
On the Origin of VHDL's Delta Delays*

SUMIT GHOSH
Department of Electrical and Computer Engineering, Castle Point on Hudson,
Stevens Institute of Technology, Hoboken, New Jersey 07030, USA. Email: sghosh2@stevens-tech.edu

Delta delays permeate the current VHDL 1076 standard and have been a source of much confusion
and serious problems. The investigation in the paper turns to history and critically examines the
contemporary scientific thinkings and technical developments, especially in modeling continuous
electronic systems through discrete event techniques. This paper uncovers a plausible explanation,
one that is logical and self-consistent, relative to the origin of BCL which, in turn, reveals the source
of the problem with delta delays. The paper explains the scientific difficulties with delta delays and
offers a solution to the problem that is practically realizable and, surprisingly, straightforward and
simple.

AUTHOR'S QUESTIONNAIRE

1. The paper discusses materials/software for a
course in: (1) Hardware description languages,
(2) Logic design using VHDL, and (3) VHDL.

2. Students of the following departments are
taught in this course: Electrical Engineering,
Computer Engineering, Computer Science &
Engineering, Computer Science.

3. Level of the course (year): senior-level under-
graduates, first-year graduates, doctoral stu-
dents engaged in research.

4. Mode of presentation: conventional lectures or
web-based

5. Is the material presented in a regular or
elective course? Both regular and as elective,
depending on the program and academic insti-
tution.

6. Class or hours required to cover the material:
3±4 hours in a semester, towards the end of the
semester.

7. Student homework or revision hours required
for the materials: N/A

8. Description of the novel aspects presented in
your paper: (1) New material not covered in
any of the traditional VHDL classes or books
or the VHDL Language Reference Manual,
(2) Material essential to undertake accurate
digital designs.

9. The standard text recommended in the
course, in addition to author's notes: (1) Hard-
ware Description Languages: Concept and
Principles published by IEEE Press and
written by the author, (2) VHDL Language
Reference Manual, an IEEE standard and pub-
lished by the IEEE Press, (3) Any of 25 or so
books that present the syntax and use of
VHDL.

10. The core of the paper relates strongly to the
material covered in a traditional classroom.

INTRODUCTION: THE NOTION OF
TIME IN HDLS

TIMING is extremely important and one of the
most important concepts in hardware design. In
the digital design discipline, the correct functioning
of systems is critically dependent on accurately
maintaining the relative occurrence of events,
thereby underscoring the importance of timing.
Consider that an individual takes a set of shift
registers, decoders, an ALU, and other hardware
devices, and interconnects them in a haphazard
manner, without any regard to timing. The result-
ing product is hardly useful. In contrast, when the
same devices are put together by an expert
designer, with their interactions carefully timed,
the result is a powerful and sophisticated compu-
ter. Logically, therefore, timing is critical in hard-
ware description languages (HDLs). In fact, a key
difference between HDLs and the general-purpose
programming languages such as Fortran, Pascal,
Algol, C, or C�� lies in HDL's ability to model
relative timing accurately. Barbacci [1] observes
that the behavior of computer and digital systems
is marked by sequences of actions or activities
while Baudet et al. [2] view the role of time in
HDLs as an ordering concept for the concurrent
computations. Timing is manifest in HDLs
through inertial and transport [3] delays, as attri-
butes to help specify constraints between two or
more signals, etc. For further details, the reader is
referred to [4].

MOTIVATION UNDERLYING THE NEED
TO INTRODUCE DELTA DELAY

The original VHDL architects had introduced
delta delays in VHDL, motivated by the following
scenario. When a digital system consists of two
components C1 and C2 with delays d1 and d2

respectively, such that d1� d2, it should be fine
to treat d2 as zero in the simulation and thereby* Accepted 29 August 2003.

638

Int. J. Engng Ed. Vol. 20, No. 4, pp. 638±645, 2004 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2004 TEMPUS Publications.

enhance the simulation throughput. Thus, the user
was encouraged to ignore the delay for C2 and
assumed that the simulation would still generate
accurate results. The architects soon discovered,
upon implementation, that zero delays lead to
uncertainty in simulation, especially for sequential
systems, a fact that had already been well docu-
mented in the simulation literature. To resolve the
problem, they introduced the notion of delta
delays wherein the VHDL compiler, at compile
time, first detects and then automatically replaces
every instance of zero delay usage in a VHDL
description, with a delta delay. While the VHDL
1076 language reference manual (LRM) does not
provide much detail, a delta delay value is a non-
zero time interval, selected by the VHDL compiler,
such that an indefinite number of such intervals
may be accommodated within a simulation time-
step. The simulation timestep is clearly defined by
those delays of components, such as d1, that are
significant. According to the architects, this new
notion of delta delays is guaranteed to yield
accurate simulation results, despite ignoring
component delays such as d2 and without any
further user intervention. In essence, the notion
of delta delay imparted a false sense of trust among
users in that VHDL had somehow solved the
problem with zero delays and this tempted
designers to use zero delays freely and without
appropriate restraint. Not surprisingly, this has
led to spurious errors that not only confront
designers with inconsistent simulation results but
defy insight into the cause of the error. To address
these problems, a number of VHDL handbooks
have included special sections on how to get
around such problems in VHDL and, at leading
international HDL conferences, during presenta-
tions, authors and members of the audience
exchange information on how to avoid pitfalls in
VHDL by writing tricky code. All of these clearly
contradict the spirit of objectivity and logic in
science and is of great concern since ICs and
computers designed in VHDL will continue to fly
planes, control nuclear reactors and power
stations, and run the nation's financial system.
The greatest conceptual difficulty with delta
delay is that it constitutes a significant impediment
to the concurrent execution of VHDL models on
parallel processors in the future. While the error
with delta delay is undeniable and seems readily

visible, it is intellectually puzzling how and when
delta delay successfully bypassed a critical and
rigorous scientific analysis. Since VHDL architects
claim to have borrowed the concept directly from
Conlan's BCL model of time, one must examine
BCL to uncover the truth. Unfortunately, even the
literature on BCL offers no direct reasons under-
lying the need to introduce it.

In the course of designing VHDL, the architects
became aware that in a VHDL description of a
digital system, the delays of different constituent
components at different levels of hierarchy could
differ by a significant margin. Thus, assuming two
components C1 and C2 with delays d1 and d2

respectively, conceivably d1� d2. Driven by the
perception that the use of zero delays will limit the
scheduler's workload and improve simulation
throughput, they argued that it should be fine to
treat d2 as zero. Thus, users were encouraged to
ignore relatively insignificant delays of com-
ponents such as C2 and were assured that the
simulation would still generate accurate results.
Examination of the language reference manual
LRM) [3] reveals, even today, that no restrictions
are imposed, syntactically or semantically, on the
use of zero values for inertial and transport delays.
This was a misunderstanding, a serious error, and
the problem of zero delay in simulation, especially
in sequential systems, was well documented in the
contemporary literature. In fact, the nature of the
error is subtle and the misconception so serious
that even as recently as 1996, Becker [5] states that
the use of zero delays improves simulation perfor-
mance.

It is not surprising, upon implementation, that
VHDL architects were confronted with inconsis-
tencies stemming from the use of zero delays. To
understand the hows and whys, consider the RS
latch in Fig. 1. Assume that both NANDs are 0 ns
delay gates and that they execute concurrently in a
structural description. Assume that the initial
value at Q and Qb are both 1 and that the value
at set and reset input ports are both 1. At simula-
tion time 0, both gates execute and generate the
following assignments: (1) a value 0 is assigned at
Q at time 0� 0� 0 ns and (2) a value 0 is assigned
at Qb at time 0� 0� 0 ns. Assume that there is a
race between (1) and (2) and that (1) is executed
infinitesimally earlier. As a result, the lower
NAND gate is stimulated and it generates an

Fig. 1. Simulating a sequential circuit with zero-delay gates, in VHDL.

On the Origin of VHDL's Delta Delays 639

assignment: (3) a value 1 is assigned at Qb at
0� 0� 0 ns. Upon examining (2) and (3), both
assignments are scheduled to affect the same
port, Qb, at the same exact time 0 ns, one armed
with a `0' and another armed with a value `1'.

The inconsistencies reflected a conceptual prob-
lem that was quite severe. The literature contained
no scientific solution. Realizing that the entire
VHDL effort was in jeopardy, the VHDL archi-
tects engaged in a desperate search and believed
that they found their answer in Conlan's BCL
model of time [6]. They imported BCL directly
from Conlan and into VHDL, as acknowledged in
[7] and recently reconfirmed [8] by Menchini [9]. In
the process of importing BCL into VHDL, it is not
clear whether the language designers performed
any critical analysis or scientifically assessed the
consequences. At least, none is reported in the
literature.

The BCL time model was renamed delta delay in
VHDL. Under the delta delay concept, the user is
encouraged to specify a zero delay value for
components whose delays are significantly small,
relative to others in the simulation. At compile
time, the VHDL compiler first detects and then
automatically replaces every instance of zero delay
usage in a VHDL description, with a delta delay.
While the VHDL LRM does not provide much
detail, a delta delay value is a non-zero time
interval, selected by the VHDL compiler, such
that an indefinite number of such intervals may
be accommodated within a simulation timestep.
The simulation timestep is clearly defined by those
delays of components, such as d1, that are signifi-
cant. The user is guaranteed accurate simulation
results despite ignoring component delays such as
d2 and without any further user intervention. In
essence, the notion of delta delay in VHDL
appears to have mysteriously solved the problem
of zero delays in simulation. The claim is critically
examined subsequently in this paper.

THE ORIGIN OF THE BCL TIME MODEL

The BCL model of time in Conlan [6] is dual-
scale. While the `real' time is organized into
discrete instants separated by intervals of width
equal to a single time unit, at the beginning of each
time unit, there exists an indefinite number of
computation `steps' identified with integers greater
than zero. BCL is non-intuitive, is not accompa-
nied by any logical reasoning, and does not appear
in any of the contemporary HDLs. To understand
its origin, we are forced to play detective and turn
to history to examine the contemporary thinkings
and technical developments.

The 1960s witnessed an intense effort to adapt
the traditional continuous simulation techniques
for execution on the fast digital computers that
were rapidly replacing analog computers. At first,
the natural desire to reuse traditional practices
resulted in models that described continuous

systems in the form of analog computer diagrams.
Towards the end of the decade, there were several
breakthroughs and a number of new mechanisms
were developed, under the discrete event paradigm,
for different application areas. One of these
mechanisms, termed discrete event specification
system (DEVS), was pioneered by Zeigler [10].
Consider a complex dynamic continuous system,
that accepts discrete input values at its input ports
from the external world at discrete time intervals,
T1, T2, . . . , Tn. Corresponding to an input asserted
at time Tj, the system may generate an output as a
complex function of time. To accurately capture
the dynamic output behavior, DEVS proposed
organizing the output into a finer set of explicit
time intervals, t1; t2; . . . ; tr, defined over the inter-
val specified by Tj and Tj�1, and approximating the
output segments over each of the finer time inter-
vals through constant, piecewise trajectories.
DEVS viewed the overall system behavior as
follows. An external input event triggers a series
of internal state changes that, in turn, generate a
series of piecewise constant output values. The
functions that define the internal state changes
and the output segments in terms of the external
input and internal state values, constitute the
DEVS formalism [10]. Clearly, while the time
intervals delimited by T1, T2, . . . are defined by
the system, the choice of t1, t2, . . . is up to the
DEVS model developer and dictated by the desired
accuracy in the system characterization.

Contemporaneously, in the digital systems dis-
cipline, researchers observed that for some digital
circuits, a single external input signal triggers
multiple changes in the output, caused by the
racing of signals through gates. The subject
matter was classified under hazards [11]. Both
static and dynamic hazards were demonstrated
and while combinatorial and sequential systems
were equally susceptible, the latter triggered parti-
cularly complex behavior stemming from unequal
gate delays, etc.

Thus, the invention of BCL may have been
motivated by either one or both of two possibi-
lities. First, BCL may have been a generalization of
DEVS, intended to serve as a common timing
framework to facilitate the simulation of both
discrete and continuous sub-systems in Conlan.
While the discrete sub-system would be simulated
utilizing standard discrete event simulation tech-
nique, simulation of the continuous sub-system
would fall under the jurisdiction of DEVS.
Perhaps, Piloty and Borrione had in mind an
environment to simulate a system wherein control
would alternate between discrete event simulation
of the discrete sub-system and DEVS execution of
the continuous sub-system. The dual time-scale of
BCL would provide a logical and structural
mechanism to relate the signals, in time, between
the two sub-systems. Intuitively, this is most likely
the truth. Piloty and Borrione's thinking may have
been as follows. The time scale for the discrete sub-
system is the `real' time and it also corresponds to

S. Ghosh640

that of the external input to the continuous sub-
system. The time-scale for the continuous sub-
system is much finer and are termed `steps'. At
the time intervals equal to `step', the internal state
and output functions are executed as outlined in
DEVS. Clearly, the model developer is responsible
for determining the `step' value, based on the
desired accuracy.

However unlikely, there is a second possibility.
Piloty and Borrione may have wanted to extend
the DEVS idea to model pure discrete digital
systems, intending to capture complex hazard
behaviors. This appears unlikely for simple analy-
sis reveals that the time-scale for characterizing a
hazard is not significantly different from that of
the external input stimuli. Piloty and Borrione
would not have chosen to use the phrase `indefinite
number of steps'.

If the inventors of BCL indeed intended the finer
time-scale namely `steps' to enable the simulation
of continuous sub-systems, clearly its use to simu-
late discrete components with zero delays in
VHDL constitutes an inappropriate adaptation.
In BCL, the continuous sub-system under DEVS
and the discrete sub-system simulations were
assumed to be distinct. In contrast, in VHDL,
the delta delay micro time-scale is erroneously
forced to coexist and cooperate with the macro
time-scale within a single simulation system. Last,
in BCL, the user is required to determine the `step'
value based on the desired accuracy. In contrast,
VHDL architects encourage users to abandon the
small delay values in favor of zero delay, and
attempt to incorporate in the VHDL compiler an
automated means of determining a value for the
micro time-step. The irony is that, immediately
after the user has abandoned d2 type values, the
VHDL compiler must turn around and reinvent
delta delay values that are comparable to d2, but
without the benefit of any scientific basis. Clearly,
there is mismatch between the philosophy under-
lying BCL and VHDL's needs under delta delay.

It is pointed out that the lack of a principle to
unify the traditional discrete event simulation of
discrete sub-systems with the DEVS approach for
continuous sub-systems, continues to resist to this
day a uniform simulation approach to a hybrid
system consisting of both discrete and continuous
sub-systems. However, recent research has led to
the discovery of a new principleÐgeneralized
discrete event specification system (GDEVS)
[12±15], that promises to achieve this unification
in the very near future.

DIFFICULTIES WITH VHDL'S DELTA
DELAYS

According to the original VHDL architects [7]
and as recently reconfirmed [8] by Menchini [9],
VHDL's model of time is derived from the BCL
time model in Conlan [6]. In the BCL time model,
the real time is organized into discrete instants

separated by a single time unit and the beginning
of each time unit contains an indefinite number of
computation `steps' identified with integers greater
than zero. The discrete instants and computation
steps correspond to the macro- and a micro-time
scale in VHDL, constituting the notion of delta
delay. VHDL permits signal assignments with zero
delays, i.e. the value is assigned to the signal in zero
macro-time units but some finite, delta, micro-time
units. The actual value of delta is inserted by the
VHDL compiler, transparent to the user.

The first difficulty with delta delay is conceptual.
Given that a host computer is a discrete digital
system, it cannot accommodate an indefinite
number of steps within a finite time unit. Although
the individual computation `steps' must imply
some hardware operation, they do not correspond
to discrete time instants that are utilized by the
underlying discrete event simulator to schedule
and execute the hardware operations. Thus, the
computation `steps' may not be executed by the
simulator and, as a result, they may not serve any
useful purpose. It is also noted that, fundamen-
tally, in any discrete event simulation, the timestep
or the smallest unit through which the simulation
proceeds, is determined by the fastest sub-system
or process. For accuracy, this requirement is
absolute and cannot be transcended. Assume that
this timestep is Tm. If, instead of Tm, a timestep T
is used deliberately (T>Tm), the contributions of
the fastest sub-system or process cannot be
captured in the simulation, leading to errors in
interactions, and eventually incorrect results.

The second difficulty with delta delay is that the
VHDL language reference manual [3] does not
state how a value for the delta is selected. This is
an important question since VHDL may return
different results corresponding to different choices
of the delta, as illustrated through Fig. 2.

Figure 2 presents a signal waveform. Assume
that the value of delta is 1 ps. When the current
simulation time is either 1 ns or 2 ns, VHDL safely
returns the value 0 for the signal value. However,
where the delta value is 5 ps, VHDL will return the
value 0 corresponding to the current simulation
time of 2 ns but fail to return a definite value
corresponding to the current simulation time of
1 ns. Since the signal waveform is realized at

Fig. 2. Impact of the choice of delta value on simulation results.

On the Origin of VHDL's Delta Delays 641

runtime, i.e. as the entities execute during simula-
tion, and as the VHDL compiler must select a
value for the delta delay at compile time, it is
difficult to ensure the absence of ambiguous
results.

The third difficulty is that, fundamentally, any
attempt to simulate an asynchronous circuit with
zero-delay components, under discrete event simu-
lation, is likely to lead into ambiguity. In its aim to
simulate digital designs with zero-delay compo-
nents through delta delays, VHDL incurs the
same limitation. Consider, for example, the RS
latch shown earlier in Fig. 1 and assume that
both NANDs are 0 ns delay gates and that they
execute concurrently in a VHDL structural
description. Assume that the initial value at Q
and Qb are both 1 and that the value at set and
reset input ports are both 1. At simulation time 0,
both gates execute and generate the following
assignments: (1) a value 0 is assigned at Q at
time 0� 0� 0 ns and (2) a value 0 is assigned at
Qb at time 0� 0� 0 ns. Assume that there is a race
between (1) and (2) and that (1) is executed
infinitesimally earlier. As a result, the lower
NAND gate is stimulated and it generates an
assignment. (3) a value 1 is assigned at Qb at
0� 0� 0 ns. Upon examining (2) and (3), both
assignments are scheduled to affect the same
port, Qb, at the same exact time 0 ns, one armed
with a `0' and another armed with a value `1.'

The fourth difficulty is that one can construct
any number of example scenarios in VHDL where
the result is inconsistency and error. Consider the
process, PROC1, shown below which has an
inconsistency with delta delays in VHDL. While
not critical to this discussion, it is pointed out that
the process PROC1 does not include a sensitivity
list which is permitted by the VHDL language [3].
As an example usage of a process without a
sensitivity list, the reader is referred to page 57 of
[3].

architecture X of Y is
signal a, b: resolve BIT .. ;

begin
PROC1: process
variable c: int;
begin
for i in 0 to 1000 loop

S1: a (b�c;
S2: b (a�c;

end loop;
end process;

PROC2: process
variable d: int;
begin
for i in 0 to 7 loop

S3: a (b�d;
S4: b (a�d;

end loop;
end process;

end X;

The statements S1 and S2 are both zero delay
signal assignments. While S1 updates the signal `a'
using the value of signal `b' and the variable, `c,'
the statement S2 updates the signal `b' using the
value of the signal `a' and the variable `c.' To
prevent ambiguity of assignments to the signals `a'
and `b,' the VHDL compiler inserts, at compile
time, a delta delay of value delta1 say, to each of
S1 and S2. Thus, S1 is modified to: a(b� c after
delta1, and S2 is modified to b (a� c after
delta1. For every iteration, the subsequent assign-
ments to `a' and `b' are realized in increments of
delta1. That is, first (NOW� delta1), then
(NOW� delta1� delta1), and so on. These are
the micro time steps in the micro-time scale and
we will refer to them as delta points. Between the
two consecutive macro time steps, the VHDL
scheduler may only allocate a maximum but
finite number of delta points which is a compile
time decision. Conceivably, the designer may
choose a value for the number of iterations
such that, eventually, the VHDL scheduler
runs out of delta points. Under these circum-
stances, VHDL will fail. Thus, the idea of
signal deltas, transparent to the user, is not
implementable.

Fifth, the notion of delta delays, in its current
form, poses a serious inconsistency with VHDL's
design philosophy of concurrency. Consider the
case where the processes PROC1 and PROC2, by
definition, are concurrent with respect to one
other. The two sets of statementsÐ{S1, S2} in
PROC1 and {S3, S4} in PROC2, both affect the
signals `a' and `b' and `resolve' constitutes
the resolution function, as required by VHDL.
The statements S1, S2, S3, and S4 are all zero
delay signal assignments, so delta delays must be
invoked by the VHDL compiler. Since the
dynamic execution behavior of processes are
unknown a priori, the VHDL compiler may face
difficulty in choosing appropriate values for the
delta delay in each of the processes. In this ex-
ample, however, logically, the VHDL compiler is
likely to assign a very small value for the delta
delay (say delta1) in PROC1, given that it has to
accommodate 1001 delta points. In contrast, the
VHDL compiler may assign a modest value for the
delta delay (say delta2 where delta2� delta1) in
PROC2, given that only 8 delta points need to be
accommodated. As stated earlier, assignments to
the signals `a' and `b' will occur from within PROC1
at (NOW� delta1), (NOW� delta1� delta1), and
so on. From within PROC2, assignments to the
signals `a' and `b' will occur at (NOW� delta2),
(NOW� delta2� delta2), etc. By definition, a reso-
lution function resolves the values assigned to a
signal by two or more drivers at the same instant.
Therefore, here, `resolve' will be invoked only
when (NOW�m � delta1)� (NOW� n � delta2),
for some integer values `m' and `n.' In all other
cases, assignments to the signals `a' and `b' will
occur either from within PROC1 or PROC2.
Thus, the values of the signals `a' and `b,' from the

S. Ghosh642

perspectives of processes PROC1 and PROC2 are
uncoordinated, implying ambiguity and error.

There is a misconception that, during VHDL
simulation, one can turn off the advancement of
time, i.e. macro-time step, then execute a number
of micro-steps, and then resume the normal
advancement of time. This is incorrect and
explained as follows. Fundamentally, a simulator
is a sophisticated program whose sole objective is
to execute events. A simulation terminates when all
events have been executed and the number of
outstanding events is nil. Simulation, in turn,
critically depends on the notion of time to order
the events for, without order, causality may be
violated leading to erroneous results. Therefore,
any suggestion to turn off the advancement of
time, even temporarily, is equivalent to terminat-
ing the simulation. In fact, in any simulation, every
activity, whether labeled macro-event or micro-
event, must be logically ordered by time such
that the causal dependence remains in effect and
correct results are produced. In essence, there is no
computational savings of any kind through the use
of dual time-scales.

A SIMPLE SOLUTION TO THE PROBLEM
OF DELTA DELAYS IN VHDL

The solution to the original problem that set the
VHDL architects on their journey to delta delay,
comes in two parts. The first is the elimination of
delta delay in its present form from the VHDL
LRM and prohibiting the use of zero delays.
Delta delays are unnatural, unnecessary, and
error prone. Second, users must simply be encour-
aged to specify the exact delays of components at
any level of hierarchy, in terms of the universal
time, regardless of whether it is relatively too small
or too large. The VHDL execution environment,
like any other event driven simulation system [16],
will generate correct results without any additional
resource or external intervention. Of course, the
dynamic range of the delays, i.e. the ratio of the
largest to the smallest delay value, must be accom-
modated by the VHDL compiler and correctly
interpreted in the simulation environment. This
may require a simple reorganization of the integer
representation in the host computer, perhaps
concatenate two or more 32-bit words or 64-bit
words for use in representing simulation time. If d1

and d2 represent large and small propagation delay
values respectively, it does not matter how large d1

is or how small d2 is, relative to each other. For, in
event driven simulation, the scheduler jumps from
one event to the next logical event, following the
causal dependence chain, regardless of the amount
of jump, measured in terms of time. Thus, the
simulation execution time is influenced primarily
by the causal dependence chain, reflected in the
differences of the time values of the events, and not
by the absolute values of d1 and d2.

To gain insight into the philosophy behind the

simple solution requires an understanding of the
concept of universal time [4]. At a given level of
abstraction, although each entity, by virtue of its
independent nature, may have its own notion of
time, for any meaningful interaction between enti-
ties A and B, both A and B must understand at the
level of a common denominator of time. This is
termed `universal time,' assuming that the system
under consideration is the universe. Otherwise, A
and B will fail to interact with each other. The
universal time reflects the finest resolution of time
among all of the interacting entities. However, the
asynchronicity manifests as follows. Where entities
A and B interact, between their successive interac-
tions, each of A and B proceed independently and
asynchronously. That is, for A, the rate of progress
is irregular and uncoordinated and reflects lack of
precise knowledge of that of B and vice-versa. At
the points of synchronization, however, the time
values of A and B must be identical. Where entities
X and Y never interact, their progress with time is
absolutely independent and uncoordinated with
one another and the concept of universal time is
irrelevant.

Thus, at any given level of abstraction in hard-
ware, the entities must understand events in terms
of the universal time and this time unit sets the
resolution of time in the host computer. The host
computer, in turn, executes the hardware descrip-
tion, expressed in a HDL, of a digital system.
Consider a hardware module A with a unique
clock that generates pulses every second connected
to another hardware module B whose unique clock
rate is a millisecond. Figure 3 shows a timing
diagram corresponding to the interval of length 1
s between 1 s and 2 s. Figure 3 superimposes the
1000 intervals each of length 1 ms corresponding to
the clock of B. Clearly, A and B are asynchronous.
Module A is slow and can read any signal placed
on the link every second. If B asserts a signal value
v1 at 100 ms and then another value v2 at 105 ms,
both within the interval of duration 1 second,
A can read either v1 or v2, but not both. The
resolution of A, namely 1 second, does not permit
it to view v1 and v2 distinctly. Thus, the inter-
action between A and B is inconsistent. If A and B
were designed to be synchronous, i.e. they share
the same basic clock, A would be capable of
reading every millisecond and there would be no
difficulty. In reality, microprocessors that require
substantial time to generate an output of a soft-
ware program are often found interfaced asyn-
chronously with hardware modules that generate
results quicker. In such situations, the modules and
the microprocessor understand the universal time,
i.e. they are driven by clocks with identical resolu-
tions although the phases of the clocks may differ
thereby causing asynchrony.

Thus, the host computer which is responsible
for executing the hardware descriptions corre-
sponding to the entities, must use the common
denominator of time for its resolution of
time. When the host computer is realized by a

On the Origin of VHDL's Delta Delays 643

uniprocessor, the underlying scheduler implements
this unit of time. When the host computer is
realized by multiple independent processors, each
local scheduler, associated with every one of the
processors, will understand and implement this
unit of time.

CONCLUSIONS

This paper has traced the VHDL architects'
journey into the world of delta delay including
the original need for zero delay usage that evolved
from a misconception that zero delays enhance
simulation throughput without any penalty, the
subsequent difficulties with the VHDL implemen-
tation of zero delay, the adapting of Conlan's BCL
model of time into VHDL as delta delay without
a clear understanding of the consequences, and

the problems that confront VHDL today. This
paper has traced the origin of BCL to the goal of
relating the results of discrete event simulation of
discrete sub-systems with those of DEVS simula-
tion of continuous sub-systems, for a given system,
through an underlying timing framework. This
paper has presented a simple solution to the prob-
lem that involves the elimination of zero delay
usage and the specification of actual component
delay values in terms of universal time. Presently,
the author is pursuing the integration of GDEVS
with VHDL that promises to yield a practically
realizable approach to the accurate simulation of
both discrete and continuous elements of a digital
system, within a single uniform environment.

AcknowledgmentÐThe author sincerely thanks Prof. Norbert
Giambiasi of the University of Marseilles, France, and Prof.
Bernie Zeigler of the University of Arizona, Tucson, for their
valuable insights.

REFERENCES

1. M. R. Barbacci, A comparison of register transfer languages for describing computers and digital
systems, IEEE Transactions on Computers, C-24(2) Feb. 1975, pp. 137±150.

2. G. M. Baudet, M. Cutler, M. Davio, A. M. Peskin and F. J. Rammig, the relationship between hdls
and programming languages, in VLSI and Software Engineering Workshop, Port Chester, NY
(1982) pp. 64±69.

3. IEEE Standard VHDL Language Reference Manual, ANSI/IEEE Std 1076±1993, IEEE, Institute
of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017, USA
(1994).

4. Sumit Ghosh, Hardware Description Languages: Concepts and Principles, IEEE Press, New Jersey
(2000).

5. M. Becker, Faster Verilog simulations using a cycle based programming methodology, Proc.1996
International Verilog HDL Conference, Santa Clara, California, February 26±28 1996, pp. 24±31.

6. R. Piloty and D. Borrione, The Conlan Project: concepts, implementations, and applications,
IEEE Computer, C-24(2) 1985, pp. 81±92.

7. M. Shahdad, R. Lipsett, E. Marschner, K. Sheehan and H. Cohen, VHSIC Hardware Description
Language, IEEE Computer, CAD-6(4) 1985, pp. 94±103.

8. Sumit Ghosh, Fundamental principles of modeling timing in hardware description languages for
digital systems, Proc. Int. HDL Conference (HDLCON'99), Santa Clara, CA, April 6±9, 1999,
pp. 30±37.

9. Paul Menchini, Comments during open discussion in the session on timing in hardware description
languages, Int. HDL Conference (HDLCON'99), April 6±9, 1999.

10. Bernie Zeigler, Theory of Modeling and Simulation, John Wiley & Sons, New York (1976).
11. Saburo Muroga, Logic Design and Switching Theory, John Wiley & Sons, New York (1979).
12. Norbert Giambiasi, Bruno Escude and Sumit Ghosh, GDEVS: a generalized discrete event

specification for accurate modeling of dynamic systems, in AIS'2000, Tucson, AZ, March 2000.
13. Bruno Escude, Norbert Giambiasi and Sumit Ghosh, GDEVS: a generalized discrete event

specification for accurate modeling of dynamic systems, Transactions of the Society for Computer
Simulation (SCS), 17(3) September 2000, pp. 120±134.

14. Norbert Giambiasi, Bruno Escude, and Sumit Ghosh, Generalized discrete event specifications:
coupled models, Proc. 4th World Multi-Conference on Systemics, Cybernetics And Informatics (SCI
2000) and 5th Int. Conf. Information Systems, Analysis And Synthesis (ISAS 2000), July 23±26
2000.

15. Bruno Escude, Norbert Giambiasi, and Sumit Ghosh, Coupled modeling in generalized discrete
event specifications (GDEVS), Transactions of the Society for Computer Simulation (SCS), Special
Issue on Recent Advances in DEVS Methodology, December 2000.

Fig. 3. The concept of universal time.

S. Ghosh644

16. Sumit Ghosh and Tony Lee, Modeling and Asynchronous Distributed Simulation: Analyzing
Complex Systems, IEEE Press, New Jersey (2000).

Sumit Ghosh is the Hattrick Chaired Professor of Information Systems Engineering in the
Department of Electrical and Computer Engineering at Stevens Institute of Technology in
Hoboken, New Jersey. Prior to Stevens, he had served as the associate chair for research
and graduate programs in the Computer Science and Engineering Department at Arizona
State University. Before ASU, Sumit had been on the faculty of Computer Engineering at
Brown University, Rhode Island, and even before that he had been a member of technical
staff (principal investigator) of VLSI Systems Research Department at Bell Laboratories
Research (Area 11) in Holmdel, New Jersey. He received his B. Tech. degree from the
Indian Institute of Technology at Kanpur, India, and his M.S. and Ph.D. degrees from
Stanford University, California. He is the primary author of five reference books:
Hardware Description Languages: Concepts and Principles (IEEE Press, 2000); Modeling
and Asynchronous Distributed Simulation of Complex Systems (IEEE Press, 2000);
Intelligent Transportation Systems: New Principles and Architectures (CRC Press, 2000;
First reprint 2002); and Principles of Secure Network Systems Design (Springer-Verlag,
2002; Translated into Chinese, 2003±2004); and Algorithm Design for Networked Informa-
tion Technology Systems: Principles and Applications (Springer-Verlag, due out October
2003). As the first vice president of education in the Society for Computer Modeling and
Simulation International (SCS), he is tasked to develop comprehensive graduate and
undergraduate degree programs in modeling and simulation and an accreditation process.
Sumit organized a NSF-sponsored workshop titled, Secure Ultra Large Networks:
Capturing User Requirments with Advanced Modeling and Simulation Tools (ULN'03)
(with Prof. Bernard Zeigler of Univ. Arizona and Prof. Hessam Sarjoughian of ASU) at
Stevens Institute of Technology, May 29±30, 2003. Details on his research pursuits may be
found at http://attila.stevens-tech.edu/~sghosh2.

On the Origin of VHDL's Delta Delays 645

