by other constraints), the only clear
choice would be for brushless motors; the designer
might then look at secondary aspects of the design
(e.g. cost) to decide which frame and magnet type
to choose. In situations where the optimal choice
of a design might change based on the value of an
uncertain (or, in this case, ambiguous) parameter,
there might be value in resolving the uncertainty:

EVPI(u;) = J {max; E(V|dec;, c, u;)

— E(V|dec, ¢, ;) }p(ujlc) du;  (2)

where u; is an uncertain design variable, V' the
value function, dec; the set of possible decisions,
dec* the current (best) decision, ¢ the deterministic
constraints, and p(u;) is the probability of the
design variable under applied constraints.

This expected value of perfect information
(EVPI) is as an upper bound on the value of

Rare Earth v. Ferrite/Alnico {dashed)

Fig. 1. Decision plot for reducing motor mass for various motor lengths.
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determining an uncertain parameter. It can be
calculated for all uncertain variables: performance
attributes, aggregation weights, even aggregation
function parameters. It is expressed in terms of the
current value function and so can be compared
directly to the expected value of a decision: if a
decision is clear-cut (like choosing a brushless
motor in Fig. 1), there will be no value in resolving
uncertainty. Where resolving uncertainty would
change a decision, there is value to be derived.
This value can then be traded against the cost of
resolving the uncertainty: running tests, doing a
more detailed analysis, performing customer
surveys, etc.

Design freedom—the cost of making commitments
The above value measures can help identify the
current best design choices and their sensitivity to
all known sources of uncertainty. The process of
design becomes the progressive reduction of uncer-
tainty—making design commitments and refining
the evaluation function and performance esti-
mates. While the latter two involve engineering
efforts whose cost can easily be estimated, commit-
ment incurs hidden costs. These costs come from
the nature of the design process—designers are
often forced to make decisions while also fleshing
out the design requirements. Attributes that have
been explicitly included in the value function are
accounted for by EVPI; attributes absent from the
value function may prove to be important down-
stream in the design process. Decisions that reduce
the freedom of the designer to select among values
of these hidden attributes implied by the current
level of design commitment need to be flagged for
more careful consideration. This effect is often
most pronounced when setting performance
targets for a design. Wood [6] proposes a measure
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where V is the value function, u; is a sample of the
uncertainty, and 7z is the number of samples taken.

Figure 2 shows a plot of design freedom of
speed, torque, length, and diameter with respect
to motor mass targets. Reducing the allowable
mass has a marked effect on motor torque, with
respectively less impact on the freedom to choose
diameter, length, or speed. A designer wishing to
keep options open would not set motor mass
targets below about 0.15 (normalized). As this
target is reduced (increasing design value), the
ability to adapt to other possible constraints by
changing any of the four design variables is
reduced.

In summation, EVDM provides a means of
evaluating possible design decisions. This is most
readily applicable to selection among a set of
defined, discrete design concepts but can also be
used to determine the optimal choice of a contin-
uous valued design parameter as well. EVPI
measures the potential impact of reducing uncer-
tainty in the problem, focusing the attention of the
designer on actions that could change the current
decision context. Finally, design freedom provides
a counterpoint to potentially greedy methods that
can lead to commitments that reduce a designer’s
ability to adapt to unforeseen requirements. We
now show how these three concepts provide a
unifying framework for concepts in modern engin-
eering design. We then extend them into a more
general engineering context and explore further
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Fig. 2. Design freedom as a function of mass.
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extensions beyond traditional engineering deci-
sion-making.

DBD: LINKING THE TOOLS OF MODERN
ENGINEERING DESIGN

While much has been made of the advances in
analysis and modeling methods within the ‘hard’
center of engineering (primarily through the wide-
spread application of FEA methods), similar
advances have been made on the ‘softer’ bound-
aries between the customer and engineer. In this
case, we take ‘customer’ to mean any stakeholder
in the design life-cycle: marketing, sales, manufac-
turing, distribution, service, maintenance, retire-
ment, etc. The following is a list of modern design
techniques presented in a typical curriculum:

® Quality functional deployment (QFD): These
methods focus on the communication process
between customer(s) and designers. The aim is to
translate the ‘voice’ of the customer into objec-
tive engineering measures of performance. Goals
for each of the measures are then set in a semi-
rigorous process that trades performance goals
against each other, respecting inferred depen-
dencies among them. Difficulties in this process
often result in goals set too low, resulting in a set
of possible designs (with no clear-cut way of
discriminating among them), or set too high,
resulting in no acceptable designs [8]. Initial
ranges are developed that trade performance
goals against design freedom. The designer
explores these initial, uncertain trade-offs by
reducing goal ranges through the DBD process.
Of course, design freedom at the earliest stages is
difficult to measure directly; absent initial design
concepts, benchmarking methods, can be used
to establish the probability densities from which
design freedom is calculated. As design concepts
evolve and develop through the DBD process,
this initial notion of design freedom becomes
more accurate and more useful for driving the
design process.

® Robust design: At the other end of the design
spectrum, noise from the realization process
must be reflected back into the design process.
Rather than just ignoring imperfections in the
final product, designers must account for man-
ufacturing variation and its impact on design
function and value. Once one takes the DBD
stance that it is the designer’s job to account
for one source of uncertainty, it becomes diffi-
cult to ignore other sources of uncertainty.
Robust design methods rooted in evaluation
under uncertainty fit naturally into a DBD
framework oriented toward expected value deci-
sion-making. In situations where constraints
must be satisfied with robustness, the imposed
super-feasible constraints [9] can be reflected in
the design freedom calculation [10]. This pro-
vides a manufacturing-accurate view of design

freedom whose influence can then reach back
into the conceptual design stage.

Taguchi methods: From an evaluation stand-
point, the overarching quality loss functions
characteristic of Taguchi methods also fit in to
DBD. The design methods these loss functions
underpin can also be cast into the proposed
DBD framework: the notion of preserving
design space is a key part of solving n-type
Taguchi design problems—attributes whose
value can reduce performance variation are set
to their optimal values, design freedom is
reserved for attributes that least affect variation
so that they can be used to drive performance
back to nominal goals.

Six sigma methods: By including aspects of both
QFD and robust resign into a single framework,
six sigma attempt to resolve the tension between
reducing manufacturing costs (by allowing
reduced process capabilities) and satisfying cus-
tomer needs (as measured by characteristics that
are ‘critical to quality’). The main tool in six
sigma design is the Monte Carlo simulation:
designers perform parameter studies of design
variables under various process capability and
inspection strategies. The goal is to meet an
enterprise-wide sigma score (nominally six)
with the lowest manufactured cost. Clearly,
DBD can help in this process, starting by allow-
ing uncertainty in critical to quality thresholds
and manufacturing capability and propagating
this uncertainty through the rest of the design
process. The substitution of more meaningful
value functions for the current sigma score
(many companies find six sigma too expensive
and so reduce the sigma score goal).

Axiomatic design: Rather than a generic measure
of design freedom, axiomatic design [11] values
options in which the various aspects of perfor-
mance can be decoupled. Ideally, adapting to a
change in one functional requirement should be
done by changing a minimum of design para-
meters (according to the independence
axiom), limiting the propagation of design
changes. Among designs that are uncoupled or
decoupled, those whose flexibility meets but
does not exceed the range of potential require-
ments are preferred (according to the informa-
tion axiom). Clearly, axiomatic design places a
high value on design freedom; the independence
it encourages produces designs that are easy to
modify and adapt to changing requirements.
However, the penalty for this independence
may be high in situations where product speci-
fications are not likely to change after the design
process is complete. Preserving post-realization
design freedom is different from preserving free-
dom in conceptual design, where wholesale
design changes are still possible.

Lean production: Lean production concepts,
like reducing work in process, implementing
‘pull’-based, just-in-time manufacturing pro-
cesses, and reducing line changeover times,
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have created a second revolution in mass pro-
duction. On the surface, none of these methods
appears to be closely connected to decision-
based design. However, set-based design [12] is
at the core of lean production Design commit-
ment is carefully managed here by forcing
designers to meet ranges of design goals. Given
a range of designs for a range of goals, a lead
engineer is free to resolve uncertainty in these
goals without incurring additional iteration. The
DBD framework provides ways not only of
measuring the level of design commitment
(through design freedom), but also ways of
identifying critical sources of uncertainty.

® Design for X: By partitioning the product life
cycle into distinct segments (i.e. the Xs), and
assigning customer status to each, DfX creates a
set of customers, each with specific needs. Suc-
cessful in isolation, the challenge is aggregating
all of the DfX concerns in a single design con-
text. A hallmark of DfX is the establishment of
metrics or heuristics that can be used to estimate
design performance. In a DBD framework, these
metrics can be applied as part of the value
function, aggregated with other aspects of per-
formance. Alternatively, the design freedom of
these metrics can be monitored and decisions
implying poor DfX performance flagged for
special consideration.

® Synthesis: While not directly addressed by DBD,
the introduction of design freedom helps to
recognize synthesis as a valid design option. By
helping designers to recognize that moving
toward high-performing designs can lock in
undesired effects, a DBD method that explicitly
trades performance for design freedom can help
focus attention on needed synthesis. In order to
justify greater performance goals, a designer
faced with little design freedom might choose
to develop more through synthesis. Design free-
dom is measured relative to the current set of
design options; developing new options can
restore design freedom that is lost in the quest
for greater performance.

Clearly, many of the above modern design
methods can be cast within a DBD framework
that supports decision-making under uncertainty,
can focus designer attention on sources of uncer-
tainty whose resolution will clarify the decision
process, and can help designers value the freedom
needed to adapt to unforeseen issues. Thus, DBD
is an integrating framework for design, but can it
integrate the rest of the engineering science
curriculum?

INTEGRATING DBD AND ENGINEERING
SCIENCE

A typical division in the engineering curriculum
is between activities that produce deterministic
results (e.g. analysis) or are defined by rigorous
processes (e.g. experimentation) and those that are

rife with uncertainty and offer only loose process
direction (i.e. design/synthesis). Perhaps the first
step in integrating the two sides is the realization
that the assumptions that lead to deterministic
processes (e.g. the load cases for a beam analysis
problem) are often uncertain. In the case of a
bridge design, one might need to consider possible
earthquake or wind loading; to generate economic
designs, these are best modeled as probability
densities rather than single values. Once the
camel’s nose of uncertainty is allowed under the
tent of engineering science, many more sources of
uncertainty can be identified: material properties,
geometric tolerances, customer ‘requirements’,
future part costs, model accuracy, etc.

So, the question should not be whether to
include uncertainty emanating from these sources,
but how to continue to justify the more typical
factor of safety approach to engineering analysis.
Traditional factors of safety are used to cover all
sources of uncertainty. It is difficult to convince
students that a design can fail regardless of the
factor of safety applied; it is likewise easy to get
students to reduce a factor of safety in response to
unfavorable design results—as long as the design
has a factor of safety of one, there is a belief that it
will not fail.

A DBD framework with an emphasis on propa-
gating uncertainty through all design evaluations is
more difficult to handle mathematically (at least
on a hand calculator). Given access to any compu-
ter with a spreadsheet or matrix analysis package,
students can easily implement Monte Carlo
analyses to propagate input uncertainty through
‘design’ equations. Conceptually, this shifts the
practice of design back to a mode of prediction;
algebraic manipulation is replaced with (or
augmented by) a search process in which design
concept performance is predicted and compared to
explicit failure criteria. The factor of safety is
replaced by a probability of failure.

Industry has taken the lead here: six sigma
design, Taguchi methods, and robust design have
replaced more traditional design optimization
methods. Easy Monte Carlo simulation provides
designers with the ability to more closely predict
the real-world response to the nominal design
variables they control.

Prerequisites

Perhaps the most pressing roadblock to introdu-
cing DBD in the design curriculum is an absence of
probability and statistics from the mathematics
requirements. When such requirements are in
place, the focus is often on the scientific mode of
statistical hypothesis testing rather than on the
characterization of data and the use of these
characteristics for predictive behavior. The
concepts of the latter are much simpler than the
former: identify distributions and parameters and
draw samples from them to model performance of
stochastic systems. Because they are orthogonal
to the traditional calculus/differential equation
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curriculum, training in basic statistics and prob-
ability can take place very early on.

Engineering analysis

Given a basic probability and statistics founda-
tion, the next step is to integrate uncertainty into
the typical engineering analysis courses. Instruc-
tors in such classes often bemoan the modern
student’s use of excessive significant figures, but
students are simply transcribing what tools are
giving them. Rather than berate the students, we
might give them the tools to thoughtfully consider
the effects of uncertain inputs to their calculations.
They will clearly see the spread in the calculation
results. If they still provide too many significant
figures, they will more likely be associated with a
mean and variance than with a single, nominal
value—certainly a step forward. Of course, not all
problems need be framed in uncertain terms, but in
seeing the effect of common sources of uncertainty
students will have a better intuition regarding the
accuracy of nominal calculations.

Providing a means for propagating uncertain
inputs through models that are approximate
opens the door for the characterization of the
accuracy of the analysis models themselves. In
most cases, modeling error is dominated by uncer-
tainty in the input; this will serve to contextualize
the common use of models known to have specific
faults. Increasing the physical fidelity of a model
often requires the introduction of new, difficult to
characterize parameters. The progress of engineer-
ing is dominated by the ‘pull’ of models that
improve performance prediction, not by the
‘push’ of ostensibly more accurate models.

Experimentation

For the most part, experimentation courses
require error analysis, prompting students to iden-
tify potential sources of uncertainty and deviations
from modeling assumptions. So the probabilistic
portion of DBD is covered here. What tends to be
missing in courses that serve primarily to demon-
strate analytical theory is that engineering experi-
mentation plays a role beyond theory verification.
Experimentation is not a slave to analysis but a full
partner: engineers develop prototypes to test
aspects of performance that cannot be adequately
modeled. Experimentation is expensive, so it
must be undertaken in a rigorous way. How
much value is the experiment likely to bring to
the design decision process? What will it cost? Are
there cheaper experiments (e.g. scale modeling)
that could provide reasonable value at much
lower cost? This is much closer to the experimenta-
tion mode used by engineers in industry; students
must be introduced to experimentation in the
context of engineering projects.

Electives

Another point of curriculum integration within
engineering is manufacturing. Often presented as
either a process course or a statistics course, the

two are connected in a DBD framework. Process
capability is a key part of process selection; manu-
facturing errors can be propagated through a
design and their impact on design value quantified.
Investment in more accurate processes or more
complete inspection can also be considered. The
popularity of six sigma methods as an industrial
panacea has, underlying it, a real need to recognize
and manage uncertainty throughout the design
process, from customer to manufactured product.

INTEGRATING DBD AND THE
HUMANITIES

The DBD framework described above lends
context and direction to the whole of the engin-
eering curriculum. By formally recognizing the
impact of uncertainty on engineering decisions,
DBD helps to contextualize more faithfully both
analysis and experimentation within the field of
engineering. An engineer/decision-maker must
forge links outside of the typical engineering
curriculum, placing the whole of engineering
education into a richer societal context.

Perhaps the most direct link back into society is
the realization that designs fail. Once factors of
safety have been replaced by probability of failure,
an engineer must find ways of determining whether
this probability is acceptable. This might involve
comparison of the given application to other,
similar situations to identify tolerable risk. It
might involve experimentation to determine accep-
table risk levels based on customer feedback. In
cases where loss of human life is a possibility (i.e.
most design cases), a student must be connected to
society not on just a technical level but also on an
ethical level (what is the value that the project will
bring to society? what are its potential costs?). A
student who has achieved a factor of safety of two
need not look further for improving her design.
The incommensurability of human life casts DBD
as an exercise in ethics—is the risk of loss of life
worth the benefit of the design? How can this risk
be mitigated? Training engineers in ethics is popu-
lar, but this training is only put into practice when
design is cast as an active, decision-making process
rather than a passive exercise in algebra.

Once engineering is integrated into a societal
context, it becomes difficult to divorce it from the
more liberal aspects of education. Casting the
engineer as a decision-maker does not end with
the realization that designs and their failures
have societal effects; an engineering decision-
maker must also judge when and where a technical
solution is the best way to meet society’s needs.
The knowledge that systems will fail in specific
ways gives students the impetus to explore the full
context of the application of technical systems.
Removing the compartmentalization afforded by
a deterministic view of engineering will motivate
students to integrate the technical and non-technical
sides of their education.
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CONCLUSIONS

A decision-based design framework has been
presented and related to modern design tools, the
engineering curriculum, and the humanities (repre-
senting society in general). DBD returns engineer-
ing from a technical/scientific exercise to its roots
as a means of providing the tools and systems that
improve our world. This re-emphasis on the
human side of engineering perhaps means shifting
some of our teaching emphasis away from better
technical analysis and prediction toward methods
for managing the uncertainty inherent in the inter-
face between technology and society. In doing this
we reconnect engineering with the ‘soft’ sciences

Certainly there are many ways of integrating
the engineering curriculum. But no matter how
well design is integrated with analysis and
experimentation or engineering is integrated
into the social sciences and humanities, it is
difficult to find a unifying concept within
design education. DBD forges a methodology
out of the disparate design methods commonly
used in industry. A focus on decision-making
under uncertainty, on the identification of poten-
tially significant information, and on the careful
investment of design freedom characterizes not
only the design process but also engineering
science. Forcing students to embrace, quantify,
and manipulate uncertainty can turn inward-

and humanities, integrating engineering with issues looking technocrats into circumspect world
from the society it both serves and helps create. citizens.
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